74HCT08 Quad 2-Input AND Gate With LSTTL−Compatible Inputs High−Performance Silicon−Gate CMOS The 74HCT08 is identical in pinout to the LS08. The device has TTL−compatible inputs. http://onsemi.com Features • • • • • • • • • • Output Drive Capability: 10 LSTTL Loads TTL/NMOS−Compatible Input Levels Outputs Directly Interface to CMOS, NMOS and TTL Operating Voltage Range: 4.5 to 5.5 V Low Input Current: 1.0 mA High Noise Immunity Characteristic of CMOS Devices In Compliance With the JEDEC Standard No. 7A Requirements ESD Performance: HBM > 2000 V; Machine Model > 200 V Chip Complexity: 24 FETs or 6 Equivalent Gates These are Pb−Free Devices B1 A2 B2 A3 B3 A4 B4 14 SOIC−14 D SUFFIX CASE 751A 14 1 HCT08G AWLYWW 1 14 HCT 08 ALYW G G TSSOP−14 DT SUFFIX CASE 948G 14 1 LOGIC DIAGRAM A1 MARKING DIAGRAMS 1 1 3 2 Y1 HCT08 = Device Code A = Assembly Location WL or L = Wafer Lot Y = Year WW or W = Work Week G or G = Pb−Free Package 4 6 5 Y2 Y = AB 9 8 10 (Note: Microdot may be in either location) Y3 12 11 13 Y4 FUNCTION TABLE Inputs PIN 14 = VCC PIN 7 = GND Pinout: 14−Lead Packages (Top View) VCC B4 A4 Y4 B3 A3 Y3 14 13 12 11 10 9 8 Output A B Y L L H H L H L H L L L H ORDERING INFORMATION 1 2 3 4 5 6 7 A1 B1 Y1 A2 B2 Y2 GND © Semiconductor Components Industries, LLC, 2009 May, 2009 − Rev. 2 See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. 1 Publication Order Number: 74HCT08/D 74HCT08 ORDERING INFORMATION Device Shipping† Package 74HCT08DR2G SOIC−14 (Pb−Free) 74HCT08DR2GH SOIC−14 (Halide−Free) 74HCT08DTR2G TSSOP−14* 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Parameter Value Unit VCC DC Supply Voltage (Referenced to GND) – 0.5 to + 7.0 V Vin DC Input Voltage (Referenced to GND) – 0.5 to + 7.0 V Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V Iin DC Input Current, per Pin ±20 mA Iout DC Output Current, per Pin ±25 mA ICC DC Supply Current, VCC and GND Pins ±50 mA PD Power Dissipation in Still Air, 500 450 mW Tstg Storage Temperature – 65 to + 150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package SOIC Package† TSSOP Package† This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. _C 260 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. †Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: − 6.1 mW/_C from 65_ to 125_C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). RECOMMENDED OPERATING CONDITIONS Symbol Parameter Min Max Unit VCC DC Supply Voltage (Referenced to GND) 4.5 5.5 V Vin DC Input Voltage (Referenced to GND) 0 5.5 V Vout DC Output Voltage (Referenced to GND) 0 VCC V −55 +125 _C 0 0 0 1000 500 400 ns TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 1) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V http://onsemi.com 2 74HCT08 DC CHARACTERISTICS (Voltages Referenced to GND) Condition Guaranteed Limit VCC (V) −55 to 25°C ≤85°C ≤125°C Unit Symbol Parameter VIH Minimum High−Level Input Voltage Vout = 0.1V |Iout| ≤ 20mA 4.5 5.5 2.0 2.0 2.0 2.0 2.0 2.0 V VIL Maximum Low−Level Input Voltage Vout = VCC − 0.1V |Iout| ≤ 20mA 4.5 5.5 0.8 0.8 0.8 0.8 0.8 0.8 V VOH Minimum High−Level Output Voltage Vin = VIL |Iout| ≤ 20mA 4.5 5.5 4.4 5.4 4.4 5.4 4.4 5.4 V 4.5 3.98 3.84 3.70 VOL Maximum Low−Level Output Voltage 4.5 5.5 0.1 0.1 0.1 0.1 0.1 0.1 Vin = VIL |Iout| ≤ 4.0mA Vin = VIH |Iout| ≤ 20mA Vin = VIH |Iout| ≤ 4.0mA V 4.5 0.26 0.33 0.40 Iin Maximum Input Leakage Current Vin = VCC or GND 5.5 ±0.1 ±1.0 ±1.0 mA ICC Maximum Quiescent Supply Current (per Package) Vin = VCC or GND Iout = 0mA 5.5 2.0 20 40 mA DICC Additional Quiescent Supply Current Vin = 2.4V, Any One Input Vin = VCC or GND, Other Inputs Iout = 0mA 5.5 ≥ −55°C 25 to 125°C 2.9 2.4 mA 1. Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). 2. Total Supply Current = ICC + ΣDICC. AC CHARACTERISTICS (CL = 50pF, Input tr = tf = 6ns) Symbol Guaranteed Limit −55 to 25°C ≤85°C ≤125°C Unit tPLH, tPHL Maximum Propagation Delay, Input A or B to Output Y (Figures 1 and 2) 4.5 15 19 22 ns tTLH, tTHL Maximum Output Transition Time, Any Output (Figures 1 and 2) 4.5 15 19 22 ns 10 10 10 pF Cin Parameter VCC (V) Maximum Input Capacitance NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D). Typical @ 25°C, VCC = 5.0 V, VEE = 0 V CPD 20 Power Dissipation Capacitance (Per Buffer)* * Used to determine the no−load dynamic power consumption: PD = CPD VCC ON Semiconductor High−Speed CMOS Data Book (DL129/D). 2f http://onsemi.com 3 pF + ICC VCC . For load considerations, see Chapter 2 of the 74HCT08 tr tf VCC 90% INPUT A OR B 50% 10% GND tPLH tPHL 90% 50% 10% OUTPUT Y tTLH tTHL Figure 1. Switching Waveforms TEST POINT OUTPUT DEVICE UNDER TEST CL* *Includes all probe and jig capacitance Figure 2. Test Circuit A Y B Figure 3. Expanded Logic Diagram (1/4 of the Device) http://onsemi.com 4 74HCT08 PACKAGE DIMENSIONS SOIC−14 CASE 751A−03 ISSUE H NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 14 8 −B− P 7 PL 0.25 (0.010) M 7 1 G −T− 0.25 (0.010) M T B S A DIM A B C D F G J K M P R J M K D 14 PL F R X 45 _ C SEATING PLANE B M S SOLDERING FOOTPRINT* 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 5 MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 74HCT08 PACKAGE DIMENSIONS TSSOP−14 CASE 948G−01 ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S DETAIL E ÇÇÇ ÇÇÇ ÉÉÉ ÇÇÇ ÉÉÉ K A −V− K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 6 MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ 74HCT08 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative 74HCT08/D