FUJITSU MB3833A

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-27700-3E
ASSP For Power Management Applications (Secondary battery)
Lithium Ion Battery Charger DC/DC Converter IC
(High Precision with Constant-current Function)
MB3813A/MB3833A/MB3843
■ DESCRIPTION
The FUJITSU MB3813A/33A/43 are pulse width modulation (PWM) DC/DC converter ICs with independent output
voltage and current setting capability.
The use of on-chip output setting resistance enables high precision output voltage control. Also, an output voltage
switching feature for use with either graphite-electrode or coke-electrode lithium-ion batteries makes this IC ideal
for internal battery chargers in notebook personal computers and similar applications.
Cell count
Output voltage
Part number
3-cell
12.6 V/12.3 V
MB3813A
2-cell
8.4 V/8.2 V
MB3833A
1-cell
4.2 V/4.1 V
MB3843
■ FEATURES
•
•
•
•
•
Output setting resistance is on-chip for high precision output voltage: ±1.0%
SEL pin enables output voltage selection
High precision reference voltage source: 2.5 V ± 1.0%
High frequency operating capability: max. 500 kHz
On-chip current detector amplifier with wide in-phase input voltage range: 0 V to VCC
(Continued)
■ PACKAGE
16-pin plastic SSOP
(FPT-16P-M05)
MB3813A/MB3833A/MB3843
(Continued)
• On-chip standby function
• On-chip input voltage detector circuit
• On-chip soft start control circuit
• On-chip output overshoot protection circuit for rapid load changes
• On-chip totem-pole output circuits for P-ch. MOS FET devices
2
MB3813A/MB3833A/MB3843
■ PIN ASSIGNMENT
(Top view)
Vin1 : 1
16 : GND
IN1 : 2
15 : OUT
IN2 : 3
14 : VCC
-IN2 : 4
13 : CT
-IN1 : 5
12 : RT
FB : 6
11 : CS
CTL : 7
10 : SEL
Vin2 : 8
9 : VREF
(FPT-16P-M05)
3
MB3813A/MB3833A/MB3843
■ PIN DESCRIPTION
4
Pin no.
Symbol
I/O
Descriptions
1
Vin1
I
Input voltage detector block (VLDET) input pin
2
IN1
I
Current detector amplifier (Current Amp.) input pin
3
IN2
I
Output voltage feedback input pin
4
-IN2
I
Error amplifier (Error Amp.2) inverted input pin
5
-IN1
I
Error amplifier (Error Amp.1) inverted input pin
6
FB
O
Error amplifier (Error Amp.1, 2 common) output pin
7
CTL
I
Power supply control pin
An “L” level signal input to the CTL pin sets the IC in standby mode.
8
Vin2
I
DC/DC converter charging current setting input pin
9
VREF
O
Reference voltage output pin
10
SEL
I
Output voltage switching pin
“L” level output voltage: MB3813A 12.6 V
MB3833A 8.4 V
MB3843 4.2 V
“H” level output voltage: MB3813A 12.3 V
MB3833A 8.2 V
MB3843 4.1 V
11
CS
—
Soft start capacitor connection pin
12
RT
—
Triangular wave frequency setting resistor connection pin
13
CT
—
Triangular wave frequency setting capacitor connection pin
14
VCC
—
Power supply pin
15
OUT
O
Totem-pole output pin
16
GND
—
Ground pin
Vin1
CS
FB
-IN1
IN2
Vin2
IN1
1
11
6
5
3
8
2
R4
25 kΩ
R3 *2
1 µA
R2
2.5 kΩ
R1
*1
+
×25
–
4
1.26 V
–
+
<VLDET block>
<SOFT block>
+
–
+
<Error Amp. 1 block>
+
–
<Error Amp. 2 block>
SEL
2.5 V
<SEL block>
10
2.44 V
<Current Amp. block>
-IN2
12
RT
13
CT
<OSC block>
–
+
<UVLO block>
<PWM Comp. block>
9
VREF
2.5 V
(2.5 V)
<Ref block>
bias
1.0 V
2.0 V
<OUT block>
<CTL block>
V CC
CTL
7
*2:
*1:
GND
16
OUT
15
100 kΩ
VCC
14
(16 pins)
MB3813A 10.1 kΩ
MB3833A 5.9 kΩ
MB3843 1.7 kΩ
MB3813A 194 kΩ
MB3833A 120 kΩ
MB3843 100 kΩ
MB3813A/MB3833A/MB3843
■ BLOCK DIAGRAM
5
MB3813A/MB3833A/MB3843
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Condition
Power supply voltage
VCC
—
Input voltage
VIN
Value
Vin1, IN1, IN2
Unit
Min.
Max.
—
20
V
—
20
V
Control input voltage
VCTL
—
—
20
V
Select input voltage
VSEL
—
—
20
V
Output current
IO
—
—
50
mA
Peak output current
IO
Duty ≤ 5% (t = fOSC × Duty)
—
500
mA
Allowable dissipation
PD
Ta ≤ +25°C
—
440*
mW
Storage temperature
Tstg
–55
+125
°C
—
* : When mounted on a 10 by 10 centimeters square dual-sided epoxy base board
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Power supply voltage
Reference voltage
output current
Input voltage
Symbol
VCC
Condition
Value
Unit
Min.
Typ.
Max.
MB3813A
12
16
18
V
MB3833A
8
16
18
V
MB3843
7
16
18
V
–1
—
0
mA
IOR
—
VIN
Vin1, IN1, IN2
0
—
18
V
VIN
Vin2
0
—
2.5
V
Control input voltage
VCTL
—
0
—
18
V
Select input voltage
VSEL
—
0
—
18
V
Peak output current
IO
–300
—
300
mA
Oscillator frequency
fOSC
—
10
200
500
kHz
Soft start capacitance
CS
—
—
0.1
1.0
µF
Timing resistance
RT
—
10
15
100
kΩ
Timing capacitance
CT
—
100
330
10000
pF
Operating temperature
Ta
–30
25
85
°C
Duty ≤ 5% (t = fOSC × Duty)
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
6
MB3813A/MB3833A/MB3843
■ ELECTRICAL CHARACTERISTICS
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C)
Parameter
Output
voltage
Reference
voltage block
(Ref)
Value
Unit
Min.
Typ.
Max.
2.475
2.500
2.525
V
Remarks
9
Line
9
VCC = 12 V to 18 V
—
1.0
10.0
mV
MB3813A
Line
9
VCC = 8 V to 18 V
—
1.0
10.0
mV
MB3833A
Line
9
VCC = 7 V to 18 V
—
1.0
10.0
mV
MB3843
Load
9
VREF = –0 µA to –500 µA
—
3.0
10.0
mV
Threshold
voltage
VTH
9
VREF = “L” → “H”
1.8
2.0
2.2
V
Hysteresis
voltage
VH
9
—
0.2
0.35
V
VTH
1
10.2
11.0
11.8
V
MB3813A
VTH
1
6.7
7.3
7.9
V
MB3833A
VTH
1
5.8
6.3
6.8
V
MB3843
VH
1
—
1.0
2.0
V
MB3813A
VH
1
—
0.7
1.4
V
MB3833A
VH
1
—
0.57
1.2
V
MB3843
IIH
1
—
150
300
µA
MB3813A
IIH
1
—
270
540
µA
MB3833A
IIH
1
—
310
620
µA
MB3843
IIL
1
–1.0
—
1.0
µA
Input
stability
Threshold
voltage
Input voltage
detector block
(VLDET)
Condition
VREF
Load
stability
Under voltage
lockout circuit
block (UVLO)
Symbol Pinno.
Hysteresis
voltage
Input
current
—
—
Vin1 = “L” → “H”
—
Vin1 = 16 V
Vin1 = 0 V
Soft start block
(UVLO)
Charge
current
ICS
11
—
–1.4
–1.0
–0.6
µA
Triangular wave
oscillator block
(OSC)
Oscillator
frequency
fOSC
15
CT = 330 pF, RT = 15 kΩ
180
200
220
kHz
VT1
3
12.474
12.60
12.726
V
MB3813A
VT1
3
8.316
8.40
8.484
V
MB3833A
VT1
3
4.158
4.20
4.242
V
MB3843
VT1
3
12.41
12.60
12.79
V
MB3813A
8.27
8.40
8.53
V
MB3833A
4.13
4.20
4.26
V
MB3843
Error amplifier
(Error Amp.1)
Threshold
voltage
VT1
3
VT1
3
FB = 1.5 V, SEL = 0 V
FB = 1.5 V,
Ta = –30°C to +85°C
(Continued)
7
MB3813A/MB3833A/MB3843
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C)
Parameter
Threshold
voltage
VT2
3
VT2
3
VT2
3
FB = 1.5 V, SEL = 5 V
FB = 1.5 V,
Ta = –30°C to +85°C
Typ.
Max.
12.177
12.30
12.423
V
MB3813A
8.118
8.20
8.282
V
MB3833A
4.059
4.10
4.141
V
MB3843
12.11
12.30
12.49
V
MB3813A
8.07
8.20
8.33
V
MB3833A
4.04
4.10
4.16
V
MB3843
VT2
3
Line
3
VCC = 13 V to 18 V, output
12.6 V
—
2.5
10.0
mV
MB3813A
Line
3
VCC = 9 V to 18 V, output
8.4 V
—
2.5
10.0
mV
MB3833A
Line
3
VCC = 7 V to 18 V, output
4.2 V
—
2.5
10.0
mV
MB3843
IIN2
3
IN1 = 12.7 V, IN2 = 12.6 V
—
1.0
2.0
mA
MB3813A
IIN2
3
IN1 = 8.5 V, IN2 = 8.4 V
—
1.0
2.0
mA
MB3833A
IIN2
3
IN1 = 4.3 V, IN2 = 4.2 V
—
1.0
2.0
mA
MB3843
IIN2
3
Vin1 = 0 V, IN2 = 12.6 V
–1.0
—
1.0
µA
MB3813A
IIN2
3
Vin1 = 0 V, IN2 = 8.4 V
–1.0
—
1.0
µA
MB3833A
IIN2
3
Vin1 = 0 V, IN2 = 4.2 V
–1.0
—
1.0
µA
MB3843
R1
3
7.0
10.1
13.2
kΩ
MB3813A
R1
3
4.1
5.9
7.7
kΩ
MB3833A
R1
3
1.2
1.7
2.3
kΩ
MB3843
R2
5
1.7
2.5
3.3
kΩ
Input bias
current
IB
8
Vin2
–400
–30
—
nA
Input offset
voltage
VIO
5
FB = 1.5 V
—
—
5
mV
Voltage
gain
AV
—
DC
—
100*
—
dB
Frequency
bandwidth
BW
—
AV = 0 dB
—
800*
—
kHz
VOH
6
—
2.3
2.5
—
V
VOL
6
—
—
0.8
0.9
V
ISOURCE
6
FB = 1.5 V
—
–120
–60
µA
ISINK
6
FB = 1.5 V
0.6
2.0
—
mA
Input
current
Input
resistance
Output
voltage
Output
source
current
Output sink
current
* : Standard design value
8
3
Unit Remarks
Min.
3
Error amplifier
(Error Amp.1)
Error amplifiers
(Error Amp.1,2
common)
VT2
Value
VT2
Input
stability
Error amplifier
(Error Amp.2)
Condition
Symbol Pinno.
—
—
(Continued)
MB3813A/MB3833A/MB3843
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C)
Parameter
Value
Unit Remarks
Min.
Typ.
Max.
Vin2 =
IN2 = 3 V to VCC 2.5 V
VT1 = VTH – IN2 Vin2 =
0.75 V
90
100
110
mV
MB3813A
20
30
40
mV
MB3813A
Vin2 =
IN2 = 3 V to VCC 2.5 V
VT1 = VTH – IN2 Vin2 =
0.75 V
90
100
110
mV
MB3833A
20
30
40
mV
MB3833A
Vin2 =
IN2 = 3 V to VCC 2.5 V
VT1 = VTH – IN2 Vin2 =
0.75 V
90
100
110
mV
MB3843
20
30
40
mV
MB3843
Vin2 =
2.5 V
IN2 = 0 V
VT2 = VTH – IN2 Vin2 =
0.75 V
50
100
150
mV
5
30
55
mV
2
VT1
2
VT1
2
VT1
2
VT1
2
VT1
2
VT2
2
VT2
2
IIN1
2
IN1 = 12.7 V, IN2 = 12.6 V
—
17
34
µA
MB3813A
IIN1
2
IN1 = 8.5 V, IN2 = 8.4 V
—
17
34
µA
MB3833A
IIN1
2
IN1 = 4.3 V, IN2 = 4.2 V
—
17
34
µA
MB3843
VCM
2
—
0
—
VCC
V
AV
2
IN1 = 12.7 V, IN2 = 12.6 V
21
25
29
V/V MB3813A
AV
2
IN1 = 8.5 V, IN2 = 8.4 V
21
25
29
V/V MB3833A
AV
2
IN1 = 4.3 V, IN2 = 4.2 V
21
25
29
V/V MB3843
VT0
15
Duty cycle = 0%
0.9
1.0
—
V
VT100
15
Duty cycle = 100%
—
2.0
2.1
V
ON
resistance
RON
15
OUT = –30 mA
—
12
18
Ω
Output
voltage
VOL
15
OUT = 100 mA
—
1.0
1.4
V
Standby
leak current
ILO
15
VCC = 18 V, OUT = 18 V,
CTL = 0 V
–1.0
—
1.0
µA
CTL input
voltage
VON
7
Active mode
2.0
—
18
V
Standby
mode
VOFF
7
Standby mode
0
—
0.8
V
IIH
7
CTL = 5 V
—
100
200
µA
IIL
7
CTL = 0 V
–1.0
—
1.0
µA
Current detector
amplifier block
(Current Amp.)
Input current
In-phase
input
voltage
range
Voltage
gain
PWM
Threshold
comparator block
voltage
(PWM)
Power supply
control block
(CTL)
Condition
VT1
Threshold
voltage
Output block
(OUT)
Symbol PinNo.
Input
current
(Continued)
9
MB3813A/MB3833A/MB3843
(Continued)
(VCC = Vin1 = +16 V, VSEL = 0 V, Ta = +25°C)
Parameter
10
Value
Min.
Typ.
Max.
Unit
Remarks
10
12.3 V output mode
2.0
—
18
V
MB3813A
VON
10
8.2 V output mode
2.0
—
18
V
MB3833A
VON
10
4.1 V output mode
2.0
—
18
V
MB3843
VOFF
10
12.6 V output mode
0
—
0.8
V
MB3813A
VOFF
10
8.4 V output mode
0
—
0.8
V
MB3833A
VOFF
10
4.2 V output mode
0
—
0.8
V
MB3843
IIH
10
CTL = 5 V
–1.0
—
1.0
µA
IIL
10
CTL = 0 V
–1.0
—
1.0
µA
IIL
10
VCC = 0 V, SEL = 5 V
–1.0
—
1.0
µA
Standby
current
ICCS
14
CTL = 0 V
—
260
390
µA
Power
supply
current
ICC
14
at output voltage “H” level
—
3.4
5.4
mA
SEL voltage
Input
current
Input
current
when power
supply OFF
General
Condition
VON
SEL voltage
Output
voltage
selection
block (SEL)
Symbol Pinno.
MB3813A/MB3833A/MB3843
■ TYPICAL CHARACTERISTICS
Reference voltage vs. VREF load current
Reference voltage vs. Power supply voltage
5
Vin1 = 20.5 V
CTL = VCC
Ta = +25°C
I OR = 0 mA
4
Reference voltage VREF (V)
Reference voltage VREF (V)
5
3
2
1
0
4
3
2
1
0
0
5
10
15
Power supply voltage VCC (V)
0
20
5
Reference voltage VREF (V)
VCC = Vin1 = 16 V
CTL = 5 V
1.5
1.0
0.5
0.0
–0.5
–1.0
–20
0
20
40
60
Temperature Ta (°C)
50
80
VCC = 16 V
Ta = +25°C
IOR = 0 mA
4
3
2
1
0
–1.5
–2.0
–40
10
20
30
40
VREF load current I REF (mA)
Reference voltage vs. Control voltage
Reference voltage vs. Temperature
2.0
Reference voltage ∆VREF (%)
Vin1 = VCC
CTL = VCC
Ta = +25°C
0
5
10
15
Control voltage VCTL (V)
20
100
Control current vs. Control voltage
Control current ICTL (µA)
500
VCC = 16 V
Ta = +25°C
400
300
200
100
0
0
5
10
15
Control voltage VCTL (V)
20
(Continued)
11
MB3813A/MB3833A/MB3843
Error amp. Threshold voltage vs. Temperature
Error amp. threshold voltage vs. Temperature
2.0
VCC = Vin1 = 16 V
CTL = 5 V
SEL = 0 V
1.5
1.0
0.5
0.0
–0.5
–1.0
–1.5
–2.0
–40
–20
0
20
40
60
Temperature Ta (°C)
80
100
Error Amp. Threshold voltage ∆VT2 (%)
Error Amp. threshold voltage ∆VT1 (%)
2.0
VCC = Vin1 = 16 V
CTL = 5 V
SEL = 5 V
1.5
1.0
0.5
0.0
–0.5
–1.0
–1.5
–2.0
–40
–20
0
20
40
60
Temperature Ta (°C)
80
100
40
180
30
135
20
90
10
45
0
0
4V
240 kΩ
10 kΩ
Phase φ (°)
–10
–45
–20
–90
–30
–135
–40
–180
1k
10 k
100 k
1M
Frequency f (Hz)
Triangular wave oscillator frequency fOSC (Hz)
VCC = V in1 = 16 V
CTL = 5 V
CT = 100 pF
CT = 270 pF
CT = 330 pF
1k
1k
CT = 1500 pF
10 k
100 k
RT resistance (Ω)
–
+
+
VREF
10 kΩ
Error Amp.
2V
Triangular wave frequency vs. CT capacitance
Triangular wave frequency vs. RT resistance
10 k
2.4 kΩ
10 M
1M
100 k
1 µF
1M
Triangular wave oscillator frequency fOSC (Hz)
Gain AV (dB)
Error Amp. gain, phase vs. Frequency
1M
VCC = V in1 = 16 V
CTL = 5 V
100 k
RT = 15 kΩ
10 k
1k
10 p
100 p
1n
10 n
CT capacitance (F)
100 n
(Continued)
12
MB3813A/MB3833A/MB3843
200
190
180
170
160
150
4
6
8
10
12
14
16
Power supply voltage VCC (V)
18
20
Triangular wave oscillator frequency fOSC (kHz)
Triangular wave frequency vs. Temperature
Triangular wave frequency vs. Power supply voltage
250
Data shown for
240
MB3843
Vin1 = 16 V
230
CTL = 16 V
220
RT = 15 kΩ, CT = 330 pF
210
250
VCC = Vin1 = 16 V
CTL = 5 V
225
RT = 15 kΩ, CT = 330 pF
200
175
150
–40
Triangular wave maximum amplitude voltage
vs. Triangular wave frequency
2.5
–20
0
20
40
60
Tenperature Ta (°C)
80
100
Power supply current vs. Power supply voltage
VCC = Vin1 = 16 V
CTL = 5 V
2.0
1.5
1.0
10
Power supply current ICC (mA)
Triangular wave maximum amplitude voltage (V)
Triangular wave oscillator frequency fOSC (kHz)
(Continued)
Vin1 = VCC
Ta = +25°C
8
6
CTL = 5 V
4
2
MB3843
MB3833A
MB3813A
CTL = 0 V
0
0
0.5
1k
10 k
100 k
1M
Triangular wave frequency fOSC (HZ)
5
10
15
Power supply voltage VCC (V)
20
10 M
13
MB3813A/MB3833A/MB3843
■ FUNCTIONAL DESCRIPTION
1. Switching Regulator Block
(1) Reference voltage circuit (Ref)
The reference voltage circuit uses the voltage supply from the VCC pin (pin 14) to generate a temperature
compensated, stable voltage ( =: 2.50 V) for use as the reference voltage for the internal circuits of the IC chip.
It is also possible to supply a reference voltage output of up to 1 mA to external circuits through the VREF pin
(pin 9).
(2) Triangular wave oscillator circuit (OSC)
By connecting the CT pin (pin 13) and RT pin (pin 12) respectively to a capacitance and resistance for timing,
a triangular oscillator waveform can be generated.
The triangular wave is input to the PWM comparator circuits on the IC. At the same time, it can also be supplied
to an external device from the CT terminal.
(3) Error amplifier circuit (Error Amp.1)
The error amplifier circuit is used to detect the output voltage from the switching regulator and produces the
PWM control signal. No external resistance is required at the error amplifier inversion input pin, because the
output voltage setting resistance is connected within the IC. The output voltage settings are defined as:
MB3813A 12.6 V/12.3 V, MB3833A 8.4 V/8.2 V, MB3843 4.2 V/4.1 V, the optimum levels respectively for use
with 3-cell, 2-cell and 1-cell lithium-ion batteries.
Also, by connecting feedback resistance and capacitance between the error amplifier FB pin (pin 6) and -IN
pin (pin 5), it is possible to set the desired level of loop gain to provide stabilized phase compensation to the
system.
The CS pin (pin 11) can be connected to a soft start capacitor to prevent current surges at startup. The soft
start is detected by the error amplifier, which provides a constant soft start time independent of output load.
(4) Current detector amplifier circuit (Current Amp.)
The current detector amplifier provides 25 × amplification of the voltage drop between the two ends of the
output sensor resistor (RS) in the switching regulator, that occurs due to the flow of the charging current. This
voltage drop is compared to the voltage at the Vin2 pin (pin 8) in the next stage error amplifier circuit (Error
Amp.2), and used to control the charging current.
(5) Power supply control circuit (CTL)
An “L” level signal input to the CTL pin (pin 7) places the IC in standby mode. In standby mode, all circuits
other than input detection circuits are switched off.
(6) PWM comparator circuit (PMW Comp.)
This is a voltage-pulse width conversion circuit that controls the output duty of the error amplifier circuits (Error
Amp.1, 2) according to the output voltage.
During intervals when the triangular waveform is lower than the eror amplifier output voltage, an external output
transistor is switched on.
(7) Output circuit (OUT)
The output circuit uses a totem-pole configuration and is capable of driving an external P-ch. MOS FET device.
14
MB3813A/MB3833A/MB3843
2. Output Voltage Switching Function
The SEL pin (pin 10) is capable of output levels of 4.2 V or 4.1 V per battery cell.
• Output voltage settings by model
SEL pin voltage level
L
H
L
H
L
H
Model
MB3813A
MB3833A
MB3843
Output voltage
Units
12.6
V
12.3
V
8.4
V
8.2
V
4.2
V
4.1
V
3. Protection Functions
(1) Input voltage detector circuit (VIDET)
When the input voltage supply from the AC adapter or other source detected at the Vin1 pin (pin 1) falls below
11 V (MB3813A), or below 7.3 V (MB3833A), or below 6.3 V (MB3843), the internal reference voltage circuit
switches off.
(2) Under voltage lockout circuit (UVLO)
Power surges at power-on, or momentary under-voltage situations can cause abnormal operation in a control
IC, which may lead to damage or deterioration in systems. This circuit prevents abnormal peration during times
of low voltage by using the supply voltage to detect the level of the internal reference voltage, and switching
off the external output transistor to create a 100% rest interval. Once the supply voltage recovers to a level
above the threshold voltage of the under voltage lockout circuit, operation is restored.
15
MB3813A/MB3833A/MB3843
■ METHOD OF SETTING THE CHARGING CURRENT
The charging current level (output limit current level) is set at the Vin2 pin (pin 8).
Charging current level (output limit current level) :
IL (MAX) [A] =
Vin2 (V)
25 × RS (Ω)
RS: output sensing resistance
■ METHOD OF SETTING THE SOFT START TIME
• At start up, the capacitor (Cs) connected to the CS pin (pin 11) begins charging. The error amplifier compares
the soft start setting voltage, which is proportional to the CS pin voltage, to the output feedback voltage and
produces a soft start by varying the ON duty at the OUT pin (pin 15). The soft start time can be determined
by the formula below.
• Because the CS pin voltage is input to the error amplifier, the soft start time setting is not dependent on the
output current value.
Soft start time (time to output setting voltage VD) :
ts [s] = 2.5 × CS [µF]
■ ERROR AMP. BLOCK OVERSHOOT PROTECTION CIRCUIT
This built-in circuit responds to rapid fluctuations in charging current such as can occur when inserting or removing
a chargeable battery, by clamping an inverted input signal (-IN1 or -IN2) from the error amps (Error Amp.1 or
Error Amp.2) to suppress changes in output voltage.
■ CTL, SEL PIN EQUIVALENT CIRCUITS
VCC
CTL
7
SEL
10
1.4 V
16
DC-IN
(16 V)
10
kΩ
39000
pF
0.1 µF
Vin1
CS
FB
10 kΩ
39000
pF
-IN1
IN2
0 to 2.5 V
Vin2
IN1
1
11
6
5
3
8
2
R4
R3
1 µA
R2
R1
+
× 25
–
4
1.26 V
–
+
<VLDET block>
<SOFT block>
–
+
+
15 kΩ
<Error Amp.1 block>
+
–
<Error Amp.2 block>
SEL
2.5 V
<SEL block>
10
2.44 V
<Current Amp. block>
-IN2
12
RT
13
<UVLO block>
330 pF
CT
<OSC block>
–
+
<PWM Comp. block>
9
VREF
2.5 V
(2.5 V)
<Ref block>
bias
1.0 V
2.0 V
<OUT block>
<CTL block>
VCC
OUT
130LT3
MBRS
+
–
+
–
220 µF 4.7 µF
VBATT
(16 pins)
MTD20P03: Product of Motorola Inc.
MBRS130LT3: Product of Motorola Inc.
GND
16
CTL
7
–
+
RS
MTD20P03
33 µH 0.1 Ω
47 µF 0.1 µF
15
100 kΩ
VCC
14
MB3813A/MB3833A/MB3843
■ APPLICATION EXAMPLE
17
MB3813A/MB3833A/MB3843
■ REFERENCE DATA
Charging voltage VBATT (V)
Charging voltage vs. Charging current
<MB3813A>
14
12
10
8
6
4
2
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Charging current IL (A)
Charging voltage VBATT (V)
Charging voltage vs. Charging current
<MB3833A>
14
12
10
8
6
4
2
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Charging current IL (A)
Charging voltage VBATT (V)
Charging voltage vs. Charging current
<MB3843>
14
12
10
8
6
4
2
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Charging current IL (A)
(Continued)
18
MB3813A/MB3833A/MB3843
(Continued)
Soft start operation waveforms
<MB3813A>
VCC = Vin = 16 V
15
5V
5V
VBATT (V)
CTL = 5 V
10
CT = 330 pF
Tek
5
RT = 15 kΩ
Vin2 = 2.5 V
0
RL = 20 Ω
CS (V)
CS = 0.1 µF
4
2
0
CTL (V) 5
100 ms
2V
0
0
200
400
600
800
1000
t (ms)
<MB3833A>
VCC = Vin = 16 V
15
5V
5V
VBATT (V)
CTL = 5 V
10
CT = 330 pF
Tek
5
RT = 15 kΩ
Vin2 = 2.5 V
0
RL = 20 Ω
4
CS = 0.1 µF
CS (V)
2
0
CTL (V) 5
100 ms
2V
0
0
200
400
600
800
1000 t (ms)
<MB3843>
VCC = Vin = 16 V
15
5V
5V
VBATT (V)
CTL = 5 V
10
CT = 330 pF
Tek
5
RT = 15 kΩ
Vin2 = 2.5 V
0
RL = 20 Ω
4
CS = 0.1 µF
CS (V)
2
0
CTL (V) 5
100 ms
2V
0
0
200
400
600
800
1000
t (ms)
19
MB3813A/MB3833A/MB3843
■ USAGE PRECAUTION
• Printed circuit board ground lines should be designed in consideration of common impedance values.
• Observe precautions against static electricity.
• Containers in which semiconductors are placed should either be protected against static electricity, or be of
conductive material.
• After devices are mounted, use conductive bags or conductive containers when storing or transporting printed
circuit boards.
• Working surfaces, tools and instruments should be properly rounded.
• Workers should be grounded by a ground line with 250 kΩ to 1 MΩ resistance in series between the worker
and ground.
• Do not apply negative voltages.
The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnomal
operation.
■ ORDERING INFORMATION
Part number
MB3813APFV
MB3833APFV
MB3843PFV
20
Package
16-pin plastic SSOP
(FPT-16P-M05)
Remarks
MB3813A/MB3833A/MB3843
■ PACKAGE DIMENSION
* : These dimensions do not inclule resin protrusion.
16-pin plastic SSOP
(FPT-16P-M05)
* 5.00±0.10(.197±.004)
0.17±0.03
(.007±.001)
9
16
* 4.40±0.10
6.40±0.20
(.173±.004) (.252±.008)
INDEX
Details of "A" part
+0.20
1.25 –0.10
+.008
.049 –.004
LEAD No.
1
8
0.65(.026)
0.10(.004)
C
(Mounting height)
1999 FUJITSU LIMITED F16013S-3C-5
"A"
0.24±0.08
(.009±.003)
0.13(.005)
M
0~8°
0.50±0.20
(.020±.008)
0.45/0.75
(.018/.030)
0.10±0.10
(Stand off)
(.004±.004)
0.25(.010)
Dimensions in mm (inches)
21
MB3813A/MB3833A/MB3843
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0006
 FUJITSU LIMITED Printed in Japan
24
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The contents of this document may not be reproduced or copied
without the permission of FUJITSU LIMITED.
FUJITSU semiconductor devices are intended for use in standard
applications (computers, office automation and other office
equipments, industrial, communications, and measurement
equipments, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or
where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters,
vehicle operating controls, medical devices for life support, etc.)
are requested to consult with FUJITSU sales representatives before
such use. The company will not be responsible for damages arising
from such use without prior approval.
Any semiconductor devices have inherently a certain rate of failure.
You must protect against injury, damage or loss from such failures
by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required for
export of those products from Japan.