FUJITSU MB86291A

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-31102-1E
ASSP for Graphics Control
Graphics Display Controller
MB86291A
■ DESCRIPTION
The MB86291A is an evolved version of the Fujitsu MB86290A graphics controller designed for use in a car
navigation system or amusement equipment. The MB86291A is a graphics display controller with a geometry
processor, digital video capture facility, and on-chip SDRAM.
Embedding SDRAM implements data transfer at a higher bandwidth, resulting in faster drawing. Integrating the
geometry processor reduces the CPU load, thereby improving the performance of the entire system.
■ FEATUERS
• Operating frequency : 100 MHz (External clock of 14.32 MHz Max)
• Geometry processor: Capable of executing operations for geometric transformation and surface front/rear
evaluation.
• Memory block: Embedded 16-Mbit SDRAM
• Video capture block: Embedded facility to capture digital video images, for example, from TV, capable of easily
implementing “Picture in Picture” and video graphics superimposing.
• Host interface: Enables direct connection to various CPUs (Fujitsu SparcLite, Hitachi SH3/4 or NEC V83x) .
(Continued)
■ PACKAGE
208-pin plastic QFP
(FPT-208P-M04)
MB86291A
(Continued)
• Drawing features:
• Drawing at a peak rate of 800 Mpixels per second (at an internal operating frequency of 100 MHz)
• 2D drawing functions: Point, line, triangle, polygon, BLT, and pattern drawing
• 3D drawing functions: Point, line, and triangle drawing, and hidden surface removal by Z-buffering
• Special effects: Anti-aliasing, bold/dashed-line processing, alpha blending, Gouraud shading, texture
mapping (bilinear filtering, perspective correct) , and tiling
• Display features :
• Maximum display resolution supported : 1024×768 pixels
• Color display either with a color palette of 8 bits per pixel or directly using 5-bit RGB colors of 16 bits per pixel
• Overlaying four layers of screen, of which two lower layers can be divided into the left and right parts
• Supporting two 64×64-pixel hardware cursors
• Output of analog RGB and digital RGB signals
• Capable of superimposing using an external synchronization mode
• Power-supply voltage : Two power supplies at 2.5 V±0.2 V for internal circuits and SDRAM, and 3.3 V±0.2 V
for I/O parts
• Package: Plastic QFP with 208 pins (with a lead pitch of 0.5 mm)
• Process technology : 0.25 µm CMOS
2
MB86291A
■ PIN ASSIGNMENT
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
VSS
GV
HSYNC
VSYNC
CSYNC
VSS
DCLKO
VDDE
VI7
VI6
VI5
VI4
VI3
VI2
VI1
VI0
VDDI
VSS
DCLKI
EO
RESERVE
RESERVE
RESERVE
RESERVE
RESERVE
TESTH5
CCLK
VDDE
VSS
A24
A23
A22
A21
A20
A19
A18
A17
A16
VDDI
VSS
A15
A14
A13
A12
A11
A10
A9
A8
TESTL1
VDDE
VDDI
VSS
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
ACOMPR
VREF
VRO
AVD3
AOUTR
AVS3
AVS2
AVD2
AVS1
AOUTG
AVD1
ACOMPG
AVS0
AOUTB
AVD0
ACOMPB
VSS
VDDI
A7
A6
A5
A4
A3
A2
VDDI
VSS
PLLVSS
S
OSCOUT
PLLVDD
VDDE
VSS
CLK
OSCCNT
VSS
VDDI
WE3
WE2
WE1
WE0
RD
BS
CS
BCLKI
VDDI
VSS
VDDE
OPEN
DTACK/TC
DRACK/DMAAK
CKM
TESTH4
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
TESTH0
VSS
VDDI
D0
D1
D2
D3
D4
D5
D6
D7
VDDE
VSS
D8
D9
D10
D11
D12
D13
D14
VDDI
VSS
D15
D16
D17
D18
VDDE
D19
D20
D21
D22
D23
D24
VSS
VDDI
D25
D26
D27
D28
D29
VSS
VDDE
D30
D31
RDY
DREQ
INT
VSS
VDDI
TESTH1
TESTH2
TESTH3
VSS
VCC0
R0
R1
VCC1
VSS
R2
R3
R4
R5
R6
R7
VCC2
VDDE
VSS
VCC3
VDDI
G0
G1
G2
G3
VSS
G4
G5
G6
G7
VDDE
B0
B1
B2
B3
VSS
B4
B5
B6
B7
VCC4
VDDI
VSS
VCC5
VDDE
CLKSEL0
CLKSEL1
RESET
MODE0
MODE1
VSS
VCC6
MODE2
TESTL0
VCC7
VSS
: Ground
VSS/AVS/PLLVSS
: 3.3 V power supply
VDDH/VDDE
VDDL/AVD/PLLVDD/VCC/VDDI : 2.5 V power supply
: Analog power supply
AVD
: PLL power supply
PLLVDD
: Internal DRAM power supply
VCC
: Do not connect anything.
OPEN
: Input the low level.
TESTL0/TESTL1
: Input the high level.
TESTH0 ~ TESTH5
: Input the high level.
RESERVE
Notes : • The AVD and PLLVDD should be separated on the board.
• Insert a bypass capacitor with a superior high-frequency characteristic between the power
supply and ground. Place the capacitor as near the pins as possible.
3
MB86291A
■ PIN DESCRIPTION
D0-D31
DCLKO
A2-A24
DCLKI
AOUTR, AOUTG,
AOUTB
HSYNC
BCLKI
RESET
Host CPU
interface
CS
VSYNC
RD
CSYNC
WE0-WE3
EO
RDY
GV
BS
DREQ
MB86291A
Graphics Controller
DRACK
DTACK
INT
MODE0MODE2
TESTL, TESTH
HQFP208
VREF
VRO
ACOMPR, ACOMPG,
ACOMPB
R0-R7
G0-G7
B0-B7
CCLK
CLK
S
Clock
CKM
CLKSEL0CLKSEL1
OSCOUT
OSCCNT
4
Vide output
interface
VI0-VI7
Vide capture
interface
MB86291A
• Host Interface Pins
Pin Name
Input/output
Function
MODE0 to MODE2
Input
Host CPU mode/Ready mode select
RESET
Input
Hardware reset
D0 to D31
Input/output
A2 to A24
Input
Host CPU bus address (Connect A[24] to MWR in V832 mode.)
BCLKI
Input
Host CPU bus clock
BS
Input
Bus cycle start signal
CS
Input
Chip select signal
RD
Input
Read strobe signal
WE0
Input
D0 to D7 write strobe signal
WE1
Input
D8 to D15 write strobe signal
WE2
Input
D16 to D23 write strobe signal
WE3
Input
D24 to D31 write strobe signal
RDY
Output
Tristate
Wait request signal
(“0” for wait state with SH3; “1” for wait state with SH4, V832, or SPARClite)
DREQ
Output
DMA request signal (active low with both SH and V832)
DRACK/DMAAK
Input
DMA request acknowledge signal (Connect this to DMAAK in V832 mode.
Active high with both SH and V832.)
DTACK/TC
Input
DMA transfer strobe signal (Connect this to TC in V832 mode. SH = active
high, V832 = active low)
INT
Output
TEST0, TEST1,
TESTH0 to TESTH5
Input
Host CPU bus data
Host CPU interrupt signal (SH = active low, V832 = active high)
Test signal
Note : The host interface can connect the MB86291A to the SH4 (SH7750) or SH3 (SH7709) from Hitachi Ltd.
the V832 from NEC, or to the SPARClite (MB86833) from Fujitsu without any external circuit in between.
(Using the SRAM interface allows the MB86291A to use another CPU.) The host CPU is set by the
MODE0 and MODE1 pins as shown below.
MODE1 pin
MODE0 pin
CPU Type
L
L
SH3
L
H
SH4
H
L
V832
H
H
SPARClite
Note : The MODE2 pin can be used to set the Ready signal level to be used upon completion of the bus cycle. To
use the MODE2 signal at "H" level, set the software setting to two cycles.
MODE2 pin
Ready signal mode
L
Set RDY signal to "Not Ready" level upon completion of bus cycle.
H
Set RDY signal to "Ready" level upon completion of bus cycle.
5
MB86291A
Notes : • The host interface transfers data signals at a fixed width of 32 bits.
• There are 23 lines for address signals handled in double words ( = 32 bits) and 32 Mbytes of address
space.
• The external bus can be used at an operating frequency of 100 MHz maximum.
• The RDY signal at the low level sets the ready state in the SH4 or V832 mode; the signal at the low level
sets the wait state in the SH3 mode. Note that the RDY signal is a tristate output.
• The host interface supports DMA transfer using an external DMA controller.
• The host interface generates a host processor interrupt signal.
• The RESET pin requires low level input of at least 300 µs after setting “S” (PLL reset signal) to high level.
• Fix the TEST signal at high level.
• In the V832 mode, connect the following pins as specified :
SCARLET Pin Name
V832 Signal Name
A24
MWR
DTACK
TC
DRACK
DMAAK
• Vide Output Interface
Pin Name
Input/output
Function
DCLKO
Output
Display dot clock signal output
DCLKI
Input
HSYNC
Input/output
Horizontal sync signal output
Horizontal sync signal input in external synchronization mode
VSYNC
Input/output
Vertical sync signal output
Vertical sync signal input in external synchronization mode
CSYNC
Output
EO
Input
GV
Output
Graphics/video select signal
R0-R7
Output
Digital video (R) signal output
G0-G7
Output
Digital video (G) signal output
B0-B7
Output
Digital video (B) signal output
Dot clock signal input
Composite sync signal output
Even/odd-number field identification input
AOUTR
Analog output Analog video (R) signal output
AOUTG
Analog output Analog video (G) signal output
AOUTB
Analog output Analog video (B) signal output
VREF
Analog
Reference voltage input pin
ACOMPR
Analog
R-signal compensation pin
ACOMPG
Analog
G-signal compensation pin
ACOMPB
Analog
B-signal compensation pin
VRO
Analog
Reference current setting pin
Notes : • The video output interface contains an 8-bit D/A converter to output analog RGB signals. Also, the
eight-bit RGB digital output pins can connect an external digital video encoder.
• Using an additional external circuit, the video output interface can generate composite video signals.
• The video output interface can provide display synchronized with external video. The mode for
synchronization with the DCLKI signal can be selected as well as the mode for synchronization with a set
dot clock as for normal display.
6
MB86291A
• The HSYNC and VSYNC signals must be pulled up outside the LSI as they enter the input state upon reset.
• Terminate the AOUTR, AOUTG, and AOUTB pins with a resistance of 75 Ω.
• Input 1.1 V to the VREF pin. Between this pin and analog ground, insert a bypass capacitor (one with a
superior high-frequency characteristic such as a laminated ceramic capacitor).
• Connect the ACOMPR, ACOMPG, and ACOMPB pins to the 0.1 µF ceramic capacitor ahead of the analog
power supply.
• Connect the VRO pin to the analog ground with a 2.7 kΩ resistor.
• For noninterlaced display in external synchronization mode, input "0" to the EO pin, for example, using
a pull-down resistor.
• The GV signal serves to switch between graphics and video for chroma keying. The pin outputs a low
level signal to select video.
7
MB86291A
• Video Capture Interface
Pin Name
Input/output
Function
CCLK
Input
Digital video input clock signal input
VI0-VI7
Input
Digital video data input
Note : The video capture interface inputs digital video signals in the ITU-RBT-656 format.
• Clock Input
Pin Name
Input/output
Function
CLK
Input
Clock input signal
S
Input
PLL reset signal
CKM
Input
Clock mode signal
Input
Clock rate select signal
CLKSEL1, CLKSEL0
1
Input/output
2
Input
OSCOUT*
OSCCNT*
For connection of crystal oscillator (Reserved)
For selection of crystal oscillator (Reserved)
*1 : Do not connect anything.
*2 : Input the “H” level.
Notes : • The clock input block inputs the clock signal that serves as the basis for the reference clock for the internal
operating clock and display dot clock. Usually input 4 Fsc ( = 14.31818 MHz) . The internal PLL generates
the internal operating clock signal of 100 MHz and the display reference clock signal of 200 MHz.
• The internal operating clock signal to be used can be selected between the clock signal (100 MHz)
generated by the internal PLL and the bus clock BCLKI input to the host CPU interface. Select the BCLKI
input to use the host CPU bus at 100 MHz.
CKM
Clock Mode
L
Select internal PLL output.
H
Select host CPU bus clock (BCLKI)
Note : Use the CLKSEL pin to select the input clock frequency for using the internal PLL with CKM = L.
CLKSEL1
CLKSEL0
Clock Frequency
L
L
Input 13.5 MHz.
L
H
Input 14.32 MHz.
H
L
Input 17.73 MHz.
H
H
Reserved
Note : Immediately after turning the power supply on, input a pulse whose low level period is 500 ns or more to the
S pin before setting it to high level. After the S signal goes high, input the RESET signal at low level for 300
µs or more
8
MB86291A
■ BLOCK DIAGRAM
D0-D31
External Video
Interface Controller
Host
Interface
RBT656
A2-A24
Display Controller
DAC
Memory
Interface
Controller
Geometry
Engine
DRGB
ARGB
2D/3D
Rendering
Engine
Embedded SDRAM
9
MB86291A
■ FUNCTION BLOCKS
• Host Interfacee
This block allows the MB86291A to be connected to the SH3 or SH4 microprocessor from Hitachi Ltd., the V83x
microprocessor from NEC, or to the SPARCLite from Fujitsu without any external circuit in between. The block
provides an interface to transfer display list and texture pattern data directly from main memory to this device’s
graphics memory or internal register using the external DMA controller.
• Memory Interface Controller and Embedded SDRAM
The embedded 16-megabit SDRAM eliminates the need for external memory. The SDRAM operates at 100 MHz.
• Display Controller
This block contains a three-channel, eight-bit D-A converter to output analog RGB signals. The block has eightbit RGB digital video outputs, allowing an external digital video encoder to be connected. The block supports
resolutions of up to XGA (1024×768 pixels), enabling flexible setting.
• External Video Interface Controller
This block can input digital video in the ITU RBT-656 format by connecting an external digital video decoder
using the eight-bit video input pin. Input video data is stored temporarily in graphics memory and then displayed
on the screen in synchronization with the display scan.
The block supports video in the NTSC and PAL formats.
• Set-up Engine
The on-chip geometry engine executes mathematical operations required for graphics processing precisely using
the fronting-point format. The geometry engine executes the required geometry processes selected depending
on the drawing mode and primitive type settings up to the final drawing process.
• 2D/3D Rendering Engine
This block draws images in two or three dimensions.
• 2D drawing
The block provides the anti-aliasing and alpha blending functions to display high-quality images even on a lowresolution LCD.
• 3D drawing
The block provides true 3D drawing functions such as perspective texture mapping and Gouraud shading.
10
MB86291A
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Rating
Symbol
Unit
Min
Max
VDDL*1
− 0.5
+ 3.0
VDDH
− 0.5
+ 4.0
Input voltage
VI
− 0.5
VDDH + 0.5 (< 4.0)
V
Output current
IO
− 13
+ 13
mA
IPOW

60
mA
Power supply voltage
Power pin current
Ambient operating temperature
Ambient storage temperature
+ 70
0
TA
− 30*
°C
+ 85*2
2
− 55
Tstg
V
+ 125
°C
*1 : The analog and PLL power supplies are included.
*2 : Model supporting a wider range of temperatures
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITION
Parameter
Symbol
Value
Unit
Min
Typ
Max
VDDL*1
2.3
2.5
2.7
V
VDDH
3.0
3.3
3.6
V
Input voltage (High level)
VIH
2.0

VDDH + 0.3
V
Input voltage (Low level)
VIL
− 0.3

+ 0.8
V
VREF pin input voltage
VREF
1.05
1.10
1.15
V
VRO pin external resistor
RVRO

2.7

kΩ
RAOUT

75

Ω
CACOMP

0.1

µF
TA
− 40

+ 85
°C
Power supply voltage
AOUT pin external resistor*2
ACOMP pin external capacitor*
3
Ambient operating temperature
*1 : The analog and PLL power supplies are included.
*2 : AOUTR, AOUTG and AOUTB pins
*3 : ACOMPR, ACOMPG, and ACOMPB pins
11
MB86291A
Notes : • The VDDL and VDDH power supplies can be turned on or off in either order.
Note, however, that the VDDH voltage must not be applied alone continuously for several seconds.
• After turning the power on, input a pulse remaining at low level for at least 500 ns to the S pin. Then, set
the S pin to high level and input the RESET signal held at low level for at least 300 µs.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
12
MB86291A
■ ELECTRICAL CHARACTERISTICS
1. DC Characteristics
Parameter
VDDL = 2.5 V ± 0.2 V, VDDH = 3.3 V ± 0.3, VSS = 0.0 V, TA = 0 °C to + 70 °C
Value
Symbol
Unit
Min
Typ
Max
Output voltage (High level) *1
VOH
VDDH − 0.2

VDDH
V
Output voltage (Low level) *2
VOL
0.0

0.2
V
OHM 4
− 4.0
OHH 3
− 8.0


mA
IOLM*4
4.0
IOLH*3
8.0


mA
9.90
10.42
10.94
mA
0
2
20
µA
VAOUT
− 0.1

+ 1.1
V
Input leakage current
IL


±5
µA
Pin capacitance
C


16
pF
Output current (High level)
Output current (Low level)
AOUT output current*5
Full scale
Zero scale
AOUT voltage*6
I
*
I
*
IAOUT
*1 : Value when −100 µA current flows into output pins.
*2 : Value when 100 µA current flows into output pins.
*3 : Output characteristics of INT, DREQ, and RDY
*4 : Output characteristics of the signals (excluding analog signals) other than those in *3
*5 : AOUTR, AOUTG, and AOUTB pin output current. Condition VREF = 1.10 V, RVRO = 2.7 kΩ
(The full-scale output current calculation expression is (VREF / RVRO) × 25.575)
*6 : AOUTR, AOUTG, and AOUTB pins
13
MB86291A
2. AC Characteristics
(VIH = 2.0 V, VIL = 0.8 V)
• Input measurement conditions
tf
tr
VIH
80%
Input
80%
(VIH + VIL) / 2
20%
20%
VIL
•tr, tf ≤ 5 ns
•Input measurement standard : (VIH + VIL) / 2
• Output measurement conditions
VIH
Input
(VIH + VIL) /2
VIL
tpHL,
tpZL
tpLH,
tpZH
VOH
Output 1
VDD/2
VDD/2
VOL
tpLZ
Output 2
0.5 V
VOL
tpHZ
VOH
Output 3
•Output measurement standard : tpLZ : VOL + 0.5 V
tpHZ : VOH − 0.5 V
Else : VDD/2
14
0.5 V
MB86291A
(1) Host Interface
• Clock signals
Value
Symbol
Condition
Min
Typ
Max
BCLKI frequency
fBCLKI



100
MHz
BCLKI H period
tHBCLKI

1


ns
BCLKI L period
tLBCLKI

1


ns
Parameter
Unit
• Host interface signals
(External load of 20 pF)
Value
Symbol
Condition
Min
Typ
Max
Address setup time
tADS

4


ns
Address hold time
tADH

0


ns
BS setup time
tBSS

3


ns
BS hold time
tBSH

0


ns
CS setup time
tCSS

3


ns
CS hold time
tCSH

0


ns
RD setup time
tRDS

3


ns
RD hold time
tRDH

0


ns
WE setup time
tWES

5


ns
WE hold time
tWEH

1


ns
Write data setup time
tWDS

3


ns
Write data hold time
tWDH

0


ns
DTACK setup time
tDAKS

3


ns
DTACK hold time
tDAKH

0


ns
DRACK setup time
tDRKS

3


ns
DRACK hold time
tDRKH

0


ns
Read data delay time (to RD)
tRDDZ

3.0

11.0
ns
Read data delay time
tRDD
*2
4.5

10.5
ns
RDY delay time (to CS)
tRDYDZ

2.5

5.0
ns
RDY delay time
tRDYD

2.5

6.0
ns
INT delay time
tINTD

3.0

6.5
ns
DREQ delay time
tDRQD

2.5

6.0
ns
MODE hold time
tMODH
*1


20.0
ns
Parameter
Unit
*1 : Hold time for reset cancellation
*2 : Read data is output one cycle before the CPU samples it.
15
MB86291A
• Clock
1/fBCLKI
tHBCLKI
tLBCLKI
BCLKI
• Input setup and hold times
BCLKI
A2~A24,
BS, CS,
DTACK,
DRACK
tADS, tBSS, tCSS,
tDAKS, tDRKS
tADH, tBSH, tCSH,
tDAKH, tDRKH
• Read/write enable (RD, WE) and input data (D) setup times
BCLKI
BS
RD, WE
D0~D31
16
tRDS, tWES
tWDS
tRDH,
tWEH
tWDH
MB86291A
• DREQ output delay time
BCLKI
DREQ (output)
tDRQD
• INT output delay time
BCLKI
INT (output)
tINTD
• RDY delay value (with respect to CS)
BCLKI
CS
High-Z
High-Z
RDY (output)
tRDYDZ
tRDYDZ
17
MB86291A
• RDY/D output delay values
BCLKI
RD
tRDD
tRDDZ
High-Z
Output data
D0~D31
(output)
RDY
tRDYD
tRDYD
• MODE signal hold time
RESET
MODE0~
MODE2
tMODH
18
MB86291A
(2) Video Interface
• Clock
Value
Symbol
Condition
Min
Typ
Max
CLK frequency
fCLK


14.32

MHz
CLK H period
tHCLK

25


ns
CLK L period
tLCLK

25


ns
DCLKI frequency
fDCLKI



67
MHz
DCLKI H period
tHDCLKI

5


ns
DCLKI L period
tLDCLKI

5


ns
DCLKO frequency
fDCLKO



67
MHz
Symbol
Condition
Min
Typ
Max
tWHSYNC0
*1
3


clock
tWHSYNC1
*2
3


clock
HSYNC input setup time
tSHSYNC
*2
10


ns
HSYNC input hold time
tHHSYNC
*2
10


ns
VSYNC input pulse width
tWHSYNC1

1


HSYNC
1 cycle
EO input setup time
tSEO
*3
10


ns
EO input hold time
tHEO
*3
10


ns
Parameter
unit
• Input signals
Parameter
HSYNC input pulse width
Value
unit
*1 : Applied only in PLL synchronization mode (CKS = 0) . The reference clock is the internal PLL’s output with Cycle
= 1/ (14 fCLK) .
*2 : Applied only in DCLKI synchronization mode (CKS = 1) . The reference clock is DCLKI.
*3 : Based on the edge with VSYNC negated.
• Output signals
Value
Symbol
Condition
Min
Typ
Max
tDEO
*
1.5

11
ns
HSYNC output delay time
tDHSYNC

1.5

11
ns
VSYNC output delay time
tDVSYNC

1.5

11
ns
CSYNC output delay time
tDCSYNC

1.5

11
ns
tDGV

1.5

11
ns
Parameter
EO output delay time
GV output delay time
unit
* : The EO output varies at the same time as VSYNC is asserted.
19
MB86291A
• Clock
1/fCLK
tHCLK
tLCLK
CLK
VIH
VIL
• HSYNC signal setup and hold
1/fDCLKI
tHDCLKI
tLDCLKI
DCLKI
HSYNC
(input)
tSHSYNC tHHSYNC
• EO signal setup and hold
VSYNC
EO
(input)
tSEO
tHEO
• Output signal delay
DCLKO
EO (output)
HSYNC (output)
VSYNC (output)
CSYNC
GV
tDEO, tDHSYNC, tDVSYNC,
tDCSYNC, tDGV
20
MB86291A
(3) Video Capture Interface
• Clock
Value
Symbol
Condition
Min
Typ
Max
CCLKI frequency
fCCLKI


27

MHz
CCLKI H period
tHCCLKI

1


ns
CCLKI L period
tLCCLKI

1


ns
Parameter
unit
• Input signals
Value
Symbol
Condition
Min
Typ
Max
VI setup time (External load of 25 pF)
tVIS

11


ns
VI hold time (External load of 15 pF)
tVIH

2


ns
Parameter
unit
• Clock
1/fCLK
tHCLK
CLK
tLCLK
VIH
VIL
• Video input
CCLKI
VI0~VI7
tVIS
tVIH
21
MB86291A
(4) PLL Standards
Parameter
22
Value
Unit
Remarks
Min
Typ
Max
Input frequency

14.31818

MHz
Output frequency


200.45452
MHz
Duty ratio
93.1

101.3
%
PLL output clock H/L pulse width ratio
Jitter
− 150

+ 180
ps
Cycle difference between two
consecutive cycles
Multiplied by 14
MB86291A
■ ORDERING INFORMATION
Part Number
MB86291APFVS
Package
Remarks
208-pin plastic QFP
(FPT-208P-M04)
23
MB86291A
■ PACKAGE DIMENSION
208-pin plastic QFP
(FPT-208P-M04)
Note : Pins width and pins thickness include plating thickness.
30.60±0.20(1.205±.008)SQ
28.00±0.10(1.102±.004)SQ
+0.03
0.17 –0.08
156
+.001
.007 –.003
105
157
104
0.08(.003)
Details of "A" part
+0.20
3.75 –0.30
+.008
.148 –.012
(Mounting height)
+0.10
0.40 –0.15
+.004
INDEX
0°~8°
208
LEAD No.
53
1
52
0.50(.020)
C
0.22±0.05
(.009±.002)
0.08(.003)
"A"
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
.016 –.006
(Stand off)
0.25(.010)
M
2000 FUJITSU LIMITED F208020S-c-2-3
Dimension in mm (inches)
24
MB86291A
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fma.fujitsu.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmal.fujitsu.com/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0203
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.