NB7N017M 3.3V SiGe 8−Bit Dual Modulus Programmable Divider/Prescaler with CML Outputs The NB7N017M is a high speed 8–bit dual modulus programmable divider/prescaler with 16 mA CML outputs capable of switching at input frequencies greater than 3.5 GHz. The CML output structure contains internal 50 W source termination resistor to VCC. The device generates 400 mV output amplitude with 50 W receiver resistor to VCC. This I/O structure enables easy implementation of the NB7N017M in 50 W systems. The differential inputs contain 50 W termination resistors to VT pads and all differential inputs accept RSECL, ECL, LVDS, LVCMOS, LVTTL, and CML. Internally, the NB7N017M uses a > 3.5 GHz 8–bit programmable down counter. A select pin, SEL, is used to select between two words, Pa[0:7] and Pb[0:7], that are stored in REGa and REGb respectively. Two parallel load pins, PLa and PLb, are used to load the level triggered programming registers, REGa and REGb, respectively. A differential clock enable, CE, pin is available. The NB7N017M offers a differential output, TC. Terminal count output, TC, goes high for one clock cycle when the counter has reached the all zeros state. To reduce output phase noise, TC is retimed with the rising edge triggered latches. Features • • • • • • • • • • • • • • • • • Maximum Input Clock Frequency > 3.5 GHz Typical Differential CLK Clock Input Differential CE Clock Enable Input Differential SEL Word Select Input 50 W Internal Input and Output Termination Resistors Differential TC Terminal Count Output All Outputs 16 mA CML with 50 W Internal Source Termination to VCC All Single–Ended Control Pins CMOS and PECL/NECL Compatible Counter Programmed Using One of Two Single−Ended Words, Pa[0:7] and Pb[0:7], Stored in REGa and REGb REGa and REGb Implemented with Level Triggered Latch Compatible with Existing 3.3 V LVEP, EP, and SG Devices Ability to Program the Divider without Disturbing Current Settings Positive CML Output Operating Range: VCC = 3.0 V to 3.465 V with VEE = 0 V Negative CML Output Operating Range: VCC = 0 V with VEE = –3.0 V to –3.465 V VBB Reference Voltage Output CML Output Level: 400 mV Peak−Peak Output with 50 W Receiver Resistor to VCC Pb−Free Packages are Available* © Semiconductor Components Industries, LLC, 2006 February, 2006 − Rev. 2 1 http://onsemi.com 1 52 QFN−52 MN SUFFIX CASE 485M MARKING DIAGRAM* 52 1 NB7N 017M AWLYYWWG A WL YY WW G = Assembly Site = Wafer Lot = Year = Work Week = Pb−Free Package *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 18 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Publication Order Number: NB7N017M/D VTSEL SEL SEL VTSEL VTCLK CLK CLK VTCLK VBB VTCE CE CE VTCE 52 51 50 49 48 47 46 45 44 43 42 41 40 NB7N017M Exposed Pad (EP) VCC 1 39 VEE PLa 2 38 PLb Pa0 3 37 Pb0 Pa1 4 36 Pb1 Pa2 5 35 Pb2 VCC 6 34 VCC Pa3 7 33 Pb3 VEE 8 32 VEE Pa4 9 31 Pb4 Pa5 10 30 Pb5 Pa6 11 29 Pb6 Pa7 12 28 Pb7 NC 13 27 NC 24 25 26 NC VEE VEE 20 VCC 23 19 NC VCC 18 NC 22 17 VCC TC 16 MR 21 15 VEE TC 14 VEE NB7N017M Figure 1. Pinout (Top View) http://onsemi.com 2 NB7N017M Table 1. PIN DESCRIPTION Pin Name I/O Default State Single/Differential (Notes 1 and 2) Description CLK ECL, CML, LVCMOS, LVDS, LVTTL Input − Differential Clock CE ECL, CML, LVCMOS, LVDS, LVTTL Input − Differential Clock Enable MR CMOS, ECL Input Low Single SEL ECL, CML, LVCMOS, LVDS, LVTTL Input − Differential CMOS, ECL Input Low Single CML Output − Differential CMOS, ECL Input High Single Power − − Positive Supply Negative Supply PLa, PLb TC Pa[0:7], Pb[0:7] VCC VEE Asynchronous Master Reset: Counter set to 0000 0000 to reload at next CLK pulse, REGa and REGb = 1111 1111 and TC = 1. Divide Select Parallel Load Counter Latch from Pa[0:7], Pb[0:7] (Level Triggered) Terminal Count, 16 mA CML output with 50 W Source Termination to VCC (Note 5) Counter Program Pins. CMOS and PECL/NECL compatible Pa7 = MSB, Pb7 = MSB Power − − Termination − Differential VBB Output − − CMOS/ECL Reference Voltage Output NC N/A − − No Connect (Note 4) EP − − − Exposed Pad (Note 3) VTCLK, VTCLK, VTSEL, VTSEL VTCE, VTCE ÑÑÑÑÑÑ ÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑ 50 W Internal Input Termination Resistor (Note 6) 1. All high speed inputs and outputs are differential to improve performance. 2. All single−ended inputs are CMOS and NECL/ECL compatible. 3. All VCC and VEE pins must be externally connected to external power supply voltage to guarantee proper device operation. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a heat−sinking conduit. Exposed pad is bonded to the lowest voltage potential, VEE. 4. The NC pins are electrically connected to the die and must be left open. 5. CML outputs require 50 W receiver termination resistor to VCC for proper operation. 6. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device will be susceptible to self−oscillation. http://onsemi.com 3 NB7N017M Table 2. CE Truth Table Table 3. SEL Truth Table CE Clock Status LOW HIGH SEL Clock Disabled Clock Enabled LOW HIGH Active Register REGa REGb Table 4. Register Programming Values for Various Divide Ratios Pa7/Pb7 Pa6/Pb6 Pa5/Pb5 Pa4/Pb4 Pa3/Pb3 Pa2/Pb2 Pa1/Pb1 Pa0/Pb0 Divide By 0 0 0 0 0 0 0 0 undefined 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 1 1 4 − − − − − − − − − − − − − − − − − − 1 1 1 1 1 1 0 1 254 1 1 1 1 1 1 1 0 255 1 1 1 1 1 1 1 1 256 Table 5. Function Table MR Pla PLb SEL CE CLK Function H X X X X X Master Reset (Counter programmed to 0000 0000, REGa and REGb programmed to 1111 1111 and TC to 1) L H L X X X REGa is transparent to Pa[0:7] L L H X X X REGb is transparent Pb[0:7] L L L L H Z Count; At TC pulse, load counter from REGa L L L H H Z Count; At TC pulse, load counter from REGb L X X X L X Hold X − Don’t Care H − HIGH L − LOW Z − Rising Edge http://onsemi.com 4 NB7N017M VCC R1 R2 QINTERNAL QINTERNAL CLK CLK RT = 50 W VTCLK RT = 50 W VTCLK VEE Figure 2. Input Structure VCC RT = 50 W RT = 50 W Q Q DINTERNAL DINTERNAL 16 mA VEE Figure 3. Output Structure http://onsemi.com 5 NB7N017M CLK CLK CE CE CLK_INT CLK_INT GENERATOR TC_INT Counter_State [7:0] 8−BIT COUNTER DFF MR TC GENERATOR MUX_OUT[7:0] SEL SEL MR TCLD MUX Pa_INT[7:0] PLa CLK_INT MR Pb_INT[7:0] 8−BIT REGa 8−BIT REGb Pa[7:0] PLb Pb[7:0] Figure 4. Block Diagram Table 6. Interface Options CLK INPUT interfacing options CLK INPUT INTERFACING OPTIONS CML Connect VTCLK and VTCLK to VCC LVDS Connect VTCLK and VTCLK together AC−COUPLED Bias VTCLK and VTCLK Inputs within (VIHCMR) Common Mode Range RSECL, PECL, NECL Standard ECL Termination Techniques or connect VTCLK and VTCLK to VTT LVTTL, LVCMOS An Entered Voltage Should be Applied to the unused Complementary Differential Input. Nominal Voltage is 1.5 V for LVTTL and VCC/2 for LVCMOS Inputs. Table 7. ATTRIBUTES Characteristic Value Internal Input Pulldown Resistor (MR, PLa, PLb) 75 k to VEE Internal Input Pullup Resistor (Pa[0:7], Pb[0:7]) 75 k to VCC ESD Protection Human Body Model Machine Model Charged Device Model Moisture Sensitivity (Note 7) QFN−52 Flammability Rating Oxygen Index: 28 to 34 >500 V >10 V >2 kV Pb Pkg Pb−Free Pkg Level 2 Level 2 UL 94 V−0 @ 0.125 in Transistor Count 1914 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 7. For additional information, see Application Note AND8003/D. http://onsemi.com 6 TC TC NB7N017M Table 8. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Units 3.6 V -3.6 V 3.6 -3.6 V V VCC Positive Power Supply VEE = 0 V VEE Negative Power Supply VCC = 0 V VI Positive Input Negative Input VEE = 0 V VCC = 0 V VINPP Differential Input Voltage 2.8 V V Iin Input Current through RT (50 W Resistor) Continuous Surge 25 50 mA Iout Output Current Continuous Surge 25 50 mA mA IBB VBB Sink/Source $0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) (Note 8) 0 lfpm 500 lfpm 52 QFN 52 QFN 25 − 32 20 − 27 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) 2S2P (Note 8) 52 QFN 4 − 15 °C/W Tsol Wave Solder 265 265 °C |CLK − CLK| VI ≤ VCC VI ≥ VEE VCC − VEE w 2.8 V Pb Pb−Free Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 8. JEDEC standard multilayer board − 2S2P (2 signal, 2 power). http://onsemi.com 7 NB7N017M Table 9. DC CHARACTERISTICS, POSITIVE CML OUTPUT VCC = 3.0 V to 3.465 V; VEE = 0 V (Note 11) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit ICC Positive Power Supply Current 170 200 230 170 200 230 170 200 230 mA VOH Output HIGH Voltage (Note 12) VCC −40 VCC −10 VCC VCC −40 VCC −10 VCC VCC −40 VCC −10 VCC mV VOL Output LOW Voltage (Note 12) VCC −400 VCC −330 VCC −400 VCC −330 VCC −400 VCC −330 mV Symbol Characteristic DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 19, 21) Vth Input Threshold Reference Voltage Range (Note 9) VEE +1125 VCC −75 VEE +1125 VCC −75 VEE +1125 VCC −75 mV VIH Single−Ended Input HIGH Voltage Vth +75 VCC Vth +75 VCC Vth +75 VCC mV VIL Single−Ended Input LOW Voltage VEE Vth −75 VEE Vth −75 VEE Vth −75 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 20, 22) VIHD Differential Input HIGH Voltage VEE +1200 VCC VEE +1200 VCC VEE +1200 VCC mV VILD Differential Input LOW Voltage VEE VCC −75 VEE VCC −75 VEE VCC −75 mV VCMR Input Common Mode Range (Differential Cross−Point Voltage) (Note 10) VEE +1200 VCC −50 VEE +1200 VCC −50 VEE +1200 VCC −50 mV VID Differential Input Voltage VEE +100 VCC VEE +100 VCC VEE +100 VCC mV VBB Output Voltage Reference @ −100 mA 1840 1970 2100 1840 1960 2100 1820 1970 2100 mV RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W RTOUT Internal Output Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current CLK, CE, SEL MR, PLa, PLb Pa[0:7], Pb[0:7] 0 0 −50 7 30 −10 15 60 0 0 0 −50 7 30 −10 15 60 0 0 0 −50 7 30 −10 15 60 0 CLK, CE, SEL MR, PLa, PLb Pa[0:7], Pb[0:7] −0.5 0 −50 20 −20 0.5 60 0 −0.5 0 −50 20 −20 0.5 60 0 −0.5 0 −50 20 −20 0.5 60 0 IIL mA mA Input LOW Current NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 9. Vth is applied to the complementary input when operating in single−ended mode. 10. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC. The VCMR range is referenced to the most positive side of the differential input signal. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.165 V. 12. All loading with 50 W to VCC. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 8 NB7N017M Table 10. DC CHARACTERISTICS, NEGATIVE CML OUTPUT VCC = 0 V; VEE = −3.465 V to −3.0 V (Note 16) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit ICC Positive Power Supply Current 170 200 230 170 200 230 170 200 230 mA VOH Output HIGH Voltage (Note 17) VCC −40 VCC −10 VCC VCC −40 VCC −10 VCC VCC −40 VCC −10 VCC mV VOL Output LOW Voltage (Note 17) VCC −400 VCC −330 VCC −400 VCC −330 VCC −400 VCC −330 mV DIFFERENTIAL INPUT DRIVEN SINGLE−ENDED (Figures 19, 21) Vth Input Threshold Reference Voltage Range (Note 14) VEE +1125 VCC −75 VEE +1125 VCC −75 VEE +1125 VCC −75 mV VIH Single−Ended Input HIGH Voltage Vth +75 VCC Vth +75 VCC Vth +75 VCC mV VIL Single−Ended Input LOW Voltage VEE Vth −75 VEE Vth −75 VEE Vth −75 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 20, 22) VIHD Differential Input HIGH Voltage VEE +1200 VCC VEE +1200 VCC VEE +1200 VCC mV VILD Differential Input LOW Voltage VEE VCC −75 VEE VCC −75 VEE VCC −75 mV VCMR Input Common Mode Range (Differential Cross−Point Voltage) (Note 15) VEE +1200 VCC −50 VEE +1200 VCC −50 VEE +1200 VCC −50 mV VID Differential Input Voltage VEE +100 VCC VEE +100 VCC VEE +100 VCC mV VBB Output Voltage Reference @ −100 mA −1460 −1330 −1200 −1460 −1330 −1200 −1460 −1330 −1200 mV RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W RTOUT Internal Output Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current CLK, CE, SEL MR, PLa, PLb Pa[0:7], Pb[0:7] 0 0 −50 7 30 −10 15 60 0 0 0 −50 7 30 −10 15 60 0 0 0 −50 7 30 −10 15 60 0 CLK, CE, SEL MR, PLa, PLb Pa[0:7], Pb[0:7] −0.5 0 −50 20 −20 0.5 60 0 −0.5 0 −50 20 −20 0.5 60 0 −0.5 0 −50 20 −20 0.5 60 0 IIL mA mA Input LOW Current NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 14. Vth is applied to the complementary input when operating in single−ended mode. 15. VCMR minimum varies 1:1 with VEE, VCMR maximum varies 1:1 with VCC. The VCMR range is referenced to the most positive side of the differential input signal. 16. Input and output parameters vary 1:1 with VCC. 17. All loading with 50 W to VCC. 18. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 9 NB7N017M Table 11. AC CHARACTERISTICS VCC = 0 V; VEE = −3.465 V to −3.0 V or VCC = 3.0 V to 3.465 V; VEE = 0 V (Note 19) −40°C Symbol Characteristic Min Typ VOUTPP Output Voltage Amplitude @ B 2 Mode fin = 3.5 GHz (See Figure 5) 300 400 tPLH, tPHL Propagation Delay to Output Differential CLK to TC MR to TC tJITTER RMS Random Clock Jitter fin = 3.5 GHz (See Figure 5) VINPP Input Voltage Swing/Sensitivity (Differential Configuration) (Note 20) 100 tr tf Output Rise/Fall Times (20% − 80%) 25 45 ts Setup Time (Figure 23) Pa[7:0] to PLa Pb[7:0] to PLb CE to CLK SEL to CLK PLa to CLK PLb to CLK Pa[7:0] to CLK Pb[7:0] to CLK 3750 4500 400 300 2500 3250 4750 3000 tH Hold Time (Figure 23) PLa to Pa[7:0] PLb to Pb[7:0] CLK to CE CLK to SEL CLK to PLa CLK to PLb CLK to PLb[7:0] CLK to PLb[7:0] −1500 −1250 450 0 −1750 −2250 −2250 −2000 tSKEW Minimum Pulse Width tRR Reset Recovery Max Min Typ 300 400 85°C Max Min Typ 300 400 Max Unit mV ps 435 100 555 500 455 100 575 500 2.5 Device−to−Device (Note 21) tPW 25°C 595 500 3.0 2500 100 65 25 45 2500 2000 30 120 2000 2750 3500 2500 3750 4500 400 300 2500 3250 4750 3000 −2700 −1900 40 −110 −1900 −2700 −3200 −2500 −1500 −1250 450 0 −1750 −2250 −2250 −2000 40 475 100 3.0 ps 2500 mV 65 ps 2500 100 65 25 45 2500 2000 30 120 2000 2750 3500 2500 3750 4500 400 300 2500 3250 4750 3000 2500 2000 30 120 2000 2750 3500 2500 ps −2700 −1900 40 −110 −1900 −2700 −3200 −2500 −1500 −1250 450 0 −1750 −2250 −2250 −2000 −2700 −1900 40 −110 −1900 −2700 −3200 −2500 ps 75 40 75 40 75 ps MR 250 85 250 85 250 85 ps MR to CLK/CLK 3000 2500 3000 2500 3000 2500 ps 400 4 VOUTPP 300 3 200 2 100 1 RMS Jitter 0 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE (mV) NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 19. Measured using a 400 mV source, 50% duty cycle clock source at fin = 1 GHz unless stated otherwise. All loading with 50 W to VCC. Input edge rates 40 ps (20% − 80%). 20. VINPP (MAX) cannot exceed VCC − VEE. 21. Device−to−Device skew for identical transitions at identical VCC levels. 0 0 0.5 1 1.5 2 2.5 3 3.5 4 INPUT FREQUENCY (MHz) Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) @ Ambient Temperature (Typical) http://onsemi.com 10 NB7N017M Application Information minimum input swing of 100 mV and the maximum input swing of 450 mV. Within these conditions, the input voltage can range from VCC to 1.2 V. Examples interfaces are illustrated below in a 50 W environment (Z = 50 W). All NB7N017M inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are VCC 50 W VCC 50 W Q CLK Z 7N017M VCC VTCLK VCC VTCLK Z Q 50 W 7N017M 50 W CLK VEE VEE Figure 6. CML to CML Interface VCC VCC 50 W PECL Driver VBIAS* VBIAS* 50 W Recommended RT Values VCC RT 5.0 V 290 W 2.5 V VTCLK VTCLK 50 W 7N017M 50 W Z RT 3.3 V 150 W CLK Z VEE 80 W CLK RT VEE VEE Figure 7. PECL to CML Receiver Interface *VBIAS is within VCMR Range. VCC LVDS Driver VCC CLK Z VTCLK VTCLK 50 W 50 W Z CLK VEE VEE Figure 8. LVDS to CML Receiver Interface http://onsemi.com 11 7N017M NB7N017M VCC VCC CLK Z 50 W LVTTL/ LVCMOS Driver No Connect VTCLK 7N017M VTCLK No Connect 50 W VREF Recommended VREF Values CLK VREF VEE LVCMOS VCC * VEE 2 LVTTL 1.5 V VCC Figure 9. LVCMOS/LVTTL to CML Receiver Interface Table 12. OPERATION TABLE MR Pa PLa Pb PLb SEL CE CLK CLK_INT TC_INT TC 1 XXXXXXXX x XXXXXXXX X X X X X X X 0 00000101 H 00000100 H X H L H H H 0 00000101 H 00000100 H X H L H X X 0 XXXXXXXX L XXXXXXXX L L H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L L H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X X − Don’t Care H − HIGH L − LOW http://onsemi.com 12 NB7N017M Table 12. OPERATION TABLE MR Pa PLa Pb PLb SEL CE CLK CLK_INT TC_INT TC 0 XXXXXXXX L XXXXXXXX L H H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L H H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X L H H X X 0 XXXXXXXX L XXXXXXXX L X L L H X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X L H H X X 0 XXXXXXXX L XXXXXXXX L X H L H X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X L L L X X 0 00000010 H XXXXXXXX L X H H H X X 0 XXXXXXXX L 00000001 H X H L L X X 0 XXXXXXXX L XXXXXXXX L H H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L L H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L L H L L X X 0 XXXXXXXX L XXXXXXXX L L H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X 0 XXXXXXXX L XXXXXXXX L L H L L X X 0 XXXXXXXX L XXXXXXXX L L H H H X X 0 XXXXXXXX L XXXXXXXX L X H L L X X 0 XXXXXXXX L XXXXXXXX L X H H H X X X − Don’t Care H − HIGH L − LOW http://onsemi.com 13 NB7N017M MR Pa[7:0] 05 XX 02 XX PLa Pa_INT[7:0] Pb[7:0] 05 04 02 XX 01 XX PLb Pb_INT[7:0] 04 SEL CE CLK CLK_INT TC_INT TC Figure 10. Device Timing Diagram for Table 12 MR CLK CE CLK_INT Figure 11. Timing Diagram for CE Input http://onsemi.com 14 01 NB7N017M MR delay CLK PLa Pa[7:0] 0B d=12 d=12 d=12 TC[7:0] Figure 12. Timing Diagram for PLa / PLb Inputs (SEL is Low) MR delay CLK PLa (hex) Pa[7:0] 0B d=256 d=12 d=256 d=12 TC[7:0] Figure 13. Timing Diagram for PLa / PLb Inputs (Before Critical Rising Edge of CLK) (SEL is Low) MR delay CLK PLa (hex) Pa[7:0] 0B d=256 d=256 d=256 d=256 d=12 TC[7:0] Figure 14. Timing Diagram for PLa / PLb Inputs (After Critical Rising Edge of CLK) (SEL is Low) http://onsemi.com 15 NB7N017M MR delay CLK SEL Pa[7:0] Pb[7:0] PLa PLb 03 02 d=4 d=4 d=4 d=3 d=3 TC[7:0] Figure 15. Timing Diagram for SEL Input (Before Critical Rising Edge of CLK) MR delay CLK SEL Pa[7:0] Pb[7:0] PLa PLb 03 02 d=4 d=4 d=4 d=4 d=3 TC[7:0] Figure 16. Timing Diagram for SEL Input (After Critical Rising Edge of CLK) MR CLK Pa[7:0] PLa Pa_INT[7:0] 01 02 255 03 04 2 05 06 5 6 07 08 7 Pb/PLb have the same functionality as Pa/PLa Pb[7:0] PLb Pb_INT[7:0] 103 201 255 255 201 10 151 27 151 27 43 176 43 MUX_OUT is the output of the internal MUX SEL MUX_INT[7:0] 255 2 5 151 27 Figure 17. Timing Diagram Relating PLa, PLb, Pa(0:7), Pb(0:7) http://onsemi.com 16 43 NB7N017M CLK VINPP = VIH(CLK) − VIL(CLK) CLK TC VOUTPP = VOH(TC) − VOL(TC) TC tPHL tPLH Figure 18. AC Reference Measurement Vth D D D D Vth Figure 19. Differential Input Driven Single−Ended VCC Vthmax Figure 20. Differential Inputs Driven Differentially VCC VCMmax VIHmax VILmax Vth Vthmin GND VIH Vth VIL VCMR VIHmin VILmin VCMmax GND Figure 21. Vth Diagram VIHDmax VILDmax VID = VIHD − VILD VIHDtyp VILDtyp VIHDmin VILDmin Figure 22. VCMR Diagram http://onsemi.com 17 NB7N017M CLK Setup Time + − ts Hold Time − + th Figure 23. Setup and Hold Time VCC NB7N017M 50 W VCC 50 W 50 W Receiver Device 50 W Q D Q D Figure 24. Typical Termination for 16 mA Output Drive and Device Evaluation ORDERING INFORMATION Package Shipping† QFN−52 260 Units / Tray NB7N017MMNG QFN−52 (Pb−Free) 260 Units / Tray NB7N017MMNR2 QFN−52 2000 / Tape & Reel QFN−52 (Pb−Free) 2000 / Tape & Reel Device NB7N017MMN NB7N017MMNR2G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 18 NB7N017M PACKAGE DIMENSIONS 52 PIN QFN 8x8 CASE 485M−01 ISSUE A D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. B E DIM A A1 A2 A3 b D D2 E E2 e K L 2X 0.15 C 2X 0.15 C A2 0.10 C A 0.08 C A3 A1 MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.60 0.80 0.20 REF 0.18 0.30 8.00 BSC 6.50 6.80 8.00 BSC 6.50 6.80 0.50 BSC 0.20 −−− 0.30 0.50 REF SEATING PLANE C D2 14 26 27 13 52 X L E2 39 1 52 X K 52 40 e 52 X b NOTE 3 0.10 C A B 0.05 C ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 19 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. NB7N017M/D