ONSEMI MUR1660CT

MUR1610CT, MUR1615CT,
MUR1620CT, MUR1640CT,
MUR1660CT
SWITCHMODE
Power Rectifiers
http://onsemi.com
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
•
•
•
•
•
•
•
•
ULTRAFAST
RECTIFIERS
8.0 AMPERES
100–600 VOLTS
Ultrafast 35 and 60 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO–220 Package
Epoxy Meets UL94, VO @ 1/8″
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
1
2, 4
3
Mechanical Characteristics:
• Case: Epoxy, Molded
• Weight: 1.9 grams (approximately)
• Finish: All External Surfaces Corrosion Resistant and Terminal
•
•
•
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U1610, U1615, U1620, U1640, U1660
4
MARKING DIAGRAM
U16xx
1
2
3
TO–220AB
CASE 221A
PLASTIC
MAXIMUM RATINGS
Please See the Table on the Following Page
U16xx = Device Code
xx
= 10, 15, 20, 40 or 60
ORDERING INFORMATION
Device
 Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3
1
Package
Shipping
MUR1610CT
TO–220
50 Units/Rail
MUR1615CT
TO–220
50 Units/Rail
MUR1620CT
TO–220
50 Units/Rail
MUR1640CT
TO–220
50 Units/Rail
MUR1660CT
TO–220
50 Units/Rail
Publication Order Number:
MUR1620CT/D
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
MAXIMUM RATINGS
MUR16
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150°C
Per Leg
Total Device
Symbol
10CT
15CT
20CT
40CT
60CT
Unit
VRRM
VRWM
VR
100
150
200
400
600
Volts
IF(AV)
8.0
16
Amps
Peak Rectified Forward Current
Per Diode Leg
(Rated VR, Square Wave, 20 kHz), TC = 150°C
IFM
16
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single
phase, 60 Hz)
IFSM
100
Amps
Operating Junction Temperature and Storage Temperature
TJ, Tstg
65 to +175
°C
THERMAL CHARACTERISTICS (Per Diode Leg)
Maximum Thermal Resistance, Junction to Case
RθJC
3.0
°C/W
2.0
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 150°C)
(iF = 8.0 Amps, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 0.5 Amp, IR = 1.0 Amp, IREC = 0.25 Amp)
trr
Volts
0.895
0.975
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%
http://onsemi.com
2
1.00
1.30
1.20
1.50
µA
250
5.0
500
10
35
25
60
50
ns
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
MUR1610CT, MUR1615CT, MUR1620CT
100
IR, REVERSE CURRENT ( A)
70
50
30
TJ = 175°C
100°C
10
7.0
TJ = 175°C
100°C
0.8
0.4
0.2
0.08
0.04
0.02
25°C
0
25°C
20
40
60
5.0
80
100
120
140
160
180 200
VR, REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current, Per Leg*
3.0
* The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below
rated VR.
2.0
IF(AV) , AVERAGE POWER DISSIPATION (WATTS)
i F , INSTANTANEOUS FORWARD CURRENT (AMPS)
20
800
400
200
80
40
20
8.0
4.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
0.2 0.3
0.4
0.5
0.6
0.7
0.8
1.0
0.9
1.1
1.2
10
RATED VR APPLIED
9.0
8.0
7.0
6.0
5.0
dc
4.0
3.0
2.0
1.0
0
vF, INSTANTANEOUS VOLTAGE (VOLTS)
SQUARE WAVE
140
150
145
155
160
165
170
175
180
TC, CASE TEMPERATURE (°C)
Figure 1. Typical Forward Voltage, Per Leg
14
12
PF(AV) , AVERAGE POWER DISSIPATION (WATTS)
IF(AV) , AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Current Derating, Case, Per Leg
RJA = 16°C/W
RJA = 60°C/W
(NO HEATSINK)
dc
10
8.0
SQUARE WAVE
6.0
4.0
dc
2.0
SQUARE WAVE
0
0
20
40
60
80
100
120
140
160
180
200
10
TJ = 175°C
9.0
8.0
SQUARE WAVE
7.0
dc
6.0
5.0
4.0
3.0
2.0
1.0
0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
TA, AMBIENT TEMPERATURE (°C)
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 4. Current Derating, Ambient, Per Leg
Figure 5. Power Dissipation, Per Leg
http://onsemi.com
3
10
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
MUR1640CT
70
50
100°C
TJ = 175°C
20
25°C
10
7.0
800
400
200
TJ = 175°C
80
40
20
8.0
4.0
2.0
150°C
100°C
0.8
0.4
0.2
0.08
0.04
0.02
25°C
0
50
100
5.0
150
200
250
300
350
450 500
400
VR, REVERSE VOLTAGE (VOLTS)
Figure 7. Typical Reverse Current, Per Leg*
3.0
* The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves if VR is sufficiently below rated
VR.
2.0
IF(AV) , AVERAGE POWER DISSIPATION (WATTS)
i F , INSTANTANEOUS FORWARD CURRENT (AMPS)
30
IR, REVERSE CURRENT ( A)
100
1.0
0.7
0.5
0.3
0.2
0.1
0.4
0.6
0.8
1.0
1.2
1.4
1.6
10
RATED VR APPLIED
9.0
8.0
7.0
6.0
5.0
dc
4.0
3.0
2.0
1.0
0
vF, INSTANTANEOUS VOLTAGE (VOLTS)
SQUARE WAVE
140
150
145
155
160
165
170
175
180
TC, CASE TEMPERATURE (°C)
Figure 6. Typical Forward Voltage, Per Leg
14
PF(AV) , AVERAGE POWER DISSIPATION (WATTS)
IF(AV) , AVERAGE FORWARD CURRENT (AMPS)
Figure 8. Current Derating, Case, Per Leg
RJA = 16°C/W
RJA = 60°C/W
(NO HEAT SINK)
12
10
dc
8.0
6.0
SQUARE WAVE
4.0
dc
2.0
SQUARE WAVE
0
0
20
40
60
80
100
120
140
160
180
200
10
TJ = 175°C
9.0
SQUARE WAVE
dc
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
TA, AMBIENT TEMPERATURE (°C)
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 9. Current Derating, Ambient, Per Leg
Figure 10. Power Dissipation, Per Leg
http://onsemi.com
4
10
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
MUR1660CT
100
IR, REVERSE CURRENT ( A)
70
50
TJ = 150°C
20
100°C
10
25°C
7.0
TJ = 150°C
100°C
25°C
100
200
5.0
300
400
600
500
VR, REVERSE VOLTAGE (VOLTS)
Figure 12. Typical Reverse Current, Per Leg*
3.0
* The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below
rated VR.
2.0
IF(AV) , AVERAGE POWER DISSIPATION (WATTS)
i F , INSTANTANEOUS FORWARD CURRENT (AMPS)
30
800
400
200
80
40
20
8.0
4.0
2.0
0.8
0.4
0.2
0.08
0.04
0.02
1.0
0.7
0.5
0.3
0.2
0.1
0.4
0.6
0.8
1.0
1.2
1.6
1.4
1.8
10
RATED VR APPLIED
9.0
8.0
7.0
6.0
5.0
dc
4.0
3.0
2.0
1.0
0
vF, INSTANTANEOUS VOLTAGE (VOLTS)
SQUARE WAVE
140
150
145
155
160
165
170
175
180
TC, CASE TEMPERATURE (°C)
Figure 11. Typical Forward Voltage, Per Leg
10
RJA = 16°C/W
RJA = 60°C/W
(NO HEAT SINK)
9.0
dc
8.0
PF(AV) , AVERAGE POWER DISSIPATION (WATTS)
IF(AV) , AVERAGE FORWARD CURRENT (AMPS)
Figure 13. Current Derating, Case, Per Leg
7.0
6.0
SQUARE WAVE
5.0
4.0
dc
3.0
2.0
SQUARE WAVE
1.0
0
0
20
40
60
80
100
120
140
160
180
200
14
13
12
11
10
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
SQUARE WAVE
TJ = 175°C
dc
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
TA, AMBIENT TEMPERATURE (°C)
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 14. Current Derating, Ambient, Per Leg
Figure 15. Power Dissipation, Per Leg
http://onsemi.com
5
10
1.0
D = 0.5
0.5
0.2
0.1
0.1
0.05
0.05
t1
0.01
0.02
0.01
ZθJC(t) = r(t) RθJC
P(pk)
0.01
0.02
0.05
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT T1
t2
TJ(pk) - TC = P(pk) ZθJC(t)
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
t, TIME (ms)
Figure 16. Thermal Response
1000
C, CAPACITANCE (pF)
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
MUR1620CT THRU 1660CT
MUR1605CT THRU 1615CT
300
TJ = 25°C
100
30
10
1.0
10
VR, REVERSE VOLTAGE (VOLTS)
Figure 17. Typical Capacitance, Per Leg
http://onsemi.com
6
100
100
200
500
1000
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
PACKAGE DIMENSIONS
TO–220 THREE–LEAD
TO–220AB
CASE 221A–09
ISSUE AA
–T–
B
SEATING
PLANE
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
http://onsemi.com
7
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MUR1620CT/D