IRF IR2117STRPBF

Data Sheet No. PD60146 Rev O
IR2117(S)/IR2118(S) & (PbF)
SINGLE CHANNEL DRIVER
Features
•
•
•
•
•
•
Product Summary
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
CMOS Schmitt-triggered inputs with pull-down
Output in phase with input (IR2117) or out of
phase with input (IR2118)
Also available LEAD-FREE
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
125 & 105 ns
Packages
Description
The IR2117/IR2118(S) is a high voltage, high speed
power MOSFET and IGBT driver. Proprietary HVIC and
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible
with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for
minimum cross-conduction. The floating channel can
be used to drive an N-channel power MOSFET or IGBT
in the high or low side configuration which operates up
to 600 volts.
8-Lead PDIP
IR2117/IR2118
8-Lead SOIC
IR2117S/IR2118S
Typical Connection
IR2117
(Refer to Lead Assignments for correct pin configuration).
This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
IR2118
1
IR2117(S)/IR2118(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 5 through 8.
Symbol
Definition
Min.
Max.
Units
VB
High side floating supply voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Logic supply voltage
-0.3
25
VIN
Logic input voltage
-0.3
VCC + 0.3
Allowable offset supply voltage transient (figure 2)
—
50
Package power dissipation @ TA ≤ +25°C
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
dVs/dt
PD
RthJA
Thermal resistance, junction to ambient
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
150
TJ
Junction temperature
—
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Logic supply voltage
10
20
VIN
Logic input voltage
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2117(S)/IR2118(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in Figure 3.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
125
200
VS = 0V
toff
Turn-off propagation delay
—
105
180
VS = 600V
tr
Turn-on rise time
—
80
130
tf
Turn-off fall time
—
40
65
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
input voltage - logic “1” (IR2117) logic “0” (IR2118)
9.5
—
—
VIL
Input voltage - logic “0” (IR2117) logic “1” (IR2118)
—
—
6.0
VOH
High level output voltage, VBIAS - VO
—
—
100
VOL
Low level output voltage, VO
—
—
100
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
—
50
240
VIN = 0V or VCC
IQCC
Quiescent VBS supply current
Quiescent VCC Supply Current
—
70
340
IIN+
Logic “1” input bias current
(IR2117)
(IR2118)
VIN = 0V
IIN-
Logic “0” input bias current
(IR2117)
VIN = 0V
—
—
20
—
40
V
mV
IO = 0A
VIN = 0V or VCC
µA
1.0
(IR2118)
VIN = VCC
VIN = VCC
VBSUV+
VBS supply undervoltage positive going threshold
7.6
8.6
VBSUV-
VBS supply undervoltage negative going threshold
7.2
8.2
9.2
VCCUV+
VCC supply undervoltage positive going threshold
7.6
8.6
9.6
VCCUV-
VCC supply undervoltage negative going threshold
7.2
8.2
9.2
Output high short circuit pulsed current
200
250
—
IO+
IO = 0A
9.6
V
VO = 0V
VIN = Logic “1”
IO-
Output low short circuit pulsed current
420
500
—
mA
PW ≤ 10 µs
VO = 15V
VIN = Logic “0”
PW ≤ 10 µs
www.irf.com
3
IR2117(S)/IR2118(S) & (PbF)
Functional Block Diagram (IR2117)
Functional Block Diagram (IR2118)
4
www.irf.com
IR2117(S)/IR2118(S) & (PbF)
Lead Definitions
Symbol
Description
VCC
IN
Logic and gate drive supply
IN
Logic input for gate driver output (HO), out of phase with HO (IR2118)
COM
Logic ground
VB
HO
High side floating supply
High side gate drive output
VS
High side floating supply return
Logic input for gate driver output (HO), in phase with HO (IR2117)
Lead Assignments
1
2
3
VB
VCC
IN
HO
COM
VS
4
7
1
2
6
3
5
4
VCC
VB
8
IN
HO
7
COM
VS
6
5
8 Lead PDIP
8 Lead SOIC
IR2117
IR2117S
1
VCC
VB
8
1
VCC
VB
8
2
IN
HO
7
2
IN
HO
7
3
COM
VS
6
3
COM
VS
6
5
4
4
www.irf.com
8
5
8 Lead PDIP
8 Lead SOIC
IR2118
IR2118S
5
IR2117(S)/IR2118(S) & (PbF)
IN
(IR2118)
<50 V/ns
IN
IR2117/IR2118
(IR2117)
HO
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
IN
(IR2118)
50%
50%
50%
50%
IN
(IR2117)
ton
tr
IR2117/IR2118
HO
Figure 3. Switching Time Test Circuit
6
toff
90%
10%
tf
90%
10%
Figure 4. Switching Time Waveform Definition
www.irf.com
IR2117(S)/IR2118(S) & (PbF)
500
Turn-on Delay Time (ns)
Turn-on Delay Time (ns)
500
400
300
200
M ax.
100
Typ.
0
-50
400
300
M ax.
200
Typ.
100
0
-25
0
25
50
75
100
10
125
12
500
400
400
Turn-Off Time (ns)
Turn-Off Time (ns)
500
300
200
M ax.
100
Typ.
18
20
18
20
300
M ax.
200
Typ.
100
0
-25
0
25
50
75
Temperature (oC)
Figure 5A. Turn-Off Tim e
vs. Tem perature
www.irf.com
16
Figure 4B. Turn-On Time
vs. Supply Voltage
Figure 4A. Turn-On Tim e
vs. Tem perature
0
-50
14
V BIAS Supply Voltage (V)
Temperature ( C)
o
100
125
10
12
14
16
V BIAS Supply Voltage (V)
Figure 5B. Turn-Off Time
vs. Supply Voltage
7
IR2117(S)/IR2118(S) & (PbF)
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
500
400
300
200
M ax.
100
0
-50
Typ.
400
300
200
M ax.
100
Typ.
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
o
20
250
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
18
Figure 6B. Turn-On Rise Time
vs. Supply Voltage
250
200
150
100
M ax.
Typ.
0
-50
200
150
100
M ax.
50
Typ.
0
-25
0
25
50
75
100
Temperature ( C)
o
Figure 7A. Turn-Off Fall Tim e
vs. Tem perature
8
16
V BIAS Supply Voltage (V)
Fiure 6A. Turn-On Rise Time
vs.Temperature
50
14
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 7B. Turn-Off Fall Tim e
vs. Supply Voltage
www.irf.com
13
18
12
15
Input Voltage (V)
Input Voltage (V)
IR2117(S)/IR2118(S) & (PbF)
11
10
M in.
9
12
9
6
M in.
3
8
-50
-25
0
25
50
75
100
10
125
12
18
20
Figure 8B. Logic "1" (IR2118 "0") Input Voltage
vs. Supply Voltage
Figure 8A. Logic "1" (IR2118 "0") Input Voltage
vs. Tem perature
9
15
8
12
Input Voltage (V)
Input Voltage (V)
16
V cc Supply Voltage (V)
Temperature ( oC)
7
M ax.
6
5
4
-50
14
9
6
M ax.
3
0
-25
0
25
50
75
100
125
Temperatre ( C)
o
Figure 9A. Logic "0" (IR2118 "1") Input Voltage
vs. Tem perature
www.irf.com
10
12
14
16
18
20
V cc Supply Voltage (V)
Figure 9B. Logic "0" (IR2118 "1") Input Voltage
vs. Supply Voltage
9
0.5
High Level Output Voltage (V)
High Level Output Voltage (V)
IR2117(S)/IR2118(S) & (PbF)
0.4
0.3
0.2
0.1
M ax.
0.0
-50
-25
0
25
50
75
100
0.5
0.4
0.3
0.2
M ax.
0.1
0
10
125
12
0.5
0.4
0.3
0.2
M ax.
0
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 11A. Low Level Output
vs.Temperature
10
16
18
20
Figure 10B. High Level Output
vs. Supply Voltage
Low Level Output Voltage (V)
Low Level Output Voltage (V)
Figure 10A. High Level Output
vs. Temperature
0.1
14
V cc Supply Voltage (V)
Temperature ( C)
o
125
0.5
0.4
0.3
0.2
0.1
MAX.
0
10
12
14
16
18
20
V cc Supply Voltage (V)
Figure 11B. Low Level Output
vs. Supply Voltage
www.irf.com
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Offset Supply Leakage Current ( A)
Offset Supply Leakage Current ( A)
IR2117(S)/IR2118(S) & (PbF)
500
400
300
200
100
M ax.
0
0
100
o
Temperature ( C)
300
400
500
600
VB Boost Voltage (V)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
Figure 12B. Offset Supply Leakage
Current vs. V B Boost Voltage
1000
)
)
1000
800
V Supply Current (
V Supply Current (
200
600
400
M ax.
200
Typ.
0
-50
600
400
200
M ax.
Typ.
0
-25
0
25
50
75
100
Temperature ( C)
o
Figure 13A. V BS Supply Current
vs. Tem perature
www.irf.com
800
125
10
12
14
16
18
20
V BS Supply Voltage (V)
Figure 13B. V BS Supply Current
vs. Supply Voltage
11
IR2117(S)/IR2118(S) & (PbF)
1000
)
V cc Supply Current ( A)
1000
V cc Supply Current (
800
600
400
M ax.
200
Typ.
0
-50
800
600
400
M ax.
200
Typ.
0
-25
0
25
50
75
100
125
10
12
Temperature ( C)
o
14
16
18
20
V cc Supply Voltage (V)
Figure 14B. V cc Supply Current
vs . Supply Voltage
Figure 14A. V cc Supply Current
vs. Tem perature
120
)
)
120
Logic "1" Input Current (
Logic "1" Input Current (
100
80
60
40
20
0
-50
M ax.
Typ.
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 15A. Logic "1" (2118 "0") Input Current
vs. Temperature
12
100
80
60
M ax.
40
Typ.
20
0
10
12
14
16
18
20
V cc Supply Voltage (V)
Figure 15B. Logic "1" (2118 "0") Input Current
vs. Supply Voltage
www.irf.com
)
5
Logic "0" Input Current (
Logic "0" Input Current (
)
IR2117(S)/IR2118(S) & (PbF)
4
3
2
1
M ax.
0
-50
-25
0
25
50
75
100
5
4
3
2
M ax.
1
0
125
10
12
Temperature ( C)
Figure 16A. Logic "0" (2118"1") Input Current
vs. Temperature
16
18
20
Figure 16B. Logic "0" (2118"1") Input Current
vs. Supply Voltage
16
)
)
16
14
V cc Supply Current (
V cc Supply Current (
14
V cc Supply Voltage (V)
o
12
10
M ax.
Typ.
8
M in.
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. V cc Undervoltage Threshold (+)
vs. Temperature
www.irf.com
14
12
10
8
6
-50
M ax
Typ.
M in.
-25
0
25
50
Temperature
75
100
125
(oC)
Figure 18A. V cc Undervoltage Threshold (-)
vs. Tem perature
13
IR2117(S)/IR2118(S) & (PbF)
16
)
14
V Supply Current (
V BS Supply Current (
)
16
12
10
M ax.
Typ.
8
14
12
M ax.
10
Typ.
8
M in.
6
-50
-25
0
25
50
75
100
6
-50
125
M in.
-25
0
500
400
Typ.
M in.
100
0
-50
-25
0
25
50
75
100
100
125
125
500
400
300
200
Typ.
100
M in.
0
10
12
14
16
18
Temperature ( C)
V BIAS Supply Voltage (V)
Figure 21A. Output Source Current
vs. Tem perature
Figure 21B. Output Source Curre nt
vs . Supply Voltage
o
14
75
Figure 20A. V BS Undervoltage Threshold (-)
vs. Tem perature
Output Source Current (mA)
Output Source Current (mA)
Figure 19A. V BS Undervoltage Threshold (+)
vs. Tem perature
200
50
Temperature ( C)
Temperature ( C)
300
25
o
o
20
www.irf.com
IR2117(S)/IR2118(S) & (PbF)
1000
Output Sink Current ( )
Output Sink Current ( )
1000
800
600
Typ.
400
M in.
200
0
-50
600
400
Typ.
200
M in.
0
-25
0
25
50
75
100
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Temperature (oC)
Figure 22B. Output Sink Current
vs. Supply Voltage
Figure 22A. Output Sink Current
vs.Temperature
vs Offset Supply Voltage (V)
800
0
-2
Typ.
-4
-6
-8
-10
-12
10
12
14
16
18
20
V BS Floting Supply Voltage (V)
Figure 23B. Maximum VS Negative Offset
vs. Supply Voltage
www.irf.com
15
IR2117(S)/IR2118(S) & (PbF)
320V
150
320V
150
140V
140V
125
100
75
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
125
25
10V
75
50
25
0
1E+2
100
0
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 24. IR2117/IR2118 TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
320V 140V
150
Figure 25. IR2117/IR2118 TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
10V
320V 140V
150
10V
125
Junction Temperature (°C)
Junction Temperature (°C)
125
100
75
50
25
50
0
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 26. IR2117/IR2118 TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
16
75
25
0
1E+2
100
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 27. IR2117/IR2118 TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
www.irf.com
IR2117(S)/IR2118(S) & (PbF)
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
2
3
0.25 [.010]
4
A
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
e1
6X
e
3X 1.27 [.050]
e1
0.25 [.010]
A1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INC HES
MIN
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
8-Lead SOIC
www.irf.com
17
IR2117(S)/IR2118(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2117 order IR2117
8-Lead PDIP IR2118 order IR2118
8-Lead SOIC IR2117S order IR2117S
8-Lead SOIC IR2118S order IR2118S
Leadfree Part
8-Lead PDIP IR2117 order IR2117PbF
8-Lead PDIP IR2118 order IR2118PbF
8-Lead SOIC IR2117S order IR2117SPbF
8-Lead SOIC IR2118S order IR2118SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 5/14/2007
18
www.irf.com