ONSEMI 74HC74DR2G

74HC74
Dual D Flip−Flop with Set
and Reset
High−Performance Silicon−Gate CMOS
The 74HC74 is identical in pinout to the LS74. The device inputs are
compatible with standard CMOS outputs; with pullup resistors, they
are compatible with LSTTL outputs.
This device consists of two D flip−flops with individual Set, Reset,
and Clock inputs. Information at a D−input is transferred to the
corresponding Q output on the next positive going edge of the clock
input. Both Q and Q outputs are available from each flip−flop. The Set
and Reset inputs are asynchronous.
MARKING
DIAGRAMS
14
SOIC−14
D SUFFIX
CASE 751A
14
Features
•
•
•
•
•
•
•
•
•
http://onsemi.com
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the JEDEC Standard No. 7A Requirements
ESD Performance: HBM > 2000 V; Machine Model > 200 V
Chip Complexity: 128 FETs or 32 Equivalent Gates
Pb−Free Packages are Available
1
HC74G
AWLYWW
1
14
14
1
TSSOP−14
DT SUFFIX
CASE 948G
1
HC
74
ALYW G
G
HC74
= Device Code
A
= Assembly Location
L, WL
= Wafer Lot
Y
= Year
W, WW = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2007
February, 2007 − Rev. 0
1
Publication Order Number:
74HC74/D
74HC74
PIN ASSIGNMENT
LOGIC DIAGRAM
RESET 1
1
14
VCC
RESET 1
DATA 1
2
13
RESET 2
CLOCK 1
3
12
DATA 2
SET 1
4
11
CLOCK 2
Q1
5
10
SET 2
Q1
6
9
Q2
GND
7
8
Q2
DATA 1
CLOCK 1
SET 1
RESET 2
DATA 2
FUNCTION TABLE
Inputs
Set Reset Clock Data
L
H
L
H
H
H
H
H
H
L
L
H
H
H
H
H
CLOCK 2
Outputs
X
X
X
L
H
X
X
X
H
L
X
X
X
Q
Q
SET 2
1
2
5
3
6
Q1
Q1
4
13
12
9
11
8
Q2
Q2
10
PIN 14 = VCC
PIN 7 = GND
H
L
L
H
H*
H*
H
L
L
H
No Change
No Change
No Change
*Both outputs will remain high as long as Set and Reset are low, but the output
states are unpredictable if Set and Reset go high simultaneously.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
– 0.5 to + 7.0
V
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
DC Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
Vout
DC Output Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
Iin
DC Input Current, per Pin
±20
mA
mA
Iout
DC Output Current, per Pin
±25
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
– 65 to + 150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(SOIC or TSSOP Package)
SOIC Package†
TSSOP Package†
_C
260
300
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress
ratings only. Functional operation above the Recommended Operating Conditions is not implied.
Extended exposure to stresses above the Recommended Operating Conditions may affect device
reliability.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: − 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
Min
Max
Unit
2.0
6.0
V
0
VCC
V
– 55
+ 125
_C
0
0
0
0
1000
600
500
400
ns
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figures 1, 2, 3)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
http://onsemi.com
2
74HC74
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
(V)
– 55 to
25_C
v 85_C
v 125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
Vin = VIH or VIL
VOL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
Vin = VIH or VIL
|Iout| v 20 mA
Maximum Low−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
V
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
2.0
20
80
mA
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book
(DL129/D).
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
VCC
(V)
– 55 to
25_C
v 85_C
v 125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
2.0
3.0
4.5
6.0
6.0
15
30
35
4.8
10
24
28
4.0
8.0
20
24
MHz
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q or Q
(Figures 1 and 4)
2.0
3.0
4.5
6.0
100
75
20
17
125
90
25
21
150
120
30
26
ns
tPLH,
tPHL
Maximum Propagation Delay, Set or Reset to Q or Q
(Figures 2 and 4)
2.0
3.0
4.5
6.0
105
80
21
18
130
95
26
22
160
130
32
27
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
2.0
3.0
4.5
6.0
75
30
15
13
95
40
19
16
110
55
22
19
ns
Maximum Input Capacitance
—
10
10
10
pF
Symbol
Cin
Parameter
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON
Semiconductor High−Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
32
Power Dissipation Capacitance (Per Flip−Flop)*
pF
* Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the
ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
3
74HC74
TIMING REQUIREMENTS (Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
(V)
– 55 to
25_C
v 85_C
v 125_C
Unit
tsu
Minimum Setup Time, Data to Clock
(Figure 3)
2.0
3.0
4.5
6.0
80
35
16
14
100
45
20
17
120
55
24
20
ns
th
Minimum Hold Time, Clock to Data
(Figure 3)
2.0
3.0
4.5
6.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
ns
trec
Minimum Recovery Time, Set or Reset Inactive to Clock
(Figure 2)
2.0
3.0
4.5
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
ns
tw
Minimum Pulse Width, Clock
(Figure 1)
2.0
3.0
4.5
6.0
60
25
12
10
75
30
15
13
90
40
18
15
ns
tw
Minimum Pulse Width, Set or Reset
(Figure 2)
2.0
3.0
4.5
6.0
60
25
12
10
75
30
15
13
90
40
18
15
ns
tr, tf
Maximum Input Rise and Fall Times
(Figures 1, 2, 3)
2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
ORDERING INFORMATION
Device
Package
74HC74D
SOIC−14
74HC74DG
SOIC−14
(Pb−Free)
74HC74DR2
SOIC−14
74HC74DR2G
SOIC−14
(Pb−Free)
74HC74DTR2
TSSOP−14*
74HC74DTR2G
TSSOP−14*
Shipping †
55 Units / Rail
2500 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
4
74HC74
SWITCHING WAVEFORMS
tf
CLOCK
tw
tr
VCC
90%
50%
10%
tw
SET OR
RESET
GND
Q or Q
tPLH
90%
50%
10%
50%
tPHL
tTLH
tPLH
50%
Q OR Q
tTHL
Figure 1.
CLOCK
VCC
GND
Figure 2.
TEST POINT
VALID
VCC
50%
tsu
trec
50%
CLOCK
DATA
GND
tPHL
Q OR Q
1/fmax
VCC
50%
th
50%
OUTPUT
DEVICE
UNDER
TEST
GND
VCC
C L*
GND
*Includes all probe and jig capacitance
Figure 3.
SET
Figure 4.
4, 10
2, 12
5, 9
DATA
Q
CLOCK
3, 11
6, 8
Q
1, 13
RESET
Figure 5. EXPANDED LOGIC DIAGRAM
http://onsemi.com
5
74HC74
PACKAGE DIMENSIONS
SOIC−14
CASE 751A−03
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.127
(0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
−A−
14
8
−B−
P 7 PL
0.25 (0.010)
M
7
1
G
−T−
D 14 PL
0.25 (0.010)
T B
S
A
DIM
A
B
C
D
F
G
J
K
M
P
R
J
M
K
M
F
R X 45 _
C
SEATING
PLANE
B
M
S
SOLDERING FOOTPRINT*
7X
7.04
14X
1.52
1
14X
0.58
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
6
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0_
7_
0.228 0.244
0.010 0.019
74HC74
PACKAGE DIMENSIONS
TSSOP−14
CASE 948G−01
ISSUE B
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
M
B
−U−
L
PIN 1
IDENT.
N
F
7
1
0.15 (0.006) T U
0.25 (0.010)
8
S
DETAIL E
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
A
−V−
K1
J J1
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.020 0.024
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
74HC74
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
74HC74/D