FUJITSU SEMICONDUCTOR DATA SHEET DS04-27700-3E ASSP For Power Management Applications (Secondary battery) Lithium Ion Battery Charger DC/DC Converter IC (High Precision with Constant-current Function) MB3813A/MB3833A/MB3843 ■ DESCRIPTION The FUJITSU MB3813A/33A/43 are pulse width modulation (PWM) DC/DC converter ICs with independent output voltage and current setting capability. The use of on-chip output setting resistance enables high precision output voltage control. Also, an output voltage switching feature for use with either graphite-electrode or coke-electrode lithium-ion batteries makes this IC ideal for internal battery chargers in notebook personal computers and similar applications. Cell count Output voltage Part number 3-cell 12.6 V/12.3 V MB3813A 2-cell 8.4 V/8.2 V MB3833A 1-cell 4.2 V/4.1 V MB3843 ■ FEATURES • • • • • Output setting resistance is on-chip for high precision output voltage: ±1.0% SEL pin enables output voltage selection High precision reference voltage source: 2.5 V ± 1.0% High frequency operating capability: max. 500 kHz On-chip current detector amplifier with wide in-phase input voltage range: 0 V to VCC (Continued) ■ PACKAGE 16-pin plastic SSOP (FPT-16P-M05) MB3813A/MB3833A/MB3843 (Continued) • On-chip standby function • On-chip input voltage detector circuit • On-chip soft start control circuit • On-chip output overshoot protection circuit for rapid load changes • On-chip totem-pole output circuits for P-ch. MOS FET devices 2 MB3813A/MB3833A/MB3843 ■ PIN ASSIGNMENT (Top view) Vin1 : 1 16 : GND IN1 : 2 15 : OUT IN2 : 3 14 : VCC -IN2 : 4 13 : CT -IN1 : 5 12 : RT FB : 6 11 : CS CTL : 7 10 : SEL Vin2 : 8 9 : VREF (FPT-16P-M05) 3 MB3813A/MB3833A/MB3843 ■ PIN DESCRIPTION 4 Pin no. Symbol I/O Descriptions 1 Vin1 I Input voltage detector block (VLDET) input pin 2 IN1 I Current detector amplifier (Current Amp.) input pin 3 IN2 I Output voltage feedback input pin 4 -IN2 I Error amplifier (Error Amp.2) inverted input pin 5 -IN1 I Error amplifier (Error Amp.1) inverted input pin 6 FB O Error amplifier (Error Amp.1, 2 common) output pin 7 CTL I Power supply control pin An “L” level signal input to the CTL pin sets the IC in standby mode. 8 Vin2 I DC/DC converter charging current setting input pin 9 VREF O Reference voltage output pin 10 SEL I Output voltage switching pin “L” level output voltage: MB3813A 12.6 V MB3833A 8.4 V MB3843 4.2 V “H” level output voltage: MB3813A 12.3 V MB3833A 8.2 V MB3843 4.1 V 11 CS — Soft start capacitor connection pin 12 RT — Triangular wave frequency setting resistor connection pin 13 CT — Triangular wave frequency setting capacitor connection pin 14 VCC — Power supply pin 15 OUT O Totem-pole output pin 16 GND — Ground pin Vin1 CS FB -IN1 IN2 Vin2 IN1 1 11 6 5 3 8 2 R4 25 kΩ R3 *2 1 µA R2 2.5 kΩ R1 *1 + ×25 – 4 1.26 V – + <VLDET block> <SOFT block> + – + <Error Amp. 1 block> + – <Error Amp. 2 block> SEL 2.5 V <SEL block> 10 2.44 V <Current Amp. block> -IN2 12 RT 13 CT <OSC block> – + <UVLO block> <PWM Comp. block> 9 VREF 2.5 V (2.5 V) <Ref block> bias 1.0 V 2.0 V <OUT block> <CTL block> V CC CTL 7 *2: *1: GND 16 OUT 15 100 kΩ VCC 14 (16 pins) MB3813A 10.1 kΩ MB3833A 5.9 kΩ MB3843 1.7 kΩ MB3813A 194 kΩ MB3833A 120 kΩ MB3843 100 kΩ MB3813A/MB3833A/MB3843 ■ BLOCK DIAGRAM 5 MB3813A/MB3833A/MB3843 ■ ABSOLUTE MAXIMUM RATINGS Parameter Symbol Condition Power supply voltage VCC — Input voltage VIN Value Vin1, IN1, IN2 Unit Min. Max. — 20 V — 20 V Control input voltage VCTL — — 20 V Select input voltage VSEL — — 20 V Output current IO — — 50 mA Peak output current IO Duty ≤ 5% (t = fOSC × Duty) — 500 mA Allowable dissipation PD Ta ≤ +25°C — 440* mW Storage temperature Tstg –55 +125 °C — * : When mounted on a 10 by 10 centimeters square dual-sided epoxy base board WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING CONDITIONS Parameter Power supply voltage Reference voltage output current Input voltage Symbol VCC Condition Value Unit Min. Typ. Max. MB3813A 12 16 18 V MB3833A 8 16 18 V MB3843 7 16 18 V –1 — 0 mA IOR — VIN Vin1, IN1, IN2 0 — 18 V VIN Vin2 0 — 2.5 V Control input voltage VCTL — 0 — 18 V Select input voltage VSEL — 0 — 18 V Peak output current IO –300 — 300 mA Oscillator frequency fOSC — 10 200 500 kHz Soft start capacitance CS — — 0.1 1.0 µF Timing resistance RT — 10 15 100 kΩ Timing capacitance CT — 100 330 10000 pF Operating temperature Ta –30 25 85 °C Duty ≤ 5% (t = fOSC × Duty) WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 6 MB3813A/MB3833A/MB3843 ■ ELECTRICAL CHARACTERISTICS (VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C) Parameter Output voltage Reference voltage block (Ref) Value Unit Min. Typ. Max. 2.475 2.500 2.525 V Remarks 9 Line 9 VCC = 12 V to 18 V — 1.0 10.0 mV MB3813A Line 9 VCC = 8 V to 18 V — 1.0 10.0 mV MB3833A Line 9 VCC = 7 V to 18 V — 1.0 10.0 mV MB3843 Load 9 VREF = –0 µA to –500 µA — 3.0 10.0 mV Threshold voltage VTH 9 VREF = “L” → “H” 1.8 2.0 2.2 V Hysteresis voltage VH 9 — 0.2 0.35 V VTH 1 10.2 11.0 11.8 V MB3813A VTH 1 6.7 7.3 7.9 V MB3833A VTH 1 5.8 6.3 6.8 V MB3843 VH 1 — 1.0 2.0 V MB3813A VH 1 — 0.7 1.4 V MB3833A VH 1 — 0.57 1.2 V MB3843 IIH 1 — 150 300 µA MB3813A IIH 1 — 270 540 µA MB3833A IIH 1 — 310 620 µA MB3843 IIL 1 –1.0 — 1.0 µA Input stability Threshold voltage Input voltage detector block (VLDET) Condition VREF Load stability Under voltage lockout circuit block (UVLO) Symbol Pinno. Hysteresis voltage Input current — — Vin1 = “L” → “H” — Vin1 = 16 V Vin1 = 0 V Soft start block (UVLO) Charge current ICS 11 — –1.4 –1.0 –0.6 µA Triangular wave oscillator block (OSC) Oscillator frequency fOSC 15 CT = 330 pF, RT = 15 kΩ 180 200 220 kHz VT1 3 12.474 12.60 12.726 V MB3813A VT1 3 8.316 8.40 8.484 V MB3833A VT1 3 4.158 4.20 4.242 V MB3843 VT1 3 12.41 12.60 12.79 V MB3813A 8.27 8.40 8.53 V MB3833A 4.13 4.20 4.26 V MB3843 Error amplifier (Error Amp.1) Threshold voltage VT1 3 VT1 3 FB = 1.5 V, SEL = 0 V FB = 1.5 V, Ta = –30°C to +85°C (Continued) 7 MB3813A/MB3833A/MB3843 (VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C) Parameter Threshold voltage VT2 3 VT2 3 VT2 3 FB = 1.5 V, SEL = 5 V FB = 1.5 V, Ta = –30°C to +85°C Typ. Max. 12.177 12.30 12.423 V MB3813A 8.118 8.20 8.282 V MB3833A 4.059 4.10 4.141 V MB3843 12.11 12.30 12.49 V MB3813A 8.07 8.20 8.33 V MB3833A 4.04 4.10 4.16 V MB3843 VT2 3 Line 3 VCC = 13 V to 18 V, output 12.6 V — 2.5 10.0 mV MB3813A Line 3 VCC = 9 V to 18 V, output 8.4 V — 2.5 10.0 mV MB3833A Line 3 VCC = 7 V to 18 V, output 4.2 V — 2.5 10.0 mV MB3843 IIN2 3 IN1 = 12.7 V, IN2 = 12.6 V — 1.0 2.0 mA MB3813A IIN2 3 IN1 = 8.5 V, IN2 = 8.4 V — 1.0 2.0 mA MB3833A IIN2 3 IN1 = 4.3 V, IN2 = 4.2 V — 1.0 2.0 mA MB3843 IIN2 3 Vin1 = 0 V, IN2 = 12.6 V –1.0 — 1.0 µA MB3813A IIN2 3 Vin1 = 0 V, IN2 = 8.4 V –1.0 — 1.0 µA MB3833A IIN2 3 Vin1 = 0 V, IN2 = 4.2 V –1.0 — 1.0 µA MB3843 R1 3 7.0 10.1 13.2 kΩ MB3813A R1 3 4.1 5.9 7.7 kΩ MB3833A R1 3 1.2 1.7 2.3 kΩ MB3843 R2 5 1.7 2.5 3.3 kΩ Input bias current IB 8 Vin2 –400 –30 — nA Input offset voltage VIO 5 FB = 1.5 V — — 5 mV Voltage gain AV — DC — 100* — dB Frequency bandwidth BW — AV = 0 dB — 800* — kHz VOH 6 — 2.3 2.5 — V VOL 6 — — 0.8 0.9 V ISOURCE 6 FB = 1.5 V — –120 –60 µA ISINK 6 FB = 1.5 V 0.6 2.0 — mA Input current Input resistance Output voltage Output source current Output sink current * : Standard design value 8 3 Unit Remarks Min. 3 Error amplifier (Error Amp.1) Error amplifiers (Error Amp.1,2 common) VT2 Value VT2 Input stability Error amplifier (Error Amp.2) Condition Symbol Pinno. — — (Continued) MB3813A/MB3833A/MB3843 (VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C) Parameter Value Unit Remarks Min. Typ. Max. Vin2 = IN2 = 3 V to VCC 2.5 V VT1 = VTH – IN2 Vin2 = 0.75 V 90 100 110 mV MB3813A 20 30 40 mV MB3813A Vin2 = IN2 = 3 V to VCC 2.5 V VT1 = VTH – IN2 Vin2 = 0.75 V 90 100 110 mV MB3833A 20 30 40 mV MB3833A Vin2 = IN2 = 3 V to VCC 2.5 V VT1 = VTH – IN2 Vin2 = 0.75 V 90 100 110 mV MB3843 20 30 40 mV MB3843 Vin2 = 2.5 V IN2 = 0 V VT2 = VTH – IN2 Vin2 = 0.75 V 50 100 150 mV 5 30 55 mV 2 VT1 2 VT1 2 VT1 2 VT1 2 VT1 2 VT2 2 VT2 2 IIN1 2 IN1 = 12.7 V, IN2 = 12.6 V — 17 34 µA MB3813A IIN1 2 IN1 = 8.5 V, IN2 = 8.4 V — 17 34 µA MB3833A IIN1 2 IN1 = 4.3 V, IN2 = 4.2 V — 17 34 µA MB3843 VCM 2 — 0 — VCC V AV 2 IN1 = 12.7 V, IN2 = 12.6 V 21 25 29 V/V MB3813A AV 2 IN1 = 8.5 V, IN2 = 8.4 V 21 25 29 V/V MB3833A AV 2 IN1 = 4.3 V, IN2 = 4.2 V 21 25 29 V/V MB3843 VT0 15 Duty cycle = 0% 0.9 1.0 — V VT100 15 Duty cycle = 100% — 2.0 2.1 V ON resistance RON 15 OUT = –30 mA — 12 18 Ω Output voltage VOL 15 OUT = 100 mA — 1.0 1.4 V Standby leak current ILO 15 VCC = 18 V, OUT = 18 V, CTL = 0 V –1.0 — 1.0 µA CTL input voltage VON 7 Active mode 2.0 — 18 V Standby mode VOFF 7 Standby mode 0 — 0.8 V IIH 7 CTL = 5 V — 100 200 µA IIL 7 CTL = 0 V –1.0 — 1.0 µA Current detector amplifier block (Current Amp.) Input current In-phase input voltage range Voltage gain PWM Threshold comparator block voltage (PWM) Power supply control block (CTL) Condition VT1 Threshold voltage Output block (OUT) Symbol PinNo. Input current (Continued) 9 MB3813A/MB3833A/MB3843 (Continued) (VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C) Parameter 10 Value Min. Typ. Max. Unit Remarks 10 12.3 V output mode 2.0 — 18 V MB3813A VON 10 8.2 V output mode 2.0 — 18 V MB3833A VON 10 4.1 V output mode 2.0 — 18 V MB3843 VOFF 10 12.6 V output mode 0 — 0.8 V MB3813A VOFF 10 8.4 V output mode 0 — 0.8 V MB3833A VOFF 10 4.2 V output mode 0 — 0.8 V MB3843 IIH 10 CTL = 5 V –1.0 — 1.0 µA IIL 10 CTL = 0 V –1.0 — 1.0 µA IIL 10 VCC = 0 V, SEL = 5 V –1.0 — 1.0 µA Standby current ICCS 14 CTL = 0 V — 260 390 µA Power supply current ICC 14 at output voltage “H” level — 3.4 5.4 mA SEL voltage Input current Input current when power supply OFF General Condition VON SEL voltage Output voltage selection block (SEL) Symbol Pinno. MB3813A/MB3833A/MB3843 ■ TYPICAL CHARACTERISTICS Reference voltage vs. VREF load current Reference voltage vs. Power supply voltage 5 Vin1 = 20.5 V CTL = VCC Ta = +25°C I OR = 0 mA 4 Reference voltage VREF (V) Reference voltage VREF (V) 5 3 2 1 0 4 3 2 1 0 0 5 10 15 Power supply voltage VCC (V) 0 20 5 Reference voltage VREF (V) VCC = Vin1 = 16 V CTL = 5 V 1.5 1.0 0.5 0.0 –0.5 –1.0 –20 0 20 40 60 Temperature Ta (°C) 50 80 VCC = 16 V Ta = +25°C IOR = 0 mA 4 3 2 1 0 –1.5 –2.0 –40 10 20 30 40 VREF load current I REF (mA) Reference voltage vs. Control voltage Reference voltage vs. Temperature 2.0 Reference voltage ∆VREF (%) Vin1 = VCC CTL = VCC Ta = +25°C 0 5 10 15 Control voltage VCTL (V) 20 100 Control current vs. Control voltage Control current ICTL (µA) 500 VCC = 16 V Ta = +25°C 400 300 200 100 0 0 5 10 15 Control voltage VCTL (V) 20 (Continued) 11 MB3813A/MB3833A/MB3843 Error amp. Threshold voltage vs. Temperature Error amp. threshold voltage vs. Temperature 2.0 VCC = Vin1 = 16 V CTL = 5 V SEL = 0 V 1.5 1.0 0.5 0.0 –0.5 –1.0 –1.5 –2.0 –40 –20 0 20 40 60 Temperature Ta (°C) 80 100 Error Amp. Threshold voltage ∆VT2 (%) Error Amp. threshold voltage ∆VT1 (%) 2.0 VCC = Vin1 = 16 V CTL = 5 V SEL = 5 V 1.5 1.0 0.5 0.0 –0.5 –1.0 –1.5 –2.0 –40 –20 0 20 40 60 Temperature Ta (°C) 80 100 40 180 30 135 20 90 10 45 0 0 4V 240 kΩ 10 kΩ Phase φ (°) –10 –45 –20 –90 –30 –135 –40 –180 1k 10 k 100 k 1M Frequency f (Hz) Triangular wave oscillator frequency fOSC (Hz) VCC = V in1 = 16 V CTL = 5 V CT = 100 pF CT = 270 pF CT = 330 pF 1k 1k CT = 1500 pF 10 k 100 k RT resistance (Ω) – + + VREF 10 kΩ Error Amp. 2V Triangular wave frequency vs. CT capacitance Triangular wave frequency vs. RT resistance 10 k 2.4 kΩ 10 M 1M 100 k 1 µF 1M Triangular wave oscillator frequency fOSC (Hz) Gain AV (dB) Error Amp. gain, phase vs. Frequency 1M VCC = V in1 = 16 V CTL = 5 V 100 k RT = 15 kΩ 10 k 1k 10 p 100 p 1n 10 n CT capacitance (F) 100 n (Continued) 12 MB3813A/MB3833A/MB3843 200 190 180 170 160 150 4 6 8 10 12 14 16 Power supply voltage VCC (V) 18 20 Triangular wave oscillator frequency fOSC (kHz) Triangular wave frequency vs. Temperature Triangular wave frequency vs. Power supply voltage 250 Data shown for 240 MB3843 Vin1 = 16 V 230 CTL = 16 V 220 RT = 15 kΩ, CT = 330 pF 210 250 VCC = Vin1 = 16 V CTL = 5 V 225 RT = 15 kΩ, CT = 330 pF 200 175 150 –40 Triangular wave maximum amplitude voltage vs. Triangular wave frequency 2.5 –20 0 20 40 60 Tenperature Ta (°C) 80 100 Power supply current vs. Power supply voltage VCC = Vin1 = 16 V CTL = 5 V 2.0 1.5 1.0 10 Power supply current ICC (mA) Triangular wave maximum amplitude voltage (V) Triangular wave oscillator frequency fOSC (kHz) (Continued) Vin1 = VCC Ta = +25°C 8 6 CTL = 5 V 4 2 MB3843 MB3833A MB3813A CTL = 0 V 0 0 0.5 1k 10 k 100 k 1M Triangular wave frequency fOSC (HZ) 5 10 15 Power supply voltage VCC (V) 20 10 M 13 MB3813A/MB3833A/MB3843 ■ FUNCTIONAL DESCRIPTION 1. Switching Regulator Block (1) Reference voltage circuit (Ref) The reference voltage circuit uses the voltage supply from the VCC pin (pin 14) to generate a temperature compensated, stable voltage ( =: 2.50 V) for use as the reference voltage for the internal circuits of the IC chip. It is also possible to supply a reference voltage output of up to 1 mA to external circuits through the VREF pin (pin 9). (2) Triangular wave oscillator circuit (OSC) By connecting the CT pin (pin 13) and RT pin (pin 12) respectively to a capacitance and resistance for timing, a triangular oscillator waveform can be generated. The triangular wave is input to the PWM comparator circuits on the IC. At the same time, it can also be supplied to an external device from the CT terminal. (3) Error amplifier circuit (Error Amp.1) The error amplifier circuit is used to detect the output voltage from the switching regulator and produces the PWM control signal. No external resistance is required at the error amplifier inversion input pin, because the output voltage setting resistance is connected within the IC. The output voltage settings are defined as: MB3813A 12.6 V/12.3 V, MB3833A 8.4 V/8.2 V, MB3843 4.2 V/4.1 V, the optimum levels respectively for use with 3-cell, 2-cell and 1-cell lithium-ion batteries. Also, by connecting feedback resistance and capacitance between the error amplifier FB pin (pin 6) and -IN pin (pin 5), it is possible to set the desired level of loop gain to provide stabilized phase compensation to the system. The CS pin (pin 11) can be connected to a soft start capacitor to prevent current surges at startup. The soft start is detected by the error amplifier, which provides a constant soft start time independent of output load. (4) Current detector amplifier circuit (Current Amp.) The current detector amplifier provides 25 × amplification of the voltage drop between the two ends of the output sensor resistor (RS) in the switching regulator, that occurs due to the flow of the charging current. This voltage drop is compared to the voltage at the Vin2 pin (pin 8) in the next stage error amplifier circuit (Error Amp.2), and used to control the charging current. (5) Power supply control circuit (CTL) An “L” level signal input to the CTL pin (pin 7) places the IC in standby mode. In standby mode, all circuits other than input detection circuits are switched off. (6) PWM comparator circuit (PMW Comp.) This is a voltage-pulse width conversion circuit that controls the output duty of the error amplifier circuits (Error Amp.1, 2) according to the output voltage. During intervals when the triangular waveform is lower than the eror amplifier output voltage, an external output transistor is switched on. (7) Output circuit (OUT) The output circuit uses a totem-pole configuration and is capable of driving an external P-ch. MOS FET device. 14 MB3813A/MB3833A/MB3843 2. Output Voltage Switching Function The SEL pin (pin 10) is capable of output levels of 4.2 V or 4.1 V per battery cell. • Output voltage settings by model SEL pin voltage level L H L H L H Model MB3813A MB3833A MB3843 Output voltage Units 12.6 V 12.3 V 8.4 V 8.2 V 4.2 V 4.1 V 3. Protection Functions (1) Input voltage detector circuit (VIDET) When the input voltage supply from the AC adapter or other source detected at the Vin1 pin (pin 1) falls below 11 V (MB3813A), or below 7.3 V (MB3833A), or below 6.3 V (MB3843), the internal reference voltage circuit switches off. (2) Under voltage lockout circuit (UVLO) Power surges at power-on, or momentary under-voltage situations can cause abnormal operation in a control IC, which may lead to damage or deterioration in systems. This circuit prevents abnormal peration during times of low voltage by using the supply voltage to detect the level of the internal reference voltage, and switching off the external output transistor to create a 100% rest interval. Once the supply voltage recovers to a level above the threshold voltage of the under voltage lockout circuit, operation is restored. 15 MB3813A/MB3833A/MB3843 ■ METHOD OF SETTING THE CHARGING CURRENT The charging current level (output limit current level) is set at the Vin2 pin (pin 8). Charging current level (output limit current level) : IL (MAX) [A] = Vin2 (V) 25 × RS (Ω) RS: output sensing resistance ■ METHOD OF SETTING THE SOFT START TIME • At start up, the capacitor (Cs) connected to the CS pin (pin 11) begins charging. The error amplifier compares the soft start setting voltage, which is proportional to the CS pin voltage, to the output feedback voltage and produces a soft start by varying the ON duty at the OUT pin (pin 15). The soft start time can be determined by the formula below. • Because the CS pin voltage is input to the error amplifier, the soft start time setting is not dependent on the output current value. Soft start time (time to output setting voltage VD) : ts [s] = 2.5 × CS [µF] ■ ERROR AMP. BLOCK OVERSHOOT PROTECTION CIRCUIT This built-in circuit responds to rapid fluctuations in charging current such as can occur when inserting or removing a chargeable battery, by clamping an inverted input signal (-IN1 or -IN2) from the error amps (Error Amp.1 or Error Amp.2) to suppress changes in output voltage. ■ CTL, SEL PIN EQUIVALENT CIRCUITS VCC CTL 7 SEL 10 1.4 V 16 DC-IN (16 V) 10 kΩ 39000 pF 0.1 µF Vin1 CS FB 10 kΩ 39000 pF -IN1 IN2 0 to 2.5 V Vin2 IN1 1 11 6 5 3 8 2 R4 R3 1 µA R2 R1 + × 25 – 4 1.26 V – + <VLDET block> <SOFT block> – + + 15 kΩ <Error Amp.1 block> + – <Error Amp.2 block> SEL 2.5 V <SEL block> 10 2.44 V <Current Amp. block> -IN2 12 RT 13 <UVLO block> 330 pF CT <OSC block> – + <PWM Comp. block> 9 VREF 2.5 V (2.5 V) <Ref block> bias 1.0 V 2.0 V <OUT block> <CTL block> VCC OUT 130LT3 MBRS + – + – 220 µF 4.7 µF VBATT (16 pins) MTD20P03: Product of Motorola Inc. MBRS130LT3: Product of Motorola Inc. GND 16 CTL 7 – + RS MTD20P03 33 µH 0.1 Ω 47 µF 0.1 µF 15 100 kΩ VCC 14 MB3813A/MB3833A/MB3843 ■ APPLICATION EXAMPLE 17 MB3813A/MB3833A/MB3843 ■ REFERENCE DATA Charging voltage VBATT (V) Charging voltage vs. Charging current <MB3813A> 14 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Charging current IL (A) Charging voltage VBATT (V) Charging voltage vs. Charging current <MB3833A> 14 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Charging current IL (A) Charging voltage VBATT (V) Charging voltage vs. Charging current <MB3843> 14 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Charging current IL (A) (Continued) 18 MB3813A/MB3833A/MB3843 (Continued) Soft start operation waveforms <MB3813A> VCC = Vin = 16 V 15 5V 5V VBATT (V) CTL = 5 V 10 CT = 330 pF Tek 5 RT = 15 kΩ Vin2 = 2.5 V 0 RL = 20 Ω CS (V) CS = 0.1 µF 4 2 0 CTL (V) 5 100 ms 2V 0 0 200 400 600 800 1000 t (ms) <MB3833A> VCC = Vin = 16 V 15 5V 5V VBATT (V) CTL = 5 V 10 CT = 330 pF Tek 5 RT = 15 kΩ Vin2 = 2.5 V 0 RL = 20 Ω 4 CS = 0.1 µF CS (V) 2 0 CTL (V) 5 100 ms 2V 0 0 200 400 600 800 1000 t (ms) <MB3843> VCC = Vin = 16 V 15 5V 5V VBATT (V) CTL = 5 V 10 CT = 330 pF Tek 5 RT = 15 kΩ Vin2 = 2.5 V 0 RL = 20 Ω 4 CS = 0.1 µF CS (V) 2 0 CTL (V) 5 100 ms 2V 0 0 200 400 600 800 1000 t (ms) 19 MB3813A/MB3833A/MB3843 ■ USAGE PRECAUTION • Printed circuit board ground lines should be designed in consideration of common impedance values. • Observe precautions against static electricity. • Containers in which semiconductors are placed should either be protected against static electricity, or be of conductive material. • After devices are mounted, use conductive bags or conductive containers when storing or transporting printed circuit boards. • Working surfaces, tools and instruments should be properly rounded. • Workers should be grounded by a ground line with 250 kΩ to 1 MΩ resistance in series between the worker and ground. • Do not apply negative voltages. The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnomal operation. ■ ORDERING INFORMATION Part number MB3813APFV MB3833APFV MB3843PFV 20 Package 16-pin plastic SSOP (FPT-16P-M05) Remarks MB3813A/MB3833A/MB3843 ■ PACKAGE DIMENSION * : These dimensions do not inclule resin protrusion. 16-pin plastic SSOP (FPT-16P-M05) * 5.00±0.10(.197±.004) 0.17±0.03 (.007±.001) 9 16 * 4.40±0.10 6.40±0.20 (.173±.004) (.252±.008) INDEX Details of "A" part +0.20 1.25 –0.10 +.008 .049 –.004 LEAD No. 1 8 0.65(.026) 0.10(.004) C (Mounting height) 1999 FUJITSU LIMITED F16013S-3C-5 "A" 0.24±0.08 (.009±.003) 0.13(.005) M 0~8° 0.50±0.20 (.020±.008) 0.45/0.75 (.018/.030) 0.10±0.10 (Stand off) (.004±.004) 0.25(.010) Dimensions in mm (inches) 21 MB3813A/MB3833A/MB3843 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 F0006 FUJITSU LIMITED Printed in Japan 24 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.