ONSEMI NBSG11MNG

NBSG11
2.5V/3.3VSiGe 1:2
Differential Clock Driver
with RSECL* Outputs
*Reduced Swing ECL
http://onsemi.com
Description
The NBSG11 is a 1−to−2 differential fanout buffer, optimized for
low skew and Ultra−Low JITTER.
Inputs incorporate internal 50 W termination resistors and accept
NECL (Negative ECL), PECL (Positive ECL), CML, LVCMOS,
LVTTL, or LVDS. Outputs are RSECL (Reduced Swing ECL),
400 mV.
Features
•
•
•
•
•
•
•
•
•
•
Maximum Input Clock Frequency up to 12 GHz Typical
Maximum Input Data Rate up to 12 Gb/s Typical
30 ps Typical Rise and Fall Times
125 ps Typical Propagation Delay
RSPECL Output with Operating Range: VCC = 2.375 V to 3.465 V
with VEE = 0 V
RSNECL Output with RSNECL or NECL Inputs with
Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V
RSECL Output Level (400 mV Peak−to−Peak Output), Differential
Output Only
50 W Internal Input Termination Resistors
Compatible with Existing 2.5 V/3.3 V LVEP, EP, and LVEL Devices
Pb−Free Packages are Available
MARKING DIAGRAMS*
SG
11
ALYW
FCBGA−16
BA SUFFIX
CASE 489
ÇÇ
ÇÇ
16
1
QFN−16
MN SUFFIX
CASE 485G
A
L
Y
W
G
SG11
ALYWG
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
© Semiconductor Components Industries, LLC, 2006
July, 2006 − Rev. 8
1
Publication Order Number:
NBSG11/D
NBSG11
1
A
VTCLK
B
2
3
4
NC
NC
Q1
VEE
CLK
VCC
VTCLK
1
CLK
2
VEE
NC
NC
VCC
16
15
14
13
Exposed Pad (EP)
12
Q0
11
Q0
Q1
NBSG11
CLK
VEE
VCC
Q0
VTCLK
NC
NC
Q0
C
D
CLK
3
10
Q1
VTCLK
4
9
Q1
Figure 1. BGA−16 Pinout (Top View)
5
6
7
8
VEE
NC
NC
VCC
Figure 2. QFN−16 Pinout (Top View)
Table 1. PIN DESCRIPTION
Pin
BGA
QFN
Name
I/O
D1
1
VTCLK
−
C1
2
CLK
ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Inverted Differential Input. Internal 75 kW to VEE and 36.5 kW to VCC.
B1
3
CLK
ECL, CML,
LVCMOS, LVDS,
LVTTL Input
Noninverted Differential Input. Internal 75 kW to VEE.
Description
Internal 50 W Termination Pin. See Table 2.
A1
4
VTCLK
−
Internal 50 W Termination Pin. See Table 2.
B2,C2
5,16
VEE
−
Negative Supply Voltage
A2,A3,D2,
D3
6,7,14,15
NC
−
No Connect
B3,C3
8,13
VCC
−
Positive Supply Voltage
A4
9
Q1
RSECL Output
Inverted Differential Output 1. Typically Terminated with 50 W to
VTT = VCC − 2.0 V.
B4
10
Q1
RSECL Output
Noninverted Differential Output 1. Typically Terminated with 50 W to
VTT = VCC − 2.0 V.
C4
11
Q0
RSECL Output
Inverted Differential output 0. Typically Terminated with 50 W to
VTT = VCC − 2.0 V.
D4
12
Q0
RSECL Output
Noninverted Differential Output 0. Typically Terminated with 50 W to
VTT = VCC − 2 V.
N/A
−
EP
−
Exposed Pad (Note 2)
1. The NC pins are electrically connected to the die and must be left open.
2. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad on package
bottom (see case drawing) must be attached to a heat−sinking conduit.
3. In the differential configuration when the input termination pins (VTCLK, VTCLK) are connected to a common termination voltage, and
if no signal is applied then the device will be susceptible to self−oscillation.
http://onsemi.com
2
NBSG11
VCC
VTCLK
Q1
36.5 KW
50 W
Q1
CLK
CLK
50 W
75 KW
Q0
75 KW
Q0
VTCLK
VEE
Figure 3. Logic Diagram
Table 2. INTERFACING OPTIONS
INTERFACING OPTIONS
CONNECTIONS
CML
Connect VTCLK and VTCLK to VCC
LVDS
Connect VTCLK and VTCLK together
AC−COUPLED
Bias VTCLK and VTCLK Inputs within
(VIHCMR) Common Mode Range
RSECL, PECL, NECL
Standard ECL Termination Techniques
LVTTL, LVCMOS
An external voltage should be be applied to the
unused complementary differential input.
Nominal voltage is 1.5 V for LVTTL and VCC/2
for LVCMOS inputs.
Table 3. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor (CLK, CLK)
75 kW
Internal Input Pullup Resistor (CLK)
ESD Protection
36.5 kW
Human Body Model
Machine Model
Moisture Sensitivity (Note 4)
FCBGA−16
QFN−16
Flammability Rating
Oxygen Index: 28 to 34
Transistor Count
> 2 kV
> 100 V
Pb Pkg
Pb−Free Pkg
Level 3
Level 1
N/A
Level 1
UL 94 V−0 @ 0.125 in
125
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
4. For additional information, see Application Note AND8003/D.
http://onsemi.com
3
NBSG11
Table 4. MAXIMUM RATINGS
Rating
Unit
VCC
Symbol
Positive Power Supply
Parameter
VEE = 0 V
Condition 1
3.6
V
VEE
Negative Power Supply
VCC = 0 V
−3.6
V
VI
Positive Input
Negative Input
VEE = 0 V
VCC = 0 V
3.6
−3.6
V
V
VINPP
Differential Input Voltage
2.8
|VCC − VEE|
V
V
Iout
Output Current
Continuous
Surge
25
50
mA
mA
TA
Operating Temperature Range
16 FCBGA
16 QFN
−40 to +70
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
(Note 5)
0 lfpm
500 lfpm
0 lfpm
500 lfpm
16 FCBGA
16 FCBGA
16 QFN
16 QFN
108
86
41.6
35.2
°C/W
°C/W
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
1S2P (Note 5)
2S2P (Note 6)
16 FCBGA
16 QFN
5.0
4.0
°C/W
°C/W
Tsol
Wave Solder
225
225
°C
|D − D|
VCC − VEE w
VCC − VEE <
Condition 2
VI ≤ VCC
VI ≥ VEE
2.8 V
2.8 V
Pb
Pb−Free
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
5. JEDEC standard multilayer board − 1S2P (1 signal, 2 power).
6. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.
http://onsemi.com
4
NBSG11
Table 5. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT VCC = 2.5 V; VEE = 0 V (Note 7)
−40°C
25°C
70°C(BGA)/85°C(QFN)**
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
45
60
75
45
60
75
45
60
75
mA
Output HIGH Voltage (Note 8)
1450
1530
1575
1525
1565
1600
1550
1590
1625
mV
VOUTPP
Output Amplitude Voltage
350
410
525
350
410
525
350
410
525
mV
VIH
Input HIGH Voltage (Single−Ended)
(Note 10)
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
V
VIL
Input LOW Voltage (Single−Ended)
(Note 11)
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150 mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
V
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 9)
1.2
2.5
1.2
2.5
1.2
2.5
V
RTIN
Internal Input Termination Resistor
45
50
55
45
50
55
45
50
55
W
IIH
Input HIGH Current (@ VIH, VIHMAX)
80
150
80
150
80
150
mA
IIL
Input LOW Current (@ VIL, VILMIN)
25
100
25
100
25
100
mA
Symbol
Characteristic
IEE
Negative Power Supply Current
VOH
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
*Typicals used for testing purposes.
**The device packaged in FCBGA−16 have maximum temperature specification of 70°C and devices packaged in QFN−16 have maximum
temperature specification of 85°C.
7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −0.965 V.
8. All loading with 50 W to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
10. VIH cannot exceed VCC.
11. VIL always ≥ VEE.
http://onsemi.com
5
NBSG11
Table 6. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 12)
−40°C
Symbol
Characteristic
25°C
70°C(BGA)/85°C(QFN)**
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
45
60
75
45
60
75
45
60
75
mA
VOH
Output HIGH Voltage (Note 13)
2250
2330
2375
2325
2365
2400
2350
2390
2425
mV
VOUTPP
Output Amplitude Voltage
350
410
525
350
410
525
350
410
525
mV
VIH
Input HIGH Voltage (Single−Ended)
(Note 15)
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
V
VIL
Input LOW Voltage (Single−Ended)
(Note 16)
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
V
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 14)
(Differential Configuration)
1.2
3.3
1.2
3.3
1.2
3.3
V
RTIN
Internal Input Termination Resistor
45
50
55
45
50
55
45
50
55
W
IIH
Input HIGH Current (@ VIH, VIHMAX)
80
150
80
150
80
150
mA
IIL
Input LOW Current (@ VIL, VILMIN)
25
100
25
100
25
100
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.165 V.
13. All loading with 50 W to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
15. VIH cannot exceed VCC.
16. VIL always ≥ VEE.
*Typicals used for testing purposes.
**The device packaged in FCBGA−16 have maximum temperature specification of 70°C and devices packaged in QFN−16 have maximum
temperature specification of 85°C.
http://onsemi.com
6
NBSG11
Table 7. DC CHARACTERISTICS, NECL OR RSNECL INPUT WITH NECL OUTPUT
VCC = 0 V; VEE = −3.465 V to −2.375 V (Note 17)
−40°C
25°C
70°C(BGA)/85°C(QFN)**
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
45
60
75
45
60
75
45
60
75
mA
VOH
Output HIGH Voltage (Note 18)
−1050
−970
−925
−975
−935
−900
−950
−910
−875
mV
VOUTPP
Output Amplitude Voltage
350
410
525
350
410
525
350
410
525
mV
VIH
Input HIGH Voltage (Single−Ended)
(Note 20)
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
VCC−
1435
mV
VCC−
1000
mV*
VCC
V
VIL
Input LOW Voltage (Single−Ended) (Note 21)
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
VIH−
2.5 V
VCC−
1400
mV*
VIH−
150
mV
V
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 19)
0.0
V
RTIN
Internal Input Termination Resistor
50
55
W
IIH
IIL
Symbol
Characteristic
VEE+1.2
45
0.0
50
55
Input HIGH Current (@ VIH, VIHMAX)
80
Input LOW Current (@ VIL, VILMIN)
25
VEE+1.2
45
0.0
VEE+1.2
50
55
45
150
80
150
80
150
mA
100
25
100
25
100
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
17. Input and output parameters vary 1:1 with VCC.
18. All loading with 50 W to VCC − 2.0 V. VOH/VOL measured at VIH/VIL.
19. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
20. VIH cannot exceed VCC.
21. VIL always ≥ VEE.
*Typicals used for testing purposes.
**The device packaged in FCBGA−16 have maximum temperature specification of 70°C and devices packaged in QFN−16 have maximum
temperature specification of 85°C.
http://onsemi.com
7
NBSG11
Table 8. AC CHARACTERISTICS for FCBGA−16
VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 4. Fmax/JITTER) (Note 22)
tPLH,
tPHL
Propagation Delay to
Output Differential
tSKEW
Duty Cycle Skew (Note 23)
Within−Device Skew (Note 24)
Device−to−Device Skew (Note 25)
tJITTER
RMS Random Clock Jitter
Min
Typ
10.709
12
90
125
160
3
6
25
0.2
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 26)
tr
tf
Output Rise/Fall Times
(20% − 80%) @ 1 GHz
Max
70°C
Min
Typ
Max
Min
Typ
10.709
12
90
125
160
15
15
50
3
6
25
1
0.2
Max
10.709
12
90
125
160
ps
15
15
50
3
6
25
15
15
50
ps
1
0.2
1
Unit
GHz
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
25°C
TBD
75
Q, Q
20
30
TBD
2600
75
55
20
30
TBD
2600
75
55
20
30
2600
mV
55
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
22. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. For minimum fmax value of 10.709 GHz,
output amplitude is approximately 200 mV (as shown in Figure 4, where output P−P spec is shown as a minimum/guarantee of around
150 mV). Input edge rates 40 ps (20% − 80%).
23. See Figure 5. tSKEW = |tPLH − tPHL| for a nominal 50% Differential Clock Input Waveform.
24. Within−Device skew is defined as identical transitions on similar paths through a device.
25. Device−to−device skew for identical transitions at identical VCC levels.
26. VINPP (MAX) cannot exceed VCC − VEE.
http://onsemi.com
8
NBSG11
Table 9. AC CHARACTERISTICS for QFN−16 VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V
−40°C
Symbol
Characteristic
fmax
Maximum Frequency
(See Figure 4. Fmax/JITTER) (Note 27)
tPLH,
tPHL
Propagation Delay to
Output Differential
tSKEW
Duty Cycle Skew (Note 28)
Within−Device Skew (Note 29)
Device−to−Device Skew (Note 30)
tJITTER
RMS Random Clock Jitter
25°C
Min
Typ
Max
10.5
12
90
125
160
3
6
25
0.2
85°C
Min
Typ
Max
Min
Typ
10.5
12
90
125
160
15
15
50
3
6
25
1
0.2
Max
10.5
12
90
125
160
ps
15
15
50
3
6
25
15
15
50
ps
1
0.2
1
Unit
GHz
ps
fin < 10 GHz
Peak−to−Peak Data Dependent Jitter
fin < 10 Gb/s
VINPP
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 31)
tr
tf
Output Rise/Fall Times
(20% − 80%) @ 1 GHz
TBD
75
Q, Q
15
30
TBD
2600
75
55
20
30
TBD
2600
75
55
20
30
2600
mV
55
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
27. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to VCC−2.0 V. For minimum fmax value of 10.5 GHz,
output amplitude is approximately 200 mV (as shown in Figure 4, where output P−P spec is shown as a minimum/guarantee of around
150 mV). Input edge rates 40 ps (20% − 80%).
28. See Figure 5. tSKEW = |tPLH − tPHL| for a nominal 50% Differential Clock Input Waveform.
29. Within−Device skew is defined as identical transitions on similar paths through a device.
30. Device−to−device skew for identical transitions at identical VCC levels.
31. VINPP (MAX) cannot exceed VCC − VEE.
600
8.5
500
7.5
OUTPUT AMP.
ÑÑ
ÓÓÓ
ÑÑÑÑÑÑ
ÔÔ
ÖÖÖ
ÑÑ
ÑÑÑÑÑÑÑÑ
ÓÓÓÔÔÖÖÖÑÑÓÓ
ÑÑ
ÓÓÓ
ÔÔ
ÖÖÖ
ÑÑ
ÓÓ
ÔÔÔ
ÑÑÓÓÓÔÔÖÖÖÑÑÓÓÔÔÔÒÒ
ÑÑÓÓÓÔÔÖÖÖÑÑÓÓÔÔÔÒÒÕÕŠŠŠ
ÑÑÓÓÓÔÔÖÖÖÑÑÑÑÑ
ÑÑÓÓÔÔÔÒÒÕÕŠŠŠÚÚ
ÑÑÓÓÓÔÔÖÖÖÑÑÓÓÔÔÔÒÒÕÕŠŠŠÚÚÒÒÒ
ÑÑÓÓÓÔÔÖÖÖÑÑÓÓÔÔÔÒÒÕÕŠŠŠÚÚÒÒÒ
6.5
400
5.5
OUTPUT P−P SPEC
300
4.5
3.5
200
2.5
100
1.5
RMS JITTER
0.5
0
1
2
3
4
5
6
7
8
9
INPUT FREQUENCY (GHz)
10
11
12
Figure 4. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at Ambient Temperature (Typical)
http://onsemi.com
9
−0.5
JITTERout ps (RMS)
OUTPUT VOLTAGE AMPLITUDE (mV)
9.5
NBSG11
CLK
VINPP = VIH(CLK) − VIL(CLK)
CLK
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPLH
tPHL
Figure 5. AC Reference Measurement
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
Zo = 50 W
D
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 6. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
ORDERING INFORMATION
Package
Shipping†
NBSG11BA
FCBGA−16
100 Units / Tray (Contact Sales Representative)
NBSG11BAR2
FCBGA−16
100 / Tape & Reel
QFN−16
123 Units / Rail
NBSG11MNG
QFN−16
(Pb−Free)
123 Units / Rail
NBSG11MNR2
QFN−16
3000 / Tape & Reel
QFN−16
(Pb−Free)
3000 / Tape & Reel
Device
NBSG11MN
NBSG11MNR2G
Board
Description
NBSG11BAEVB
NBSG11BA Evaluation Board
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
10
NBSG11
PACKAGE DIMENSIONS
FCBGA−16
BA SUFFIX
PLASTIC 4X4 (mm) BGA FLIP CHIP PACKAGE
CASE 489−01
ISSUE O
LASER MARK FOR PIN 1
IDENTIFICATION IN
THIS AREA
−X−
D
M
−Y−
K
E
M
0.20
3X
e
4
3
2
FEDUCIAL FOR PIN A1
IDENTIFICATION IN THIS AREA
1
A
3
B
b
16 X
C
D
S
VIEW M−M
0.15
M
Z X Y
0.08
M
Z
5
0.15 Z
A
A2
A1
16 X
4
−Z−
0.10 Z
DETAIL K
ROTATED 90 _ CLOCKWISE
http://onsemi.com
11
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSION b IS MEASURED AT THE MAXIMUM
SOLDER BALL DIAMETER, PARALLEL TO DATUM
PLANE Z.
4. DATUM Z (SEATING PLANE) IS DEFINED BY THE
SPHERICAL CROWNS OF THE SOLDER BALLS.
5. PARALLELISM MEASUREMENT SHALL EXCLUDE
ANY EFFECT OF MARK ON TOP SURFACE OF
PACKAGE.
DIM
A
A1
A2
b
D
E
e
S
MILLIMETERS
MIN
MAX
1.40 MAX
0.25
0.35
1.20 REF
0.30
0.50
4.00 BSC
4.00 BSC
1.00 BSC
0.50 BSC
NBSG11
PACKAGE DIMENSIONS
16 PIN QFN
CASE 485G−01
ISSUE C
D
PIN 1
LOCATION
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM
MINIMUM SPACING BETWEEN LEAD TIP
AND FLAG
A
B
ÇÇ
ÇÇ
E
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
0.15 C
TOP VIEW
0.15 C
(A3)
0.10 C
A
16 X
0.08 C
SIDE VIEW
SEATING
PLANE
A1
C
SOLDERING FOOTPRINT*
D2
16X
0.575
0.022
e
L
5
NOTE 5
EXPOSED PAD
8
4
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.18
0.30
3.00 BSC
1.65
1.85
3.00 BSC
1.65
1.85
0.50 BSC
0.18 TYP
0.30
0.50
3.25
0.128
0.30
0.012
EXPOSED PAD
9
E2
16X
K
12
1
16
16X
1.50
0.059
3.25
0.128
13
b
0.10 C A B
0.05 C
e
BOTTOM VIEW
0.50
0.02
NOTE 3
0.30
0.012
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and solder
details, please download the ON Semiconductor Soldering a
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
12
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NBSG11/D