INTEGRATED CIRCUITS DATA SHEET SC2000 Universal Timeslot Interchange Preliminary specification File under Integrated Circuits 2000 Sep 07 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Package Mechanical Drawing . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SCbus/ST-BUS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PEB Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPU Data Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Bus Data Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 2 3 Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Logical Pin Organization . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Physical Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Microprocessor Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Command/Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Internal Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Internal Register Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . 7 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Version/Revision Register (O4H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Destination Routing Memory (80H-9FH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . 10 Source Routing Memory (A0H-BFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Destination Parallel Access Registers (C0H-DFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. . . . . . . . . . . . . . . . . . . 12 Source Parallel Access Registers (E0H-FFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . 12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CRecommended DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. 13 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Timing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Microprocessor Interface Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Local and Expansion Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Clock and Sync Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 2000 Sep 07 2 Philips Semiconductors Preliminary specification Universal Timeslot Interchange • Internal support for SCbus clock fallback FEATURES • Multi-time slot switching capability for N x 64K channels (N = 1 to 32). • Built-in SCbus message bus interface • Architecture optimized for the call processing environment: SCSA , PEB , or MVIP compatible. TM • Supports both Intel® and Motorola® processor interfaces TM TM • Two software selectable expansion bus formats: • SCbus TM /ST-BUS SC2000 • 68-pin PLCC package • 5v CMOS technology TM • PEB • Two software selectable local bus formats: • ST-BUS • PEB • Enhanced input hysteresis threshold. • 32 x 2048 channel switch • Serial or parallel access to the SCbus. MC Rx data MC Tx data 0.995 [25.27] 0.985 [25.02] CLKFAIL MC CLKFAIL& MC bus 0.800 [20.32] REF Configuration registers Microprocessor Bus Microprocessor Interface Parallel Access Registers 0.995 [25.27] 0.985 [25.02] 0.800 [20.32] REF Routing Memory SI SO Local Bus Interface Switch Matrix PIN 1 INDEX Expansion Bus Interface Expansion Serial Bus Clock in Clock Out Timing Expansion Clock Out 0.048 [1.22] 0.042 [1.07] 0.056 [1.42] 0.042 [1.07] Block Diagram 0.200 [5.08] 0.165 [4.19] Package Mechanical Drawing 2000 Sep 07 3 0.130 [3.30] 0.090 [2.29] Philips Semiconductors Preliminary specification Universal Timeslot Interchange OVERVIEW The SC2000 is a custom VLSI circuit optimized for use in the call processing environment. The SC2000 provides a cost-effective means of implementing the interface between a high speed internal TDM bus and an external (expansion) TDM bus. Internal buffering allows the exchange of data between TDM buses of different speeds and architectures. The SC2000 supports two external bus formats; SCbus/ST-BUS and PEB, and two internal bus formats; SCbus/ ST-BUS and PEB. It is compatible with SCSA, PEB, or MVIP requirements. SCbus operation is also compatible with the Siemens PCM Highway. The switching function and operational configurations of the SC2000 are fully software programmable. The processor bus interface is pin configured, allowing ease of use with a wide variety of industry-standard CPUs. DESCRIPTION The primary function of the SC2000 is to exchange digital data between the time slot on the local bus and the time slot on the expansion bus . A microprocessor interface allows the host CPU to define the time slots and serial streams between which the data is exchanged. SCbus/ST-BUS Mode In SCbus mode the serial streams of the external bus can be programmed to operate at 2.048 Mbps, 4.096 Mbps or 8.192 Mbps. The local bus will always operate at 2.048 Mbps. The local-to-external bus switch connection is defined by the contents of the destination routing memory. There are 32 destination routing memory locations, one corresponding to each time slot of the local bus. The data stored in the destination routing memory selects the time slot and serial stream of the expansion bus to which the local bus input (SI) will be connected. 2000 Sep 07 SC2000 The external-to-local bus switch connection is defined by the contents of the source routing memory. There are 32 source routing memory locations, one corresponding to each time slot of the local bus. The data stored in the source routing memory selects the time slot and serial stream to which the local bus output (SO) will be connected. Writing data into the routing memories is synchronized with the SCbus timing so that routing data is only changed on frame boundaries. All serial data is buffered in holding registers. The entire contents of the holding register are transferred to the output registers on frame boundaries. This architecture introduces a constant one-frame delay through the switch. This constant delay allows bundled time slots to be switched. PEB Mode In PEB mode the serial streams of the external bus and the local bus may be selected to run at either 1.544 Mbps or 2.048 Mbps. When PEB mode is selected, one of four PEB configurations may be used: 1. PEB resource mode, without switching. 2. PEB network mode, without switching. 3. PEB resource mode, with switching. 4. PEB network mode, with switching. When switching is not selected the serial data is simply buffered between the local bus and the PEB. This maintains the data position relative to the multi-frame sync and allows robbed-bit or CAS signals to propagate transparently. When switching is selected the serial data is transferred between the local and PEB buses via the switching matrix. The one-frame delay that occurs requires that robbed-bit or CAS signals be handled specially. 4 The advantages of modes with switching are: • Timing delays between the local and PEB bus are decoupled by the switch matrix • The local bus can access all PEB data lines (SERR, SERT, and L_SERT) • SO can be set to high impedance on frame boundaries, allowing a bi-directional local bus to be implemented Non-switching modes are the only configurations that support an interface to an asynchronous PEB. CPU Data Switching In addition to switching local bus serial data to and from the external bus, the SC2000 also allows the CPU to write data directly to the external bus. The chip provides a frame-sync generated interrupt which enables a group of time slots to be accessed from the same frame. Internal Bus Data Switching The Source Routing Memory Local Connect Enable selects the switching of data from any SI time slot to any SO time slot. This operation introduces a constant two-frame delay, as the data passes through the switch twice. Loopback Mode The SCbus Loopback Mode electrically isolates the SC2000 from the external bus but still allows access to the local bus. This mode is intended for isolating the board from the external bus while diagnostic tests are being run. A CLK_IN source is required for this mode. The recommended CLK_IN frequencies are 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz, or 32.768 MHz. Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Additional Features The SO output may be set to high impedance on frame boundaries by setting the Source Routing Memory Switch Output Enable Bit. This allows outputs from multiple devices to be connected to a common line. The SO signal may also be configured as an open collector output. The data sample position of both local and external buses is selectable between 50% and 75% of the bit width. SD_1 SD_0 CLKFAIL 63 62 61 Logical and Physical Pinout Diagrams SD_3 SD_2 66 65 SD_5 SD_6 SD_4 SD_7 67 SD_8 3 SD_9 7 4 SD_10 8 5 SD_11 9 SC2000 55 29 D_4 (FSYNCT) SCLK 57 30 D_3 (MSYNCT) RSRVD 58 10 60 31 D_2 (SERT) FSYNC* 59 SD_12 11 59 FSYNC* 32 D_1 (SIGT) CLKFAIL 61 SD_13 12 58 RSRVD 33 D_0 (L_CLKT) SD_0 62 SD_14 13 57 SCLK (L_FSYNCT) SD_1 63 14 56 37 A_1 (L_MSYNCT) SD_2 65 SD_15 15 38 A_0 (L_TSX*) SD_3 66 MC 16 67 I* 17 RESET 18 50 CLK_IN 52 SYNC_IN 39 SI 54 TXD SO_MS 46 SI_MS 44 SO 43 RXD 53 Physical Pinout PLCC68 Logical Pin Organization 2000 Sep 07 5 43 47 S0 48 SI_FS 42 40 SO_FS 44 41 41 SI_CLK 45 26 40 SO_CLK SO_MS 25 D_6 S0_CLK 16 46 S1_CLK 15 (R_SIGT) MC 24 39 (R_SERT) SD_15 SI_FS D_7 38 13 47 S1 12 (R_TSX*) SD_14 23 A_0 (R_MSYNCT) SD_13 SO_FS CS* 37 11 48 36 (R_FSYNCT) SD_12 CLK_IN 49 35 9 SYNC_IN 50 INT (R_CLKT) SD_11 RXD 52 51 A_1 8 TXD 53 22 34 7 SCLKX2* 54 21 33 (SERR) SD_9 (SIGR) SD_10 55 20 RD* 32 I*(M) WR* 31 5 D_0 4 (MSYNCR) SD_8 D_1 (FSYNCR) SD_7 RESET D_2 17 WR*(R/W*) 19 30 18 3 D_3 20 (CLKR) SD_6 29 RD*(STRB*) 1 D_4 22 (L_SIGT) SD_5 28 CS* 27 23 SC2000 68-PIN PLCC (TOP VIEW) D_5 (L_SERT) SD_4 64 (CLKT) SCLKX2* 68 35 D_5 1 INT D_6 27 2 D_7 26 6 24 SI_MS Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 PIN DESCRIPTION Pin Name Input/Output D_0 - D_7 I/O A_0, A_1 I Pin Number Pin Description 33, 32, 31, 30, 29, 27, 26, 24 Data bus. These bi-directional, tri-state lines are the SC2000s interface to the CPU data bus. 38, 37 Address bus. These inputs select the internal register used by a read or write operation. Normally connected to CPU address lines A0 and A1 in 8-bit CPU systems, or A1 and A2 in 16-bit CPU systems. CS* I 23 Chip Select. This active low input selects the chip for a read or write operation. I* I 17 Bus Interface Mode Select. This input selects Intel- and Motorola-type data bus interface configurations. 0 = Intel. 1 = Motorola. RD* or I 22 STRB* I I* = 0. Read This active low input enables the data bus drivers to drive the CPU data bus with the contents of the internal register selected by A_0 and A_1. I* = 1. Strobe During a read operation a low on this input enables the data bus drivers to drive the CPU data bus with the contents of the internal register selected by A_0 and A_1. During a write operation data is transferred from the CPU data bus to the register selected b y A_0 and A_1 on a low to high transition of this signal. WR* or I 20 R/W* I I* = 0. Write During a write operation data is transferred from the CPU data bus to the register selected by A_0 and A_1 on a low to high transition of this signal. I* = 1. Read/Write This input selects between a write operation (R/W* = 0) and a read operation (R/W* =1). RESET I 18 Reset. This active high input forces all outputs to tri-state, and resets the SC2000 chip. CLK_IN I 50 Local clock input. SYNC_IN I 52 Local sync input. SI I 39 Serial input. Local serial bus data input line. SO O 43 Serial output. Local serial bus data output line. TXD I 54 Transmit data SCbus Message Bus transmit data input line. INT O 35 Interrupt Request. Active high interrupt request output line. SCLKx2* or CLKT I/O I 55 Register bit C_4 = 0. SCbus System clock x 2. Register bit C_4 = 1. PEB Transmit clock. SCLK or FSYNCT I/O I 57 Register bit C_4 = 0. SCbus System clock. Register bit C_4 = 1. PEB Frame sync. RSRVD or MSYNCT I I 58 Register bit C_4 = 0. SCbus Reserved. Register bit C_4 = 1. PEB Transmit multi-frame sync. FSYNC* or SERT I/O I 59 Register bit C_4 = 0. SCbus Frame sync. Register bit C_4 = 1. PEB Transmit serial data. CLKFAIL I/O 61 Register bit C_4 = 0. SCbus Clock fail signal. SD_0 or L_CLKT I/O I/O 62 Register bit C_4 = 0. SCbus Serial data stream 0. Register bit C_4 = 1. PEB Local resource transmit clock. SD_1 or L_FSYNCT I/O I/O 63 Register bit C_4 = 0. SCbus Serial data stream 1. Register bit C_4 = 1. PEB Local resource transmit frame sync. SD_2 or L_MSYNCT I/O I/O 65 Register bit C_4 = 0. SCbus Serial data stream 2. Register bit C_4 = 1. PEB Local resource multi-frame sync. SD_3 or L_TSX* I/O I/O 66 Register bit C_4 = 0. SCbus Serial data stream 3. Register bit C_4 = 1. PEB Local resource transmit time slot enable. 2000 Sep 07 6 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 PIN DESCRIPTION (continued) Pin Name Pin Number Pin Description SD_4 or L_SERT Input/Output I/O I/O 67 Register bit C_4 = 0. SCbus Serial data stream 4. Register bit C_4 = 1. PEB Local resource transmit serial data. SD_5 I/O 1 Register bit C_4 = 0. SCbus Serial data stream 5. SD_6 or CLKR I/O I/O 3 Register bit C_4 = 0. SCbus Serial data stream 6. Register bit C_4 = 1. PEB Receive clock. SD_7 or FSYNCR I/O I/O 4 Register bit C_4 = 0. SCbus Serial data stream 7. Register bit C_4 = 1. PEB Receive frame sync. SD_8 or MSYNCR I/O I/O 5 Register bit C_4 = 0. SCbus Serial data stream 8. Register bit C_4 = 1. PEB Receive multi-frame sync. SD_9 or SERR I/O I/O 7 Register bit C_4 = 0. SCbus Serial data stream 9. Register bit C_4 = 1. PEB Receive data stream. SD_10 I/O 8 Register bit C_4 = 0. SCbus Serial data stream 10. SD_11 I/O 9 Register bit C_4 = 0. SCbus Serial data stream 11. SD_12 I/O 11 Register bit C_4 = 0. SCbus Serial data stream 12. SD_13 I/O 12 Register bit C_4 = 0. SCbus Serial data stream 13. SD_14 I/O 13 Register bit C_4 = 0. SCbus Serial data stream 14. SD_15 I/O 15 Register bit C_4 = 0. SCbus Serial data stream 15. MC I/O 16 Register bit C_4 = 0. SCbus Message Bus signal. SO_CLK O 41 Serial Output Clock. Clock for local serial output data. SI_CLK O 40 Serial Input Clock. Clock for local serial input data. SO_FS O 48 Serial Output Frame Sync. Frame sync for local serial output data. SI_FS O 47 Serial Input Frame Sync. Frame sync for local serial input data. SO_MS O 46 Serial Output Multi-frame Sync. Multi-frame sync for local serial output data. SI_MS O 44 Serial Input Multi-frame Sync. Multi-frame sync for local serial input data. RXD 53 Receive Data. Message channel serial data output. VDDO1 VDDO5 Power O 2, 10, 25, 45, 60 I/O pad V DD (+5 V). VDDI1 VDDI3 Power 19, 34, 51 Core V DD (+5 V). VSSO1 VSSO7 Power 6, 14, 28, 42, 56, 64, 68 I/O pad VSS (GND). VSSI1 VSSI3 Power 21, 36, 49 Core VSS (GND). 2000 Sep 07 7 Philips Semiconductors Preliminary specification Universal Timeslot Interchange REGISTER DESCRIPTION Microprocessor Interface Registers The four 8-bit Microprocessor Interface Registers comprise the command and control port for the SC2000. Command/Status Register Busy (CS_0): This bit is automatically set to 1 when a command that requires synchronization with the SC2000’s internal state machine has been initiated. The bit is cleared to 0 when the command has been completed. The following commands require synchronization: SC2000 Terminate (CS_3): Setting this bit to 1 terminates any command that requires synchronization with the SC2000’s internal state machine. This command is needed to complete a command when the SC2000’s internal state machine has stopped running due to the failure of the system clocks. The command currently being executed is completed asynchronously and the BUSY bit is cleared to 0. To restore normal operation the TERMINATE bit must be explicitly cleared to 0. This bit can be read back for verification purposes. • Destination Routing Memory Write Low Byte Data Register BIT R/W Function 0 R/W D_0 1 R/W D_1 2 R/W D_2 3 R/W D_3 4 R/W D_4 5 R/W D_5 6 R/W D_6 7 R/W D_7 Note: Command/Status Register • Source Routing Memory Write • Parallel Access Destination Write • Parallel Access Source Read Read (CS_1): Setting this bit to 1 initiates a read of the register pointed to by the contents of the Internal Address Register. Once the BUSY bit is read as cleared to 0 the contents of the selected register will be available in the Low Byte and High Byte Data Registers. Once the READ operation is complete the READ bit is cleared automatically. Write (CS_2): Setting this bit to 1 initiates a write to the register pointed to by the contents of the Internal Address Register. Once the busy bit has been cleared to 0 the contents of the Low Byte and High Byte Data Registers have been transferred into the selected register. Once the WRITE operation is completed the WRITE bit is cleared automatically. 2000 Sep 07 Bit 0 is the LSB of the byte. High Byte Data Register BIT R/W Command/Status 0 R CS_0: Busy (S) BIT 1 W CS_1: Read (C) 0 R/W 2 W CS_2: Write (C) 1 R/W D_9 3 R/W CS_3: Terminates (C) 2 R/W D_10 4 CS_4: Reserved 3 R/W D_11 5 CS_5: Reserved 4 R/W D_12 6 CS_6: Reserved 5 R/W D_13 CS_7: Reset (C) 6 R/W D_14 7 R/W D_15 7 Note: R/W (1) Bit 0 is the LSB of the byte. (2) Initiating multiple commands in a single access is not recommended. CPU Interface Register Map A_1 A_0 Register Name 0 0 Command/Status 0 1 Internal Address 1 0 Low Byte Data 1 1 High Byte Data 8 Note: R/W Function D_8 Bit 0 is the LSB of the byte. Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Configuration Registers Internal Register Memory Map Configuration Register 1(00H) Values for Function A_7 .. A_0 (H) R/W 00 . . 03 Configuration 1 . . Configuration 4 R/W 04 Version/Revision R/W 05 . . 7F Reserved . . Reserved R/W 80 . . 9F Destn Routing . . Destn Routing R/W A0 . . BF Source Routing . . Source Routing R/W C0 . . DF Destn Parallel . . Destn Parallel R/W E0 . . FF Source Parallel . . Source Parallel R/W Configuration Register 1 Reset (CS_7): Setting this bit to 1 forces the SC2000 into its reset state, and initializes all internal registers. This command reproduces the function of the RESET pin. Setting this bit to 0 returns the SC2000 to normal operation. This bit can be read back for verification purposes. Internal Registers The internal registers are accessed by reads and writes to the Data Registers using the address held in the Internal Address Register. 2000 Sep 07 BIT Function 0 C_0: Global Output Enable 1 C_1: Expansion Bus Timing Driver Enable 2 3 C_2: Framing Mode 0 C_3:Framing Mode 1 4 C_4: Expansion Bus Interface Select 5 C_5: SCbus Loopback Mode 6 7 C_6: PEB module Type 0 C_7:PEB Module Type 1 Note: Framing Mode (C_3, C_2): This two-bit field selects the number of bits per frame (B/F), time slots per frame (TS/F) and frames per multi-frame (F/MF) on both the local and expansion bus. When SCbus Mode is selected (C_4 = 0), there is no multi-frame sync signal available on the expansion bus. The (00) combination of (C_3, C_2) is invalid. In this case the internal multi-frame sync will be free running, and synchronous to FSYNC. When PEB Mode is selected (C_4 = 1) the only valid combinations of (C_3, C_2) are (00) and (01). These bits are cleared on RESET. Bit 0 is the LSB of the Low Byte Data Register. Global Output Enable (C_0): Clearing this bit to 0 forces all outputs to the high impedance state, with the exception of the microprocessor interface data bus. Setting this bit to 1 enables all outputs. This bit is cleared on RESET. Expansion Bus Timing Driver Enable (C_1): When SCbus Mode is selected (C_4 = 0), clearing this bit to 0 disables the expansion bus timing drivers. Expansion Bus C_3, C_2 B/F TS/F F/MF 00 193 24 12 01 256 32 16 10 512 64 16 11 1024 128 16 Local Bus C_3, C_2 B/F TS/F F/MF When PEB Resource Mode is selected (C_6, C_4 = 01), this bit has no effect. 00 193 24 12 01 256 32 16 When PEB Network Mode is selected (C_6, C_4 = 11), clearing this bit to 0 disables the expansion bus drivers CLKR, L_CLKT, FSYNCR, L_FSYNCT, MSYNCR, and L_MSYNCT. Setting this bit to 1 enables these timing drivers. 10 256 32 16 11 256 32 16 This bit is cleared on RESET. Expansion Bus Interface Select (C_4): This bit selects the expansion bus interface operating mode. Clearing this bit to 0 selects SCbus Mode. Setting this bit to 1 selects PEB Mode. This bit is cleared on RESET. 9 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SCbus Loopback Mode Select (C_5): When SCbus Mode is selected (C_4 = 0), this bit controls the SCbus loopback. Clearing this bit to 0 disables Loopback Mode. Setting this bit to 1 enables Loopback Mode. When PEB Mode is selected (C_4 = 1) this bit has no effect. When loopback is enabled the expansion bus timing and data bus drivers are forced to high impedance, and the data outputs are looped back internally to the corresponding inputs. This mode is used to test the SC2000 without disrupting the operation of the SCbus. A clock must be supplied at CLK_IN for operation in Loopback Mode. This bit is cleared on RESET. PEB Module Type (C_7, C_6): When PEB Mode is selected (C_4 = 1) this two-bit field selects the PEB module type. When SCbus Mode is selected (C_4 = 0) these bits have no effect. These bits are cleared on RESET. PEB Module Type C_7, C_6 Operating Mode 00 Resource module without switching 01 Network module without switching 10 Resource module with switching 11 Network module with switching Configuration Register 2 (01H) Configuration Register 2 SC2000 CLK_IN Divider (C_10, C_9, C_8): This field selects the CLK_IN division ratio used in the generation of the system source clock. When “CLK_IN divide by 1” and SCbus Mode are selected and the expansion bus timing drivers are enabled (C_10, C_9, C_8, C_4, C_1 = 00001), then SCLKx2* is held high and the FSYNC* period is equal to 1 SCLK period. C_10, C_9, C_8 000 1 001 2 010 4 011 8 100 16 101 Reserved Timing Mode 00 Master 01 Master, MSYNCTfi L_MSYNCT 10 Slave, MSYNCTfi MSYNCR 11 Slave, SYNC_INfi MSYNCR 110 Reserved 111 Reserved Configuration Register 3 SYNC_IN Format (C_11): This bit selects the SYNC_IN format to be either PEB conventional or ST-BUS. If this bit is cleared to 0 then SYNC_IN is taken to be in the PEB conventional format. If this bit is set to 1, SYNC_IN is taken to be in the ST-BUS format. In ST-BUS format the CLK_IN signal is inverted to produce the system clock source. This bit is cleared on RESET. SYNC_IN Select (C_13, C_12): This two bit field selects the function of the SYNC_IN input. 3 C_11: SYNC_IN Format C_13, C_12 4 5 C_12: SYNC_IN Select 0 C_13: SYNC_IN Select 1 00 Ignored 01 Frame sync 10 Ignored 11 Multi-frame sync These bits are cleared on RESET. SYNC_IN Select SYNC_IN Function Bit 0 is the LSB of the Low Byte Data Register. 2000 Sep 07 C_15, C_14 Configuration Register 3 (02H) Function Note: PEB Network Module Timing Mode CLK_IN Divided By C_8: CLK_IN Divider 0 C_9: CLK_IN Divider 1 C_10: CLK_IN Divider 2 7 These bits are cleared on RESET. CLK_IN Divider 0 1 2 C_14: PEB Network Modul Timing Select 0 C_15: PEB Network Modul Timing Select 1 Otherwise these bits have no effect. These bits are cleared on RESET. Bit 6 PEB Network Module Timing Select (C_15, C_14): When PEB Network Module Mode is selected (C_6, C_4, C_1 = 111), this two bit field selects the module timing mode. 10 Note: Bit Function 0 C_16: Expansion Bus Data Sample Position 1 C_17: Local Bus Data Sample Position 2 C_18: SCbus Output Driver 3 C_19: SO Output Driver 4 C_20: Local Bus Framing Format 5 C_21: Message Channel TXD Select 6 7 C_22: SERT Mux 0 C_23: SERT Mux 1 Bit 0 is the LSB of the Low Byte Data Register. Philips Semiconductors Preliminary specification Universal Timeslot Interchange Expansion Bus Data Sample Position (C_16): When SCbus Mode is selected (C_4 = 0) this bit determines the location of the sampled point in the bit cell. When this bit is cleared to 0, sampling occurs at 50% of the bit width. When this bit is set to 1, sampling occurs at 75% of the bit width. When PEB Mode is selected (C_4 = 1) this bit has no effect, and data is always sampled at the 50% point. SCLKx2* must be present in order to sample at the 75% point. This bit is cleared on RESET. Local Bus Data Sample Position (C_17): When SCbus Mode is selected (C_4 = 0) this bit determines the location of the sample point in the bit cell. When this bit is cleared to 0 sampling occurs at 50% of the bit width. When this bit is set to 1, sampling occurs at 75% of the bit width. When PEB Mode is selected (C_4 = 1) this bit has no effect, and data is always sampled at the 50% point. SCLKx2* must be present in order to sample at the 75% point. This bit is cleared on RESET. SCbus Output Driver (C_18): When SCbus Mode is selected (C_4 = 0), this bit determines the SCbus output driver type. When this bit is cleared to 0, the output drivers are configured as tri-state type. When this bit is set to 1 the output drivers are configured as open collector type. When PEB Mode is selected (C_4 = 1) this bit has no effect. PEB outputs are always driven open collector. All SCbus outputs are affected by this bit with the exception of CLKFAIL and MC, which are always driven open collector. This bit is cleared on RESET. SC2000 SO Output Driver (C_19): This bit determines the SO output driver type. When this bit is cleared to 0 the output drivers are configured as tri-state. When this bit is set to 1 the output drivers are configured as open collector. When PEB Mode without switching is selected (C_7, C_4 = 01) then SO is always enabled. This bit is cleared on RESET. Local Bus Framing Format (C_20): When SCbus Mode is selected (C_4 = 0) this bit determines the local bus framing format. When this bit is cleared to 0 the local bus operates with PEB conventional framing format. When this bit is set to 1 the local bus operates with ST-BUS framing format. When PEB Mode is selected (C_4 = 1) this bit has no effect. When PEB Mode is selected (C_4 = 1), this bit has no effect. MC is not used in PEB mode. When a transparent buffer is selected (C_21 = 0), the HDLC controller should output TXD on the rising edge of SO_CLK. When a latched buffer is selected (C_21 = 1) the HDLC controller should output TXD on the falling edge of SO_CLK. This bit is cleared on RESET. SERT Mux (C_23, C_22): When PEB Network Mode is selected, this two bit field selects the source of data for the local bus SO serial stream. When SCbus Mode (C_7, C_6, C_4 = xx0) or PEB Resource Mode (C_7, C_6, C_4 = 001) are selected, these bits have no effect. PEB Data Source Stream With ST-BUS framing format selected, SI_CLK is replaced by C4*, SI_FS by F0*, and SI_MS by M0*. SO_CLK, SO_FS and SO_MS are unaffected by the status of this bit, and continue to output PEB conventional framing. C_23, C_22 Data Source 00 L_SERT 01 (L_SERT* !L_TSX*) +(SERT* L_TSX*) Configuration Register 4 (03H) ST-BUS Framing Format Replacements Configuration Register 4 PEB Conventional ST-BUS SI_CLK C4* SI_FS F0* SI_MS M0* SCLKx2* must be present, or SCLK must be at least twice the local clock (CLK_IN) frequency for ST-BUS framing format to be used. This bit is cleared on RESET. Message Channel TXD Select (C_21): When SCbus Mode is selected (C_4 = 0) this bit determines the configuration of the TXD input. When this bit is cleared to 0, the TXD input is configured as a transparent buffer. When this bit is set to 1 the TXD input is configured as a latched buffer. Bit Function 0 C_24: CLKFAIL latch 1 C_25: CFSYNC latch 2 C_26: CLKFAIL latch Clear* 3 C_27: FSYNC latch Clear* 4 C_28: CLKFAIL polarity 5 C_29: INT Mask* 6 C_30: INT polarity 7 Note: C_31: INT ouput driver Bit 0 is the LSB of the Low Byte Data Register. CLKFAIL Latch (C_24): When SCbus Mode is selected (C_4 = 0) this bit indicates the status of the CLKFAIL latch. 0 → CLKFAIL clear 1 → CLKFAIL set When PEB Mode is selected (C_4 = 1), this bit is always clear. 2000 Sep 07 11 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 FSYNC Latch (C_25): When SCbus Mode (C_4 = 0) or PEB Mode with switching (C_7, C_4 = 11) are selected, these bits indicate the status of the FSYNC latch. The status of this bit does not affect the CLKFAIL Latch or FSYNC Latch bits (C_24 and C_25), and these bits can still be used to determine the status of the two latches. 0 → FSYNC clear 1 → FSYNC set This bit is cleared on RESET. When a PEB Mode without switching is selected (C_7, C_4 = 01) this bit is always clear. CLKFAIL Latch Clear* (C_26): This bit resets the CLKFAIL latch. Clearing this bit to 0 clears the CLKFAIL latch and disables CLKFAIL interrupts. Setting this bit to 1 enables CLKFAIL interrupts. This bit is cleared on RESET. FSYNC Latch Clear* (C_27): This bit resets the FSYNC latch. Clearing this bit to 0 clears the FSYNC latch and disables FSYNC interrupts. Setting this bit to 1 enables FSYNC interrupts. This bit is cleared on RESET. CLKFAIL Polarity (C_28): This bit controls the level of the CLKFAIL signal which will set the CLKFAIL latch. When this bit is cleared to 0, the CLKFAIL latch is set when the CLKFAIL signal is “lo” (0). When this bit is set to 1 the CLKFAIL latch is set when the CLKFAIL signal is “hi” (1). The “CLKFAIL = 0” interrupt mode is used by the new clock master to determine that clock fall back has been executed effectively. The “CLKFAIL = 1” interrupt mode is used by the standby clock board to detect clock failure. This bit should only be changed when the CLKFAIL interrupt is disabled (C_26 = 0). This bit is cleared on RESET. INT Mask* (C_29): This bit controls the interrupts generated by CLKFAIL and FSYNC (INT = CLKFAIL + FSYNC). When this bit is cleared to 0 all interrupts are masked. When this bit is set to 1, interrupts are enabled. 2000 Sep 07 INT Output Polarity (C_30): This bit controls the active level of the INT interrupt output. When this bit is cleared to 0, then the INT output is active low. When this bit is set to 1 then the INT output is active high. This bit is cleared on RESET. INT Output Driver (C_31): This bit controls the configuration of the INT output driver. When this bit is cleared to 0, the INT output driver is configured as open collector. When this bit is set to 1 the INT output driver is configured as totem-pole. Version/Revision Register (04H):The Version/Revision Register is an 8-bit read-only register used to identify the version and revision status of a particular batch of SC2000s. It is recommended that a test of this field be included in all firmware interface code to ensure compatibility. Version/Revision Register 1 BIT Function 0 Rev 0 1 Rev 1 2 Rev 2 3 Rev 3 4 Ver 0 5 Ver 1 6 Ver 2 7 Note: Ver 3 Bit 0 is the LSB of the Low Byte Data Register. The initial release of the SC2000 will be Version/Revision = 00H. 12 Destination Routing Memory (80H - 9FH): The Destination Routing Memory maps time slots from the local SI bus onto the expansion bus. Each location in the Destination Routing Memory corresponds to a time slot on the local SI bus. The contents of each location specify a time slot on the expansion bus. Destination Routing Memory Map IAR Destination Map 80H Channel 0 81H Channel 1 82H Channel 2 . . 9FH Note: . . Channel 31 IAR = Internal Address register contents. Channel N is equivalent to time slot N on the local SI bus. The contents of all Destination Routing Memory Locations are cleared on RESET. When writing data into the Destination Routing Memory the Low Byte Data Register contains a 7-bit binary field holding a time slot number, and the High Data Byte Register contains a 4-bit binary field holding a Port (stream) number. Together these two fields uniquely identify a time slot on the expansion bus which will be the destination for data from the local SI bus. Philips Semiconductors Preliminary specification Universal Timeslot Interchange Time Slot Select (DR_6 .. DR_0): This 7-bit field specifies a time slot number between 0 and 127. DR_6 is the MSB of this field. Destination Port Select (PEB Mode) DR_11..DR_8 Destination Routing Memory LSB Bit 0 1 2 3 4 5 6 7 Note: Function DR_0: Time slot Select 0 DR_1: Time slot Select 1 DR_2: Time slot Select 2 DR_3: Time slot Select 3 DR_4: Time slot Select 4 DR_5: Time slot Select 5 DR_6: Time slot Select 6 DR_7: Reserved Bit 0 is the LSB of the Low Byte Data Register. Port Select (DR_11 .. DR_8): When SCbus mode is selected (C_4 = 0) this 4-bit field specifies an SCbus data stream number between 0 and 15. DR_11 is the MSB of this field. When a PEB Mode with switching is selected (C_6, C_4 = 11) this 4- bit field specifies a PEB data stream. See table for details. Destination Routing Memory MSB Bit Function 0 1 2 3 DR_8: Port Select 0 DR_9: Port Select 1 DR_10: Port Select 2 DR_11: Port Select 3 4 DR_12: Reserved 5 DR_13: Reserved 6 DR_14: Parallel Access Enable 7 DR_15: Switch Output Enable Note: Bit 0 is the LSB of the High Byte Data Register. PEB Destination 0H L_SERT/L_TSX* 1H SERR 2H R_SERT/R_TSX* 3H SERT 4H . . FH Reserved . . Reserved Parallel Access Enable (DR_14): When this bit is cleared to 0, the SC2000 uses the local SI bus as the source of data for the expansion bus. When this bit is set to 1 the SC2000 uses the contents of the corresponding Destination Parallel Access Register as the source of expansion bus data. Switch Output Enable (DR_15): When this bit is cleared to 0, the SC2000 expansion bus drivers are forced to the high impedance state during the specified time slot period. When this bit is set to 1 the SC2000 expansion bus drivers drive the bus during the specified time slot period. Source Routing Memory (A0H - BFH): The Source Routing Memory maps time slots from the expansion bus onto time slots on the local SO bus. Each location in the Source Routing Memory corresponds to a time slot on the local SO bus. The contents of all Source Routing Memory Location are cleared on RESET. When writing data into the Source Routing Memory the Low Byte Data Register contains a 7-bit binary field holding a time slot number, and the High Data Byte Register contains a 4-bit binary field holding a Port (stream) number. Together these two fields uniquely identify a time slot on the expansion bus which will be used as a source of data for a time slot on the local SO bus. Time slot Select (SR_6 .. SR_0): This 7-bit field specifies a time slot number between 0 and 127. SR_6 is the MSB of this field. Source Routing Memory LSB Bit Function 0 1 2 3 4 5 6 SR_0: Time Slot Select 0 SR_1: Time Slot Select 1 SR_2: Time Slot Select 2 SR_3: Time Slot Select 3 SR_4: Time Slot Select 4 SR_5: Time Slot Select 5 SR_6: Time Slot Select 6 7 Note: SR_7: Reserved Bit 0 is the LSB of the Low Byte Data Register. Port Select (SR_11 .. SR_8): When SCbus Mode is selected (C_4 = 0), this 4-bit field specifies an SCbus data stream number between 0 and 15. SR_11 is the MSB of this field. Source Routing Memory IAR Source Mapping A0H Channel 0 A1H Channel 1 A2H . . BFH Note: 2000 Sep 07 SC2000 Channel 2 . . Channel 31 IAR = Internal Address register contents. Channel N is equivalent to time slot N on the local S0 bus. 13 When a PEB Mode with switching is selected (C_6, C_4 = 11) this 4-bit field specifies a PEB data stream as follows: Philips Semiconductors Preliminary specification Universal Timeslot Interchange SR_11 is the MSB of this field. Source Routing Memory MSB Bit Function 0 1 2 3 SR_8: Port Select 0 SR_9: Port Select 1 SR_10: Port Select 2 SR_11: Port Select 3 4 SR_12: Reserved 5 SR_13: Reserved 6 SR_14: Local Connect Enable 7 SR_15: Switch Output Enable Note: Bit 0 is the LSB of the High Byte Data Register. PEB Mode Source Data Stream SR_11..SR_8 Switch Output Enable (SR_15): When this bit is cleared to 0 the local SO bus drivers are forced to the high impedance state during the specified time slot period. When this bit is set to 1 the local SO bus drivers drive the bus during the specified time slot period. Destination Parallel Access Registers (C0H .. DFH): If Parallel Access and Switch Output are enabled, the device CPU can write data to the expansion bus via these SC2000 registers. The write mapping is controlled by the Destination Routing Memory. The contents of the selected Parallel Access Register will replace the contents of the local SI bus time slot that would otherwise have been transferred to the expansion bus. Source PEB Stream 0H SERT Mux 1H SERR 2H R_SERT 3H SERT 4H . . FH Reserved . . Reserved Local Connect Enable (SR_14): This bit controls the internal connection time slots on the local bus. When this bit is cleared to 0 Local Connect is disabled. When this bit is set to 1 Local Connect is enabled and a time slot on the local SI bus will be connected internally to a time slot on the local SO bus. SC2000 Destination Parallel Access Regs Source Parallel Access Regs IAR SO Destination E0H Channel 0 E1H Channel 1 E2H Channel 2 . . FFH Note: IAR SI Destination C0H Channel 0 C1H Channel 1 C2H . . DFH Note: Channel 2 . . Channel 31 IAR = Internal Address Register contents. Channel N is equivalent to time slot N on the local SI bus. When Local Connect is enabled the Source Routing Memory Time slot Select bits (SR_0 .. SR_6) select the destination time slot on the local SO bus. The contents of the Port Select field (SR_8 .. SR_11) are ignored. 2000 Sep 07 Source Parallel Access Registers ( E0H .. FFH): The Source Parallel Access Registers are continually loaded with the data being written to the corresponding local SO bus time slot, irrespective of the status of the Parallel Access Enable or Switch Output Enable bits. If Local Connect is enabled this data will originate from the local SI bus. 14 . . Channel 31 IAR = Internal Address Register contents. Channel N is equivalent to time slot N on the local SO bus. Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings Symbol Parameter Test Conditions Minimum Maximum Unit TS Storage temperature -65 150 °C VI Input voltage -0.5 7 V PD Package power dissipation 1 W Note: 1. Voltages are with respect to ground (V SS ) unless otherwise stated. Recommended DC Operating Conditions Symbol Parameter Test Conditions Minimum Maximum Unit TA Ambient temperature 0 70 °C VDD Supply voltage 4.75 5.25 V Note: 1. Voltages are with respect to ground (V SS ) unless otherwise stated. DC Electrical Characteristics Symbol Parameter I DD Supply (voltage) current V IH Input high voltage V IL VH YS I LI Input leakage current Test Conditions Minimum Maximum Unit 100 mA 2.0 VDD+0.5 V Input low voltage -0.5 1.0 V Input hysteresis voltage ±0.4 V V I = VDD or VSS ±10 µA 7 pF CI Input capacitance V OH1 Output high voltage (1) V OL1 Output low voltage (1) I OL = 24 mA V OH2 Output high voltage (2) I OH = -4 mA V OL2 Output low voltage (2) I OL = 4 mA I LO Output leakage current VO = VDD or VSS C IO Output or I/O capacitance Notes: 1. VOH1, V OL1 apply to Expansion Bus Interface (SCbus/PEB) signals. 2. VOH2, VOL2 apply to all other signals. 3. Voltages are with respect to ground (VSS ) unless otherwise stated. 4. Input hysteresis voltage: indicates that when the input is interpreted as high (2.0 volts), it will be interpreted "high" until the input is dropped below 1.6 volts. Likewise, a low input will be interpreted as "low" until the input goes above 1.4 volts. 2000 Sep 07 I OH = -24 mA 2.4 V 0.4 2.4 V V 0.4 15 V ±10 µA 7 pF Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 1.Microprocessor Interface Timing — Intel Bus Mode t1 CS* RD* WR* A_[1:0] t2 t3 t4 t5 t7 t9 t11 t6 t12 t13 t8 t16 t15 t14 t10 t18 t17 D_[7:0] Table 1. Microprocessor Interface Timing — Intel Bus Mode Symbol Parameter Min Typ Max Unit t1 CS* setup to WR*↑ 30 ns ns t2 CS* hold from WR* ↑ 20 t3 RD* setup to CS* 10 ns t4 RD* hold from CS* 10 ns t5 WR* pulse width 30 ns t6 WR* hold from CS* 10 ns t7 A_[1:0] setup to WR* ↑ 30 ns t8 A_[1:0] hold from WR* ↑ 20 ns t9 D_[7:0] setup to WR* ↑ 30 ns t10 D_[7:0] hold from WR* ↑ 20 ns t11 RD* hold from CS* 10 ns t12 WR* setup to CS* 10 ns t13 WR* hold from CS* 10 ns t14 D_[7:0] valid delay from CS* t15 D_[7:0] valid delay from RD* 40 ns t16 D_[7:0] valid delay from A_[1:0] 40 ns t17 D_[7:0] float delay from CS* 25 ns t18 D_[7:0] float delay from RD* 25 ns Note: 1. Timing measured with 100 pF load on D_[7:0]. 2000 Sep 07 40 16 ns Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 2. Microprocessor Interface Timing — Motorola Bus Mode t1 CS* t3 STRB* R/W* A_[1:0] t2 t5 t4 t11 t6 t7 t9 t12 t13 t8 t16 t15 t14 t10 t18 t17 D_[7:0] Table 2. Microprocessor Interface Timing — Motorola Bus Mode Symbol Parameter Min Typ Max Unit t1 CS* setup to STRB*↑ 30 t2 CS* hold from STRB*↑ 20 ns t3 STRB* pulse width 30 ns t4 STRB* hold from CS* 10 ns t5 R/W* setup to STRB* 10 ns t6 R/W* hold from STRB* 10 ns t7 A_[1:0] setup to STRB*↑ 30 ns t8 A_[1:0] hold from STRB* ↑ 20 ns t9 D_[7:0] setup to STRB*↑ 30 ns t10 D_[7:0] hold from STRB* ↑ 20 ns t11 STRB* hold from CS* 10 ns t12 R/W*setup to STRB* 10 ns t13 R/W*hold from STRB* 10 ns t14 D_[7:0] valid delay from CS* 40 t15 D_[7:0] valid delay from STRB* 40 ns t16 D_[7:0] valid delay from A_[1:0] 40 ns t17 D_[7:0] float delay from CS * 25 ns t18 D_[7:0] float delay from STRB* 25 ns Note: 1. Timing measured with 100 pF load on D_[7:0]. 2000 Sep 07 ns 17 ns Philips Semiconductors Preliminary specification Universal Timeslot Interchange t1 SCLKX2* t7 FSYNC* t9 SI_CLK t13 t15 MC RXD 2000 Sep 07 t12 t16 t17 t18 t21 t20 t24 t19 t23 t22 t25 t28 t27 SD_[15:0] Input TXD t6 t14 SI SD_[15:0] Output t5 t8 t11 SI_FS,SI_MS t3 t10 SO_CLK SO t2 t4 SCLK SO_FS,SO_MS SC2000 t26 t30 t29 t32 t31 t33 t34 t35 18 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 3. Local Bus Interface Timing — SCbus Mode (2.048 Mbps) Symbol Parameter Min Typ Max t1 SCLKx2* low time 122 ns t2 SCLKx2* high time 122 ns t3 SCLKx2* period 244 ns t4 SCLK low time 244 ns t5 SCLK high time 244 ns t6 SCLK period t7 FSYNC* setup to SCLK↑ 0 ns t8 FSYNC* hold from SCLK↑ 15 ns t9 SI_CLK ↓ delay from SCLKx2* ↓ 40 t10 SI_CLK ↑ delay from SCLKx2* ↑ 40 ns t11 SO_CLK ↑ delay from SCLK ↑ 40 ns 488 Unit ns ns t12 SO_CLK ↓ delay from SCLK ↓ 40 ns t13 SI_FS, SI_MS ↓ delay from SCLKx2* ↑ 45 ns t14 SI_FS, SI_MS ↑ delay from SCLKx2* ↑ 45 ns t15 SO_FS, SO_MS ↑ delay from SCLK ↑ 45 ns t16 SO_FS, SO_MS ↓ delay from SCLK ↑ 45 ns t17 SO float to valid delay from SCLK↑ 40 ns t18 SO valid to valid delay from SCLK↑ 40 ns t19 SO valid to float delay from SCLK↑ 25 ns t20 SI setup to SCLK↓ (50% sample position) 0 ns t21 SI hold from SCLK ↓ (50% sample position) 25 ns t22 SI setup to SCLKx2*↑ (75% sample position) 0 ns t23 SI hold from SCLKx2* ↑ (75% sample position) 25 t24 SD_[15:0] float to valid delay from SCLK↑ ns 35 ns t25 SD_[15:0] valid to valid delay from SCLK↑ 35 ns t26 SD_[15:0] valid to float delay from SCLK↑ 25 ns t27 SD_[15:0] setup to SCLK ↓ (50% sample) 0 t28 SD_[15:0] hold from SCLK ↓ (50% sample) 25 ns t29 SD_[15:0] setup to SCLKx2* ↑ (75% sample) 0 ns t30 SD_[15:0] hold from SCLKx2* ↑ (75% sample) 25 ns t31 TXD setup to SCLK↑ (registered MC) 0 ns t32 TXD hold from SCLK↑ (registered MC) 25 t33 MC delay from SCLK↑ (registered MC) 85 ns t34 MC delay from TXD (passed through MC 80 ns t35 RXD delay from MC 35 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF load on all SCbus outputs. 2. MC timing measured with 200 pF, 470 Ω pullup (4.7 K Ω/10). Open collector low to high transitions include 61 ns delay from hi-Z to 2.4 V. 3. SI_CLK, SI_FS and SI_MS shown in ST-BUS framing format. When in PEB conventional framing format SI_CLK, SI_FS and SI_MS have identical timing to SO_CLK, SO_FS and SO_MS. 4. SO shown configured as tri-state driver. 5. SO_MS, SI_MS are free-running multi-frame synchronization signals that occur once every 16 frames. 2000 Sep 07 ns ns 19 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 4. Local Bus Interface Timing — SCbus Mode (4.096 Mbps) t1 SCLKX2* t4 SCLK t8 FSYNC* t9 SI_CLK t13 SO t15 t12 t14 t16 t17 t18 t21 SI SD_[15:0] Output t24 t28 t32 TXD RXD 2000 Sep 07 t27 t19 t23 t20 t25 SD_[15:0] Input MC t6 t7 t11 SI_FS,SI_MS t5 t3 t10 SO_CLK SO_FS,SO_MS t2 t22 t26 t30 t29 t31 t33 t34 t35 20 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 4. Local Bus Interface Timing — SCbus Mode (4.096 Mbps) Symbol Parameter Min Typ Max Unit t1 SCLKx2* low time 61 ns t2 SCLKx2* high time 61 ns t3 SCLKx2* period 122 ns t4 SCLK low time 122 ns t5 SCLK high time 122 ns t6 SCLK period 244 ns t7 FSYNC* setup to SCLK ↑ 0 ns t8 FSYNC* hold from SCLK↑ 15 ns t9 SI_CLK ↓ delay from SCLK ↑ 40 t10 SI_CLK ↑ delay from SCLK ↓ 40 ns t11 SO_CLK ↑ delay from SCLK ↑ 40 ns ns ns t12 SO_CLK ↓ delay from SCLK ↑ 40 t13 SI_FS, SI_MS ↓ delay from SCLK ↓ 45 ns t14 SI_FS, SI_MS ↑ delay from SCLK ↓ 45 ns t15 SO_FS, SO_MS ↑ delay from SCLK ↑ 45 ns t16 SO_FS, SO_MS ↓ delay from SCLK ↑ 45 ns t17 SO float to valid delay from SCLK↑ 40 ns t18 SO valid to valid delay from SCLK↑ 40 ns t19 SO valid to float delay from SCLK↑ 25 ns t20 SI setup to SCLK↑ (50% sample position) 0 ns t21 SI hold from SCLK ↑ (50% sample position) 25 ns t22 SI setup to SCLK↓ (75% sample position) 0 ns t23 SI hold from SCLK ↓ (75% sample position) 25 t24 SD_[15:0] float to valid delay from SCLK↑ ns 35 ns t25 SD_[15:0] valid to valid delay from SCLK↑ 35 ns t26 SD_[15:0] valid to float delay from SCLK↑ 25 ns t27 SD_[15:0] setup to SCLK ↓ (50% sample) 0 t28 SD_[15:0] hold from SCLK ↓ (50% sample) 25 ns t29 SD_[15:0] setup to SCLKx2* ↑ (75% sample) 0 ns t30 SD_[15:0] hold from SCLKx2* ↑ (75% sample) 25 ns t31 TXD setup to SCLK↑ (registered MC) 0 ns t32 TXD hold from SCLK↑ (registered MC) 25 t33 MC delay from SCLK↑ (registered MC) 85 ns t34 MC delay from TXD (passed through MC) 80 ns t35 RXD delay from MC 35 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF load on all SCbus outputs. 2. MC timing measured with 200 pF, 470 Ω pullup (4.7 K Ω /10). Open collector low to high transitions include 61 ns delay from hi-Z to 2.4 V. 3. SI_CLK, SI_FS and SI_MS shown in ST-BUS framing format. When in PEB conventional framing format SI_CLK, SI_FS and SI_MS have identical timing to SO_CLK, SO_FS and SO_MS. 4. SO shown configured as tri-state driver. 5. SO_MS, SI_MS are free-running multi-frame synchronization signals that occur once every 16 frames. 2000 Sep 07 ns ns 21 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 5. Local Bus Interface Timing — SCbus Mode (8.192 Mbps) t2 t1 SCLKX2* t4 SCLK t9 SI_CLK t11 t13 SI_FS,SI_MS t15 t16 t17 MC RXD 2000 Sep 07 t18 t25 t24 t28 t27 t19 t23 t22 t21 t20 SD_[15:0] Input TXD t12 t14 SI SD_[15:0] Output t6 t10 SO_CLK SO t5 t8 t7 FSYNC* SO_FS,SO_MS t3 t26 t30 t29 t32 t31 t33 t34 t35 22 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 5.Local Bus Interface Timing — SCbus Mode (8.192 Mbps) Symbol Parameter Min Typ Max t1 SCLKx2* low time 30.5 ns t2 SCLKx2* high time 30.5 ns t3 SCLKx2* period 61 ns t4 SCLK low time 61 ns t5 SCLK high time 61 ns t6 SCLK period t7 FSYNC* setup to SCLK ↑ 0 ns t8 FSYNC* hold from SCLK ↑ 15 ns t9 SI_CLK ↓ delay from SCLK ↑ 40 ns t10 SI_CLK ↑ delay from SCLK ↑ 40 ns t11 SO_CLK↑ delay from SCLK ↑ 40 ns 122 Unit ns t12 SO_CLK ↓delay from SCLK ↑ 40 ns t13 SI_FS, SI_MS ↓ delay from SCLK ↑ 45 ns t14 SI_FS, SI_MS ↑ delay from SCLK ↑ 45 ns t15 SO_FS, SO_MS↑ delay from SCLK ↑ 45 ns t16 SO_FS, SO_MS↓ delay from SCLK ↑ 45 ns t17 SO float to valid delay from SCLK ↑ 40 ns t18 SO valid to valid delay from SCLK ↑ 40 ns t19 SO valid to float delay from SCLK ↑ 25 ns t20 SI setup to SCLK↑ (50% sample position) 0 ns t21 SI hold from SCLK ↑ (50% sample position) 25 ns t22 SI setup to SCLK↑ (75% sample position) 0 ns t23 SI hold from SCLK ↑ (75% sample position) 25 t24 SD_[15:0] float to valid delay from SCLK ↑ ns 35 ns t25 SD_[15:0] valid to valid delay from SCLK ↑ 35 ns t26 SD_[15:0] valid to float delay from SCLK ↑ 25 ns t27 SD_[15:0] setup to SCLK↓ (50% sample) 0 t28 SD_[15:0] hold from SCLK ↓(50% sample) 25 ns t29 SD_[15:0] setup to SCLKx2*↑ (75% sample) 0 ns t30 SD_[15:0] hold from SCLKx2* ↑ (75% sample) 25 ns t31 TXD setup to SCLK↑ (registered MC) 0 ns t32 TXD hold from SCLK ↑ (registered MC) 25 t33 MC delay from SCLK ↑ (registered MC) 85 ns t34 MC delay from TXD (passed through MC) 80 ns t35 RXD delay from MC 35 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF load on all SCbus outputs. 2. MC timing measured with 200 pF, 470 Ω pullup (4.7 K Ω/10). Open collector low to high transitions include 61 ns delay from hi-Z to 2.4 V. 3. SI_CLK, SI_FS and SI_MS shown in ST-BUS framing format. When in PEB conventional framing format SI_CLK, SI_FS and SI_MS have identical timing to SO_CLK, SO_FS and SO_MS. 4. SO shown configured as tri-state driver. 5. SO_MS, SI_MS are free-running multi-frame synchronization signals that occur once every 16 frames. 2000 Sep 07 ns ns 23 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 6. Local Bus Interface Timing — PEB Resource Module Without Switching t1 CLKR t4 SO_CLK t2 t3 t2 t3 t5 FSYNCR SO_FS MSYNCR SO_MS SERR t6 t7 t8 t9 t10 SO t1 L_CLKT t11 SI_CLK t13 L_FSYNCT SI_FS t12 t14 t15 t16 t17 t18 L_MSYNCT SI_MS SI L_SERT L_TSX* 2000 Sep 07 t19 t20 t22 t21 t23 24 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 6.Local Bus Interface Timing — PEB Resource Module Without Switching Symbol Parameter Min Typ Max Unit t1a CLKR, L_CLKT high time (1.544 Mbps) 323 ns t1b CLKR, L_CLKT high time (2.048 Mbps) 244 ns t2a CLKR, L_CLKT low time (1.544 Mbps) 323 ns t2b CLKR, L_CLKT low time (2.048 Mbps) 244 ns t3a CLKR, L_CLKT period (1.544 Mbps) 647 ns t3b CLKR, L_CLKT period (2.048 Mbps) 488 t4 SO_CLK ↑delay from CLKR ↑ 35 ns t5 SO_CLK ↓delay from CLKR ↓ 35 ns t6 SO_FS ↑delay from FSYNCR↑ 35 ns ns t7 SO_FS ↓delay from FSYNCR↓ 35 ns t8 SO_MS ↑delay from MSYNCR ↑ 35 ns t9 SO_MS ↓delay from MSYNCR ↓ 35 ns t10 SO delay from SERR 35 ns t11 SI_CLK ↑delay from L_CLKT ↑ 35 ns t12 SI_CLK ↓delay from L_CLKT ↓ 35 ns t13 L_FSYNCT setup to L_CLKT↓ 5 ns t14 L_FSYNCT hold from L_CLKT↓ 15 ns t15 SI_FS ↑delay from L_FSYNCT ↑ 35 ns t16 SI_FS ↓delay from L_FSYNCT ↓ 35 ns t17 SI_MS ↑delay from L_MSYNCT ↑ 35 ns t18 SI_MS ↓delay from L_MSYNCT ↓ 35 ns t19 L_SERT enable delay from L_CLKT ↑ 70 ns t20 L_SERT delay from SI 60 ns t21 L_SERT disable delay from L_CLKT ↑ 70 ns t22 L_TSX* ↓ delay from L_CLKT ↑ 35 ns t23 L_TSX* ↑ delay from L_CLKT ↑ 70 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2. L_TSX* occurs on time slot boundaries. 2000 Sep 07 25 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 7. Local Bus Interface Timing — PEB Network Module Without Switching t1 L_CLKT t4 SO_CLK L_FSYNCT SO_FS L_MSYNCT SO_MS SERT, L_SERT t6 t7 t8 t9 t10 t11 t2 t3 t2 t3 t5 L_TSX* SO t1 CLKR t12 SI_CLK t14 FSYNCR SI_FS t13 t15 t16 t17 t18 t19 MSYNCR SI_MS SI SERR 2000 Sep 07 t20 t21 26 t22 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 7. Local Bus Interface Timing — PEB Network Module Without Swithing Symbol Parameter Min Typ Max Unit t1a L_CLKT, CLKR high time (1.544 Mbps) 323 ns t1b L_CLKT, CLKR high time (2.048 Mbps) 244 ns t2a L_CLKT, CLKR low time (1.544 Mbps) 323 ns t2b L_CLKT, CLKR low time (2.048 Mbps) 244 ns t3a L_CLKT, CLKR period (1.544 Mbps) 647 ns t3b L_CLKT, CLKR period (2.048 Mbps) 488 t4 SO_CLK↑ delay from L_CLKT ↑ 35 ns t5 SO_CLK↓ delay from L_CLKT ↓ 35 ns t6 SO_FS↑ delay from L_FSYNCT↑ 35 ns t7 SO_FS↓ delay from L_FSYNCT↓ 35 ns t8 SO_MS ↑ delay from L_MSYNCT ↑ 35 ns t9 SO_MS ↓ delay from L_MSYNCT ↓ 35 ns t10 SO delay from SERT, L_SERT 35 ns t11 SO delay from L_TSX* 35 ns t12 SI_CLK ↑ delay from LCLKR ↑ 35 ns 35 ns ns t13 SI_CLK ↓ delay from L_CLKR ↓ t14 FSYNCR setup to CLKR ↓ 5 ns t15 FSYNCR hold from CLKR ↓ 15 ns t16 SI_FS ↑ delay from FSYNCR ↑ 35 ns t17 SI_FS ↓ delay from FSYNCR ↓ 35 ns t18 SI_MS ↑ delay from MSYNCR ↑ 35 ns t19 SI_MS ↓ delay from MSYNCR ↓ 35 ns t20 SERR enable delay from CLKR ↑ 70 ns t21 SERR delay from SI 60 ns t22 SERR disable delay from CLKR ↑ 70 ns Note: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2000 Sep 07 27 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 8. Local Bus Interface Timing — PEB Resource Module With Switching t1 CLKR t4 SO_CLK, SI_CLK t6 FSYNCR t2 t3 t5 t7 t8 t9 t10 t11 t12 t13 SO_FS, SI_FS MSYNCR SO_MS L_MSYNCT SI_MS SO SI 2000 Sep 07 t16 t19 t20 t21 t23 t22 t24 TSX* Output TSX* Input t15 t18 t17 SER Output SER Input t14 t25 t27 t26 28 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 8. Local Bus Interface Timing — PEB Resource Module With Switching Symbol Parameter Min Typ Max Unit t1a CLKR high time (1.544 Mbps) 323 ns t1b CLKR high time (2.048 Mbps) 244 ns t2a CLKR low time (1.544 Mbps) 323 ns t2b CLKR low time (2.048 Mbps) 244 ns t3a CLKR period (1.544 Mbps) 647 ns t3b CLKR period (2.048 Mbps) 488 t4 SO_CLK, SI_CLK↑ delay from CLKR ↑ 35 ns t5 SO_CLK, SI_CLK↓ delay from CLKR ↓ 35 ns t6 FSYNCR setup to CLKR ↓ 5 t7 FSYNCR hold from CLKR ↓ 15 t8 SO_FS, SI_FS↑ delay from FSYNCR ↑ 35 ns t9 SO_FS, SI_FS↓ delay from FSYNCR ↓ 35 ns t10 SO_MS ↑ delay from MSYNCR ↑ 35 ns t11 SO_MS ↓ delay from MSYNCR ↓ 35 ns t12 SI_MS ↑ delay from L_MSYNCT ↑ 35 ns ns ns ns t13 SI_MS ↓ delay from L_MSYNCT ↓ 35 ns t14 SO float to valid delay from CLKR↑ 40 ns t15 SO valid to valid delay from CLKR ↑ 40 ns t16 SO valid to float delay from CLKR↑ 25 ns t17 SI setup to CLKR ↓ 0 ns t18 SI hold from CLKR↓ 25 ns t19 SER enable delay from CLKR↑ 70 ns t20 SER valid delay from CLKR ↑ 70 ns t21 SER disable delay from CLKR ↑ 70 ns t22 SER setup to CLKR ↓ 0 ns t23 SER hold from CLKR ↓ 25 ns t24 TSX* ↓ delay from CLKR ↑ t25 TSX* ↑ delay from CLKR ↑ t26 TSX* setup to CLKR ↓ 0 ns t27 TSX* hold from CLKR ↓ 25 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2. SER = L_SERT, SERR, R_SERT, SERT. 3. TSX* = L_TSX*, R_TSX*. 2000 Sep 07 29 35 ns 70 ns Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 9. Local Bus Interface Timing — PEB Network Module With Switching t1 CLKR t4 SO_CLK, SI_CLK t6 FSYNCR t2 t3 t5 t7 t8 t9 t10 t11 t12 t13 SO_FS, SI_FS L_MSYNCT SO_MS MSYNCR SI_MS SO SI 2000 Sep 07 t16 t19 t20 t21 t23 t22 t24 TSX* Output TSX* Input t15 t18 t17 SER Output SER Input t14 t25 t27 t26 30 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 9. Local Bus Interface Timing — PEB Network Module With Switching Symbol Parameter Min Typ Max Unit t1a CLKR high time (1.544 Mbps) 323 ns t1b CLKR high time (2.048 Mbps) 244 ns t2a CLKR low time (1.544 Mbps) 323 ns t2b CLKR low time (2.048 Mbps) 244 ns t3a CLKR period (1.544 Mbps) 647 ns t3b CLKR period (2.048 Mbps) 488 t4 SO_CLK, SI_CLK↑ delay from CLKR ↑ 35 ns t5 SO_CLK, SI_CLK↓ delay from CLKR ↓ 35 ns t6 FSYNCR setup to CLKR ↓ 5 t7 FSYNCR hold from CLKR ↓ 15 t8 SO_FS, SI_FS↑ delay from FSYNCR ↑ 35 ns t9 SO_FS, SI_FS↓ delay from FSYNCR ↓ 35 ns ns ns ns t10 SO_MS ↑ delay from L_MSYNCT ↑ 35 ns t11 SO_MS ↓ delay from L_MSYNCT ↓ 35 ns t12 SI_MS ↑ delay from MSYNCR ↑ 35 ns t13 SI_MS ↓ delay from MSYNCR ↓ 35 ns t14 SO float to valid delay from CLKR ↑ 40 ns t15 SO valid to valid delay from CLKR ↑ 40 ns t16 SO valid to float delay from CLKR ↑ 25 ns t17 SI setup to CLKR ↓ 0 ns t18 SI hold from CLKR ↓ 25 ns t19 SER enable delay from CLKR↑ 70 ns t20 SER valid delay from CLKR ↑ 70 ns t21 SER disable delay from CLKR ↑ 70 ns t22 SER setup to CLKR ↓ 0 ns t23 SER hold from CLKR ↓ 25 ns t24 TSX* ↓ delay from CLKR ↑ t25 TSX* ↑ delay from CLKR ↑ t26 TSX* setup to CLKR ↓ 0 ns t27 TSX* hold from CLKR ↓ 25 ns Notes: 1. Timing measured with 100 pF load on all Local Bus outputs, 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2. SER = L_SERT, SERR, R_SERT, SERT. 3. TSX* = L_TSX*, R_TSX*. 2000 Sep 07 31 35 ns 70 ns Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 10. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider ≥4) t1 t2 t3 CLK_IN (Conventional) t4 SYNC_IN (Conventional) t1 t6 t7 t5 t2 t3 CLK_IN (ST-BUS) t8 SYNC_IN (ST-BUS) t10b t10a SCLKX2* t11b t11a t12b t12a SCLK FSYNC* t9 t13b t13a t14 t15 Table 10. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider ≥ 4) Symbol Parameter Min Typ Max Unit t1 CLK_IN period 122 ns t2 CLK_IN high time 61 ns t3 CLK_IN low time 61 ns t4 SYNC_IN low setup to CLK_IN↓ (PEB conventional) 10 ns t5 SYNC_IN low hold from CLK_IN ↓ (PEB conventional) 10 ns t6 SYNC_IN high setup to CLK_IN↓ (PEB conventional) 10 ns t7 SYNC_IN high hold from CLK_IN ↓ (PEB conventional) 10 ns t8 SYNC_IN setup to CLK_IN↓ (ST-BUS) 10 ns t9 SYNC_IN hold from CLK_IN ↓ (ST-BUS) 10 ns t10a SCLKx2*↓ delay from CLK_IN ↑ (PEB conventional) 25 ns t10b SCLKx2* ↓ delay from CLK_IN ↓ (ST-BUS) 25 ns t11a SCLKx2*↑ delay from CLK_IN ↑ (PEB conventional) 25 ns t11b SCLKx2* ↑ delay from CLK_IN ↓ (ST-BUS) 25 ns t12a SCLK↑ delay from CLK_IN ↑ (PEB conventional) 25 ns t12b SCLK ↑ delay from CLK_IN ↓ (ST-BUS) 25 ns t13a SCLK↓ delay from CLK_IN ↑ (PEB conventional) 25 ns t13b SCLK ↓ delay from CLK_IN ↓ (ST-BUS) 25 ns t14 FSYNC* ↓ delay from SCLKx2* ↑ 30 ns t15 FSYNC* ↑ delay from SCLKx2* ↑ 30 ns Note: 1. Timing measured with 200 pF load on all SCbus outputs. 2000 Sep 07 32 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 11. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider = 2) t1 t2 t3 CLK_IN (Conventional) t5 t7 t4 SYNC_IN (Conventional) t1 t6 t2 t3 CLK_IN (ST-BUS) t9 t8 SYNC_IN (ST-BUS) t10b t10a SCLKX2* t11b t11a t12b t12a SCLK t13b t13a t14 t15 FSYNC* Table 11. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider = 2) Symbol Parameter Min Typ Max Unit t1 CLK_IN period 244 ns t2 CLK_IN high time 122 ns t3 CLK_IN low time 122 ns t4 SYNC_IN low setup to CLK_IN↓ (PEB conventional) 10 ns t5 SYNC_IN low hold from CLK_IN↓ (PEB conventional) 10 ns t6 SYNC_IN high setup to CLK_IN↓ (PEB conventional) 10 ns t7 SYNC_IN high hold from CLK_IN↓ (PEB conventional) 10 ns t8 SYNC_IN setup to CLK_IN↓ (ST-BUS) 10 ns t9 SYNC_IN hold from CLK_IN↓ (ST-BUS) 10 t10a SCLKx2* ↓ delay from CLK_IN ↑ (PEB conventional) 25 ns t10b SCLKx2* ↓ delay from CLK_IN ↓ (ST-BUS) 25 ns ns t11a SCLKx2* ↑ delay from CLK_IN ↓(PEB conventional) 25 ns t11b SCLKx2* ↑ delay from CLK_IN ↑(ST-BUS) 25 ns t12a SCLK ↑ delay from CLK_IN ↑(PEB conventional) 25 ns t12b SCLK ↑ delay from CLK_IN ↓(ST-BUS) 25 ns t13a SCLK ↓ delay from CLK_IN ↑(PEB conventional) 25 ns t13b SCLK ↓ delay from CLK_IN ↓ (ST-BUS) 25 ns t14 FSYNC* ↓ delay from SCLKx2* ↑ 30 ns t15 FSYNC* ↑ delay from SCLKx2* ↑ 30 ns Note: 1. Timing measured with 200 pF load on all SCbus outputs. 2000 Sep 07 33 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 12. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider = 1) t1 CLK_IN (Conventional) t2 t5 t4 SYNC_IN (Conventional) t1 t3 t7 t6 t2 t3 CLK_IN (ST-BUS) t9 t8 SYNC_IN (ST-BUS) SCLKX2* t10b t10a SCLK t11b t11a t12 t13 FSYNC* Table 12. CLK_IN, SYNC_IN — SCbus Mode (CLK_IN Divider = 1) Symbol Parameter Min Typ Max t1 CLK_IN period 488 ns t2 CLK_IN high time 244 ns t3 CLK_IN low time t4 SYNC_IN low setup to CLK_IN ↓ (PEB conventional) 10 ns t5 SYNC_IN low hold from CLK_IN ↓ (PEB conventional) 10 ns t6 SYNC_IN high setup to CLK_IN ↓(PEB conventional) 10 ns t7 SYNC_IN high hold from CLK_IN ↓ (PEB conventional) 10 ns t8 SYNC_IN setup to CLK_IN ↓ (ST-BUS) 10 ns t9 SYNC_IN hold from CLK_IN ↓ (ST-BUS) 10 t10a SCLK↑ delay from CLK_IN ↑ (PEB conventional) 25 ns t10b SCLK ↑ delay from CLK_IN ↓ (ST-BUS) 25 ns 244 Unit ns ns t11a SCLK↓ delay from CLK_IN ↓ (PEB conventional) 25 ns t11b SCLK ↓ delay from CLK_IN ↑ (ST-BUS) 25 ns t12 FSYNC*↓ delay from SCLK ↓ 30 ns t13 FSYNC* ↑ delay from SCLK ↓ 30 ns Note: 1. Timing measured with 200 pF load on all SCbus outputs. 2000 Sep 07 34 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 13. CLK_IN, SYNC_IN — PEB Network Master Mode (CLK_IN Divider ≥ 2) t1 CLK_IN (Conventional) t2 t5 t7 t4 SYNC_IN (Conventional) t3 t6 t1 CLK_IN (ST-BUS) t2 t3 t9 t8 SYNC_IN (ST-BUS) t10b t10a t11b t11a CLKR, L_CLKT t12 t13 FSYNCR, L_FSYNCT MSYNCT t14 t15 MSYNCR t18 L_MSYNCT 2000 Sep 07 t19 t16 t17 35 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 13. CLK_IN, SYNC_IN — PEB Network Master Mode (CLK_IN Divider ≥ 2) Symbol Parameter Min Typ Max Unit t1 CLK_IN period 244 ns t2 CLK_IN high time 122 ns t3 CLK_IN low time 122 ns t4 SYNC_IN low setup to CLK_IN↓(PEB conventional) 10 ns t5 SYNC_IN low hold from CLK_IN ↓(PEB conventional) 10 ns t6 SYNC_IN high setup to CLK_IN↓(PEB conventional) 10 ns t7 SYNC_IN high hold from CLK_IN ↓(PEB conventional) 10 ns t8 SYNC_IN setup to CLK_IN↓ (ST-BUS) 10 ns 10 t9 SYNC_IN hold from CLK_IN ↓ (ST-BUS) t10a CLKR, L_CLKT↑ delay from CLK_IN ↑(PEB conventional) 60 ns t10b CLKR, L_CLKT ↑ delay from CLK_IN ↓ (ST-BUS) 60 ns ns t11a CLKR, L_CLKT↓ delay from CLK_IN ↑(PEB conventional) 30 ns t11b CLKR, L_CLKT ↓ delay from CLK_IN ↓ (ST-BUS) 30 ns t12 FSYNCR, L_FSYNCT↑ delay from CLKR ↑ 70 ns t13 FSYNCR, L_FSYNCT↓ delay from CLKR ↑ 35 ns t14 MSYNCR ↑ delay from CLKR ↑ 70 ns t15 MSYNCR ↓ delay from CLKR ↑ 35 ns t16 L_MSYNCT ↑ delay from CLKR ↑ 70 ns t17 L_MSYNCT ↓ delay from CLKR ↑ 35 ns t18 L_MSYNCT ↑ delay from MSYNCT ↑ 60 ns t19 L_MSYNCT ↓ delay from MSYNCT ↓ 25 ns Note: 1. Timing measured with 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2000 Sep 07 36 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 14. CLK_IN, SYNC_IN — PEB Network Master Mode (CLK_IN Divider = 1) t1 CLK_IN (Conventional) t2 t3 t5 SYNC_IN (Conventional) CLK_IN (ST-BUS) t7 t4 t6 t1 t2 t3 t9 t8 SYNC_IN (ST-BUS) t10b t10a CLKR, L_CLKT FSYNCR, L_FSYNCT t11b t11a t12 t13 t14 t15 MSYNCT MSYNCR t18 L_MSYNCT 2000 Sep 07 t19 t16 t17 37 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Table 14. CLK_IN, SYNC_IN — PEB Network Master Mode (CLK_IN Divider = 1) Symbol Parameter Min Typ Max t1 CLK_IN period 488 ns t2 CLK_IN high time 244 ns t3 CLK_IN low time t4 SYNC_IN low setup to CLK_IN↓ (PEB conventional) 10 ns t5 SYNC_IN low hold from CLK_IN↓ (PEB conventional) 10 ns t6 SYNC_IN high setup to CLK_IN ↓ (PEB conventional) 10 ns t7 SYNC_IN high hold from CLK_IN ↓ (PEB conventional) 10 ns t8 SYNC_IN setup to CLK_IN↓ (ST-BUS) 10 ns t9 SYNC_IN hold from CLK_IN ↓ (ST-BUS) 10 t10a CLKR, L_CLKT↑ delay from CLK_IN ↑ (PEB conventional) t10b CLKR, L_CLKT↑ delay from CLK_IN ↓ (ST-BUS) 60 ns t11a CLKR, L_CLKT↓ delay from CLK_IN ↓ (PEB conventional) 30 ns 244 Unit ns ns 60 ns t11b CLKR, L_CLKT↓ delay from CLK_IN ↑ (ST-BUS) 30 ns t12 FSYNCR, L_FSYNCT ↑ delay from CLKR ↑ 70 ns t13 FSYNCR, L_FSYNCT ↓ delay from CLKR ↑ 35 ns t14 MSYNCR ↑ delay from CLKR ↑ 70 ns t15 MSYNCR ↓ delay from CLKR ↑ 35 ns t16 L_MSYNCT ↑ delay from CLKR ↑ 70 ns t17 L_MSYNCT ↓ delay from CLKR ↑ 35 ns t18 L_MSYNCT ↑ delay from MSYNCT ↑ 60 ns t19 L_MSYNCT↓ delay from MSYNCT ↓ 25 ns Note: 1. Timing measured with 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2000 Sep 07 38 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Figure 15. PEB Network Slave t1 t2 t3 CLKT t4 t5 CLKR, L_CLKT t7 t9 t6 t8 SYNC_IN FSYNCT t11 t10 FSYNCR, L_FSYNCT MSYNCT t12 t13 t14 t15 MSYNCR t17 t16 L_MSYNCT Table 15: PEB Network Slave Symbol Parameter Min Typ Max Unit t1 CLKT period 488 ns t2 CLKT high time 244 ns t3 CLKT low time 244 t4 CLKR, L_CLKT ↑ delay from CLKT ↑ 60 ns t5 CLKR, L_CLKT ↓ delay from CLKT ↓ 25 ns t6 SYNC_IN low setup to CLKR ↓ 0 ns t7 SYNC_IN low hold from CLKR ↓ 20 ns t8 SYNC_IN high setup to CLKR ↓ 0 ns t9 SYNC_IN high hold from CLKR ↓ 20 t10 FSYNCR, L_FSYNCT ↑ delay from FSYNCT ↑ ns ns 60 ns t11 FSYNCR, L_FSYNCT ↓ delay from FSYNCT ↓ 25 ns t12 MSYNCR ↑ delay from MSYNCT ↑ 60 ns t13 MSYNCR ↓ delay from MSYNCT↓ 25 ns t14 MSYNCR ↑ delay from CLKR ↑ 70 ns t15 MSYNCR ↓ delay from CLKR ↑ 35 ns t16 L_MSYNCT ↑ delay from MSYNCT ↑ 60 ns t17 L_MSYNCT ↓ delay from MSYNCT ↓ 25 ns Note: 1. Timing measured with 200 pF 220/330 Ω termination on all PEB outputs. Open collector low to high transitions include 43 ns delay from hi-Z to 2.4 V. 2000 Sep 07 39 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 SOLDERING If wave soldering is used the following conditions must be observed for optimal results: Introduction to soldering surface mount packages • Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011). • For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended. – smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. Reflow soldering The footprint must incorporate solder thieves at the downstream end. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. • For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Manual soldering Wave soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. To overcome these problems the double-wave soldering method was specifically developed. 2000 Sep 07 40 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 Suitability of surface mount IC packages for wave and reflow soldering methods SOLDERING METHOD PACKAGE WAVE BGA, LFBGA, SQFP, TFBGA not suitable suitable(2) HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not PLCC(3), SO, SOJ suitable LQFP, QFP, TQFP SSOP, TSSOP, VSO REFLOW(1) suitable suitable suitable not recommended(3)(4) suitable not recommended(5) suitable Notes 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”. 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. 2000 Sep 07 41 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 DATA SHEET STATUS DATA SHEET STATUS PRODUCT STATUS DEFINITIONS (1) Objective specification Development This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice. Preliminary specification Qualification This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Product specification Production This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Note 1. Please consult the most recently issued data sheet before initiating or completing a design. DEFINITIONS DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2000 Sep 07 42 Philips Semiconductors Preliminary specification Universal Timeslot Interchange SC2000 NOTES 2000 Sep 07 43 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553 For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com SCA 70 © Philips Electronics N.V. 2000 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 02/pp44 Date of release: 2000 Sep 07 Document order number: 9397 750 07433