74HC74 Dual D Flip−Flop with Set and Reset High−Performance Silicon−Gate CMOS The 74HC74 is identical in pinout to the LS74. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two D flip−flops with individual Set, Reset, and Clock inputs. Information at a D−input is transferred to the corresponding Q output on the next positive going edge of the clock input. Both Q and Q outputs are available from each flip−flop. The Set and Reset inputs are asynchronous. MARKING DIAGRAMS 14 SOIC−14 D SUFFIX CASE 751A 14 Features • • • • • • • • • http://onsemi.com Output Drive Capability: 10 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 mA High Noise Immunity Characteristic of CMOS Devices In Compliance with the JEDEC Standard No. 7A Requirements ESD Performance: HBM > 2000 V; Machine Model > 200 V Chip Complexity: 128 FETs or 32 Equivalent Gates Pb−Free Packages are Available 1 HC74G AWLYWW 1 14 14 1 TSSOP−14 DT SUFFIX CASE 948G 1 HC 74 ALYW G G HC74 = Device Code A = Assembly Location L, WL = Wafer Lot Y = Year W, WW = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. © Semiconductor Components Industries, LLC, 2007 February, 2007 − Rev. 0 1 Publication Order Number: 74HC74/D 74HC74 PIN ASSIGNMENT LOGIC DIAGRAM RESET 1 1 14 VCC RESET 1 DATA 1 2 13 RESET 2 CLOCK 1 3 12 DATA 2 SET 1 4 11 CLOCK 2 Q1 5 10 SET 2 Q1 6 9 Q2 GND 7 8 Q2 DATA 1 CLOCK 1 SET 1 RESET 2 DATA 2 FUNCTION TABLE Inputs Set Reset Clock Data L H L H H H H H H L L H H H H H CLOCK 2 Outputs X X X L H X X X H L X X X Q Q SET 2 1 2 5 3 6 Q1 Q1 4 13 12 9 11 8 Q2 Q2 10 PIN 14 = VCC PIN 7 = GND H L L H H* H* H L L H No Change No Change No Change *Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously. ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Parameter Value Unit – 0.5 to + 7.0 V V VCC DC Supply Voltage (Referenced to GND) Vin DC Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V Iin DC Input Current, per Pin ±20 mA mA Iout DC Output Current, per Pin ±25 ICC DC Supply Current, VCC and GND Pins ±50 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package) SOIC Package† TSSOP Package† _C 260 300 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. †Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Parameter DC Supply Voltage (Referenced to GND) Min Max Unit 2.0 6.0 V 0 VCC V – 55 + 125 _C 0 0 0 0 1000 600 500 400 ns DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figures 1, 2, 3) VCC = 2.0 V VCC = 3.0 V VCC = 4.5 V VCC = 6.0 V http://onsemi.com 2 74HC74 DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) Guaranteed Limit Symbol Parameter Test Conditions VCC (V) – 55 to 25_C v 85_C v 125_C Unit VIH Minimum High−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 1.5 2.1 3.15 4.2 1.5 2.1 3.15 4.2 1.5 2.1 3.15 4.2 V VIL Maximum Low−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 V VOH Minimum High−Level Output Voltage Vin = VIH or VIL |Iout| v 20 mA 2.0 4.5 6.0 1.9 4.4 5.9 1.9 4.4 5.9 1.9 4.4 5.9 V 3.0 4.5 6.0 2.48 3.98 5.48 2.34 3.84 5.34 2.2 3.7 5.2 2.0 4.5 6.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 6.0 0.26 0.26 0.26 0.33 0.33 0.33 0.4 0.4 0.4 Vin = VIH or VIL VOL |Iout| v 2.4 mA |Iout| v 4.0 mA |Iout| v 5.2 mA Vin = VIH or VIL |Iout| v 20 mA Maximum Low−Level Output Voltage Vin = VIH or VIL |Iout| v 2.4 mA |Iout| v 4.0 mA |Iout| v 5.2 mA V Iin Maximum Input Leakage Current Vin = VCC or GND 6.0 ±0.1 ±1.0 ±1.0 mA ICC Maximum Quiescent Supply Current (per Package) Vin = VCC or GND Iout = 0 mA 6.0 2.0 20 80 mA NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns) Guaranteed Limit VCC (V) – 55 to 25_C v 85_C v 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4) 2.0 3.0 4.5 6.0 6.0 15 30 35 4.8 10 24 28 4.0 8.0 20 24 MHz tPLH, tPHL Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4) 2.0 3.0 4.5 6.0 100 75 20 17 125 90 25 21 150 120 30 26 ns tPLH, tPHL Maximum Propagation Delay, Set or Reset to Q or Q (Figures 2 and 4) 2.0 3.0 4.5 6.0 105 80 21 18 130 95 26 22 160 130 32 27 ns tTLH, tTHL Maximum Output Transition Time, Any Output (Figures 1 and 4) 2.0 3.0 4.5 6.0 75 30 15 13 95 40 19 16 110 55 22 19 ns Maximum Input Capacitance — 10 10 10 pF Symbol Cin Parameter NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). Typical @ 25°C, VCC = 5.0 V CPD 32 Power Dissipation Capacitance (Per Flip−Flop)* pF * Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). http://onsemi.com 3 74HC74 TIMING REQUIREMENTS (Input tr = tf = 6.0 ns) Guaranteed Limit Symbol Parameter VCC (V) – 55 to 25_C v 85_C v 125_C Unit tsu Minimum Setup Time, Data to Clock (Figure 3) 2.0 3.0 4.5 6.0 80 35 16 14 100 45 20 17 120 55 24 20 ns th Minimum Hold Time, Clock to Data (Figure 3) 2.0 3.0 4.5 6.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 ns trec Minimum Recovery Time, Set or Reset Inactive to Clock (Figure 2) 2.0 3.0 4.5 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 ns tw Minimum Pulse Width, Clock (Figure 1) 2.0 3.0 4.5 6.0 60 25 12 10 75 30 15 13 90 40 18 15 ns tw Minimum Pulse Width, Set or Reset (Figure 2) 2.0 3.0 4.5 6.0 60 25 12 10 75 30 15 13 90 40 18 15 ns tr, tf Maximum Input Rise and Fall Times (Figures 1, 2, 3) 2.0 3.0 4.5 6.0 1000 800 500 400 1000 800 500 400 1000 800 500 400 ns ORDERING INFORMATION Device Package 74HC74D SOIC−14 74HC74DG SOIC−14 (Pb−Free) 74HC74DR2 SOIC−14 74HC74DR2G SOIC−14 (Pb−Free) 74HC74DTR2 TSSOP−14* 74HC74DTR2G TSSOP−14* Shipping † 55 Units / Rail 2500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 4 74HC74 SWITCHING WAVEFORMS tf CLOCK tw tr VCC 90% 50% 10% tw SET OR RESET GND Q or Q tPLH 90% 50% 10% 50% tPHL tTLH tPLH 50% Q OR Q tTHL Figure 1. CLOCK VCC GND Figure 2. TEST POINT VALID VCC 50% tsu trec 50% CLOCK DATA GND tPHL Q OR Q 1/fmax VCC 50% th 50% OUTPUT DEVICE UNDER TEST GND VCC C L* GND *Includes all probe and jig capacitance Figure 3. SET Figure 4. 4, 10 2, 12 5, 9 DATA Q CLOCK 3, 11 6, 8 Q 1, 13 RESET Figure 5. EXPANDED LOGIC DIAGRAM http://onsemi.com 5 74HC74 PACKAGE DIMENSIONS SOIC−14 CASE 751A−03 ISSUE H NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 14 8 −B− P 7 PL 0.25 (0.010) M 7 1 G −T− D 14 PL 0.25 (0.010) T B S A DIM A B C D F G J K M P R J M K M F R X 45 _ C SEATING PLANE B M S SOLDERING FOOTPRINT* 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 6 MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 74HC74 PACKAGE DIMENSIONS TSSOP−14 CASE 948G−01 ISSUE B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U 0.25 (0.010) 8 S DETAIL E ÇÇÇ ÉÉÉ ÇÇÇ ÉÉÉ ÇÇÇ K A −V− K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 7 MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ 74HC74 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative 74HC74/D