FUJITSU MB86292PFFS-G-BND

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-31103-1E
ASSP for Graphics Control
Graphics Display Controller
MB86292
■ DESCRIPTION
The MB86292 is an evolved version of the Fujitsu MB86290A graphics controller designed for use in a car
navigation system or amusement equipment. The MB86292 is a graphics display controller with an on-chip
geometry processor and digital video capture facility. It can be connected to FCRAM.
Connecting the MB86292 to FCRAM which has lower latency upon a paging error speeds up the random access
to memory, resulting in faster display and drawing. In addition, integrating the geometry processor reduces the
CPU load, thereby improving the performance of the entire system.
■ FEATURES
• Operating frequency : 100 MHz (External clock of 14.32 MHz Max)
• Geometry processor : Capable of executing operations for geometric transformation and surface front/rear
evaluation.
• Memory block : Capable of connecting SDRAM and FCRAM
• Video capture block : Embedded facility to capture digital video images, for example, from TV, capable of easily
implementing “Picture in Picture” and video graphics superimposing.
• Host interface : Enables direct connection to various CPUs (Fujitsu SparcLite, Hitachi SH3/4 or NEC V83x) .
(Continued)
■ PACKAGE
256-pin plastic QFP
(FPT-256P-M09)
MB86292
(Continued)
• Drawing features :
• Drawing at a peak rate of 800 Mpixel/s (at an internal operating frequency of 100 MHz)
• 2D drawing functions : Point, line, triangle, polygon, BLT and pattern drawing
• 3D drawing functions : Point, line, triangle drawing and hidden surface removal by Z-buffering
• Special effects : Anti-aliasing, bold/dashed-line processing, alpha blending, Gouraud shading, texture mapping (bilinear filtering, perspective correct) , and tiling
• Display features :
• Maximum display resolution supported : 1024 × 768 pixels
• Color display either with a color palette of 8 Bit/Pixel or directly using 5-bit RGB colors of 16 Bit/Pixel
• Overlaying four layers of screen, of which two lower layers can be divided into the left and right parts
• Supporting two 64 Pixel × 64 Pixel hardware cursors
• Output of analog RGB and digital RGB signals
• Capable of superimposing using an external synchronization mode
• Power-supply voltage : Two power supplies at 2.5 ± 0.2 V, for internal circuits and 3.3 ± 0.2 V for I/O parts
• Package : PlasticQFP with 256 pins (with a lead pitch of 0.4 mm)
• Process technology : CMOS 0.25 µm
2
MB86292
CS
BS
RD
RESET
VSS
VDDL
VDDH
DTACK/TC
DRACK/DMAAK
A24
A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
VSS
VDDL
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
VSS
VDDH
OSCCNT
PLLVDD
S
OSCOUT
PLLVSS
CLK
VSS
VDDL
CLKSEL0
CLKSEL1
CKM
VI7
VI6
VI5
VI4
VI1
VI0
VI3
CCLK
VI2
VSS
VDDL
VDDH
DCLKI
TESTH
TESTH
TESTH
TESTH
■ PIN ASSIGNMENT
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
203
205
202
204
201
200
199
188
187
186
185
184
183
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
TESTH
GV
VSYNC
HSYNC
CSYNC
DISPE
DCLKO
VDDH
VSS
VDDL
R7
R6
R5
R4
R3
G7
G6
G5
G4
G3
B7
B6
B5
B4
B3
VSS
VDDL
VDDH
MD63
MD62
MD61
MD60
MD59
MD58
MD57
MD56
MD55
MD54
MD53
MD52
MD51
MD50
MD49
MD48
VSS
VDDL
MD47
MD46
MD45
MD44
MD43
MD42
MD41
MD40
MD39
MD38
MD37
MD36
MD35
MD34
MD33
MD32
VSS
VDDH
VDDL
VSS
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15
MD16
MD17
MD18
MD19
MD20
MD21
MD22
VDDH
VDDL
VSS
MD23
MD24
MD25
MD26
MD27
MD28
MD29
MD30
MD31
MA0
MA1
MA2
MA3
MA4
VDDH
VSS
MCLKO
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MWE
VDDH
VDDL
VSS
MDQM0
MDQM1
MDQM2
MDQM3
MDQM4
MDQM5
MDQM6
MDQM7
MRAS
MCAS
VDDL
VSS
MCLKI
RGBEN
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
WE0
WE1
WE2
WE3
BCLKI
MODE0
MODE1
MODE2
TESTH
TESTH
VDDH
VDDL
VSS
RDY
DREQ
INT
D0
D1
D2
D3
D4
D5
VDDH
VSS
VDDL
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
VSS
VDDL
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
VDDH
VDDL
VSS
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
VSS/PLLVSS
VDDH
VDDL/PLLVDD
PLLVDD
OPEN
TESTH
: Ground
: 3.3 V power supply
: 2.5 V power supply
: PLL power supply
: Do not connect anything.
: Input the high level.
Notes : • The PLLVDD should be separated on the board.
• Insert a bypass capacitor with a superior high-frequency characteristic between the power
supply and ground.
Place the capacitor as near the pins as possible.
3
MB86292
■ PIN DESCRIPTION
D0-D31
DCLKO
A2-A24
DCLKI
BCLKI
HSYNC
RESET
VSYNC
CS
CSYNC
RD
DISPE
WE0-WE3
Host CPU
interface
GV
RDY
BS
DREQ
Video output
interface
R3-R7
MB86292
G3-G7
Graphics Controller
B3-B7
DRACK
RGBEN
DTACK
INT
MODE0-MODE2
TESTL, TESTH
Clock
HQFP256
CCLK
VI0-VI7
CLK
MD0-MD63
S
MA0-MA13
CKM
CLKSEL0CLKSEL1
OSCOUT
OSCCNT
MRAS
MCAS
MWE
MDQM0-MDQM7
MCLKO
MCLKI
4
Vide capture
interface
Graphics
memory
interface
MB86292
• Host Interface Pins
Pin Name
Input/output
Function
MODE0MODE2
Input
Host CPU mode/Ready mode select
RESET
Input
Hardware reset
D0-D31
Input/output
A2-A24
Input
Host CPU bus address (Connect A24 to MWR in V832 mode.)
BCLKI
Input
Host CPU bus clock
BS
Input
Bus cycle start signal
CS
Input
Chip select signal
RD
Input
Read strobe signal
WE0
Input
D0-D7 write strobe signal
WE1
Input
D8-D15 write strobe signal
WE2
Input
D16-D23 write strobe signal
WE3
Input
D24-D31 write strobe signal
RDY
Output
Tristate
Wait request signal (“0” for wait state with SH3; “1” for wait state with SH4, V832,
or SPARClite)
DREQ
Output
DMA request signal (active low with both SH and V832)
DRACK/
DMAAK
Input
DMA request acknowledge signal (Connect this to DMAAK in V832 mode.
Active high with both SH and V832.)
DTACK/TC
Input
DMA transfer strobe signal (Connect this to TC in V832 mode. SH = active high,
V832 = active low)
INT
Output
TESTH
Input
Host CPU bus data
Host CPU interrupt signal (SH = active low, V832 = active high)
Test signal
Note : The host interface can connect the MB86292 to the SH4 (SH7750) or SH3 (SH7709) from Hitachi Ltd. the
V832 from NEC, or to the SPARClite (MB86833) from Fujitsu without any external circuit in between. (Using
the SRAM interface allows the MB86292 to use another CPU.) The host CPU is set by the MODE0 and
MODE1 pins as shown below.
MODE1 pin
MODE0 pin
CPU Type
L
L
SH3
L
H
SH4
H
L
V832
H
H
SPARClite
Note : The MODE2 pin can be used to set the Ready signal level to be used upon completion of the bus cycle. To
use the MODE2 signal at "H" level, set the software setting to two cycles.
MODE2 pin
Ready signal mode
L
Set RDY signal to “Not Ready” level upon completion of bus cycle.
H
Set RDY signal to “Ready” level upon completion of bus cycle.
5
MB86292
Notes : • The host interface transfers data signals at a fixed width of 32 bits.
• There are 23 lines for address signals handled in double words (32 bits) and 32 Mbytes of address space.
• The external bus can be used at an operating frequency of 100 MHz maximum.
• The RDY signal at the low level sets the ready state in the SH4 or V832 mode; the signal at the low level
sets the wait state in the SH3 mode. Note that the RDY signal is a tristate output signal synchronized to the
rise of BCLKI.
• The host interface supports DMA transfer using an external DMA controller.
• The host interface generates a host processor interrupt signal.
• The RESET pin requires low level input of at least 300 µs after setting "S" (PLL reset signal) to high level.
• Fix the TEST signal at high level.
• In the V832 mode, connect the following pins as specified :
ORCHID Pin Name
V832 Signal Name
A24
MWR
DTACK
TC
DRACK
DMAAK
• Video Output Interface Pins
Pin Name
Input/output
Function
DCLKO
Output
Display dot clock signal output
DCLKI
Input
HSYNC
Input/output
Horizontal sync signal output
Horizontal sync signal input in external synchronization mode
VSYNC
Input/output
Vertical sync signal output
Vertical sync signal input in external synchronization mode
CSYNC
Output
Composite sync signal output
DISPE
Output
Display effective period signal
GV
Output
Graphics/video select signal
R3-R7
Output
Digital video (R) signal output
G3-G7
Output
Digital video (G) signal output
B3-B7
Output
Digital video (B) signal output
RGBEN
Input
Dot clock signal input
RGB2-0 output/memory bus (MD63-55) select signal
Notes : • The video output interface outputs RGB pieces of five-bit display data by default. It can output RGB pieces
of eight-bit display data depending on conditions. R0-2, G0-2, and B0-2 can be output to MD61-MD63,
MD58-MD60, and MD58-MD60, respectively, by fixing RGBEN to 0. When eight-bit RGB output is selected,
only the 32-bit memory bus width mode can be used.
• Using an additional external circuit, the video output interface can generate composite video signals.
• The video output interface can provide display synchronized with external video. The mode for
synchronization with the DCLKI signal can be selected as well as the mode for synchronization with a set
dot clock as for normal display.
• The HSYNC and VSYNC signals must be pulled up outside the LSI as they enter the input state upon reset.
• The GV signal serves to switch between graphics and video for chroma keying. The pin outputs a low level
signal to select video.
6
MB86292
• Video Capture Interface Pins
Pin Name
Input/output
Function
CCLK
Input
Digital video input clock signal input
VI0-VI7
Input
Digital video data input
Note : The video capture interface inputs digital video signals in the ITU-RBT-656 format.
• Graphics Memory Interface Pins
Pin Name
Input/output
Function
MD0-MD54
Input/output
Graphics memory bus data
MD55-MD63
Input/output
Graphics memory bus data or RGB0-RGB2 output
MA0-MA13
Output
Graphics memory bus data
MRAS
Output
Row address strobe
MCAS
Output
Column address strobe
MWE
Output
Write enable
MDQM0-MDQM7
Output
Data mask
MCLKO
Output
Graphics memory clock output
MCLKI
Input
Graphics memory clock input
Notes : • The graphics memory interface connects the MB86292 to the external memory used for graphical image
data. The interface can directly accept 128-Mbit SDRAM or 64-Mbit SDRAM (with a 16-bit or 32-bit
data bus) without any external circuit.
• Memory bus data can be selected between 64 bits and 32 bits. To use 32-bit data, leave the MD32-MD63
and MDQM4-7 pins open in the eight-bit RGB output mode (RGBEN pin = 0) or the MD32-MD54 and
MDQM4-7 pins open in the eight-bit RGB output mode (RGBEN pin = 0).
• Connect the MCLKI pin to the MCLKO pin.
• When RGBEN is fixed to 1, MD55-MD63 can be used as graphics memory bus data. When RGBEN is
fixed to 0, RGB0-2 is output.
• Clock Input Pins
Pin Name
Input/output
Function
CLK
Input
Clock input signal
S
Input
PLL reset signal
CKM
Input
Clock mode signal
CLKSEL [1 : 0]
Input
Clock rate select signal
OSCOUT*1
Input/output
OSCCNT*
2
Input
For connection of crystal oscillator (Reserved)
Crystal oscillator select pin (Reserved)
*1 : Do not connect anything.
*2 : Input the "H" level.
Notes : • The clock input block inputs the clock signal that serves as the basis for the reference clock for the internal
operating clock and display dot clock. Usually input 4 Fsc ( = 14.31818 MHz for NTSC). The internal PLL
generates the internal operating clock signal of 100 MHz and the display reference clock signal of 200 MHz.
• The internal operating clock signal to be used can be selected between the clock signal (100 MHz)
generated by the internal PLL and the bus clock BCLKI input to the host CPU interface. Select the BCLKI
input to use the host CPU bus at 100 MHz.
7
MB86292
CKM
Clock Mode
L
Select internal PLL output.
H
Select host CPU bus clock (BCLKI).
• Use the CLKSEL pin to select the input clock frequency for using the internal PLL with CKM = L.
Display reference
CLKSEL1 CLKSEL0
Input Clock Frequency
Multiplier
clock
L
L
Input 13.5 MHz.
× 15
202.5 MHz
L
H
Input 14.32 MHz.
× 14
200.48 MHz
H
L
Input 17.73 MHz.
× 11
195.03 MHz
H
H
Reserved


Note : Immediately after turning the power supply on, input a pulse whose low level period is 500 ns or more to the
S pin before setting it to high level. After the S signal goes high, input the RESET signal at low level for 300
µs or more.
8
MB86292
■ BLOCK DIAGRAM
External
Bus of
Host CPU
D0-D31
Host
Interface
Capture Controller
RBT656
A2-A24
Pixel Bus
Display Controller
DRGB
MD0-MD63
SDRAM
or
FCRAM
MA0-MA13
External
Memory
Controller
Geometry
Engine
2D/3D
Rendering
Engine
9
MB86292
■ FUNCTION BLOCKS
• Host Interface
This block allows the MB86292 to be connected to the SH3 or SH4 microprocessor from Hitachi Ltd., the V83x
microprocessor from NEC, or to the SPARCLite from Fujitsu without any external circuit in between. The block
provides an interface to transfer display list and texture pattern data directly from main memory to this device’s
graphics memory or internal register using the external DMA controller.
• External Memory Controller
This block connects external SDRAM or FCRAM. The data bus can be selected between 64 bits and 32 bits
and the maximum operating frequency is 100 MHz.
• Display Controller
This block contains a three-channel, eight-bit D/A converter to output analog RGB signals. The block has eightbit RGB digital video outputs, allowing an external digital video encoder to be connected. The block supports
resolutions of up to XGA (1024×768 pixels), enabling flexible setting.
• Set-up Engine
The on-chip geometry engine executes mathematical operations required for graphics processing precisely using
the fronting-point format. The geometry engine executes the required geometry processes selected depending
on the drawing mode and primitive type settings up to the final drawing process.
• 2D/3D Rendering Engine
This block draws images in two or three dimensions.
2D drawing
The block provides the anti-aliasing and alpha blending functions to display high-quality images even on a lowresolution LCD.
3D drawing
The block provides true 3D drawing functions such as perspective texture mapping and Gouraud shading.
10
MB86292
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Rating
Unit
Min
Max
VDDL*
− 0.5
3.0
VDDH
− 0.5
4.0
Input voltage
VI
− 0.5
VDDH + 0.5 ( < 4.0)
V
Output current
IO
− 13
+ 13
mA
Power pin current
IPOW
60
60
mA
Ambient storage temperature
Tstg
− 55
+ 125
°C
Power supply voltage
V
* : The PLL power supply is included.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Value
Unit
Min
Typ
Max
VDDL*
2.3
2.5
2.7
VDDH
3.0
3.3
3.6
Input voltage (“H” level)
VIH
2.0

VDDH + 0.3
V
Input voltage (“L” level)
VIL
− 0.3

+ 0.8
V
Ambient operating temperature
TA
− 40

+ 85
°C
Power supply voltage
V
* : The PLL power supply is included.
Notes : • The VDDL and VDDH power supplies can be turned on or off in either order.
Note, however, that the VDDH voltage must not be applied alone continuously for several seconds.
• Do not input the HSYNC, VSYNC, or EO signal with the power-supply voltage not applied. (See “Input
voltage” in “■ ABSOLUTE MAXIMUM RATINGS”.)
• After turning the power on, input a pulse remaining at low level for at least 500 ns to the S pin. Then, set
the S pin to high level and input the RESET signal held at low level for at least 300 µs.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
11
MB86292
■ ELECTRICAL CHARACTERISTICS
1. DC Characteristics
Paramater
(VDDL = 2.5 ± 0.2 V, VDDH = 3.3 ± 0.3, VSS = 0.0 V, Ta = 0 °C to + 70 °C)
Value
Symbol
Unit
Min
Typ
Max
Output voltage (“H” level) *1
VOH
Output voltage (“L” level) *2
VOL
Output current (“L” level)

VDDH
V
0.0

0.2
V


mA


mA
3
− 2.0
4
IOH2*
− 4.0
IOH3*5
− 8.0
IOL1*3
2.0
IOL2*
4
4.0
IOL3*
5
8.0
IOH1*
Output current (“H” level)
VDDH − 0.2
Input leakage current
IL


±5
µA
Pin capacitance
C


16
pF
*1 : Value when −100 µA current flows into output pins.
*2 : Value when 100 µA current flows into output pins.
*3 : Output characteristics of the MD0-63 and MDQM0-7 signal.
*4 : Output characteristics of the signals other than those in *3 and *5
*5 : MCLKO signal output characteristics
12
MB86292
2. AC Characteristics
(VIH = 2.0 V, VIL = 0.8 V)
• Input measurement conditions
tf
tr
VIH
80%
80%
Input
(VIH + VIL) / 2
20%
20%
VIL
• tr, tf ≤ 5 ns
• Input measurement standard : (VIH + VIL) / 2
• Output measurement conditions
VIH
Input
(VIH + VIL) / 2
VIL
tpHL,
tpZL
tpLH,
tpZH
VOH
Output 1
VDD/2
VDD/2
VOL
tpLZ
Output 2
0.5 V
VOL
tpHZ
VOH
Output 3
0.5 V
• Output measurement standard : tpLZ : VOL + 0.5 V
tpHZ : VOH − 0.5 V
Else : VDD/2
13
MB86292
(1) Host Interface
• Clock
Parameter
Symbol
Condition
BCLKI frequency
fBCLKI
BCLKI H period
BCLKI L period
Value
Unit
Min
Typ
Max



100
MHz
tHBCLKI

1


ns
tLBCLKI

1


ns
• Host interface signals
Parameter
Address setup time
tADS

3.0


ns
Address hold time
tADH

1.0


ns
BS setup time
tBSS

3.5


ns
BS hold time
tBSH

0.0


ns
CS setup time
tCSS

3.5


ns
CS hold time
tCSH

0.0


ns
RD setup time
tRDS

3.0


ns
RD hold time
tRDH

0.0


ns
WE setup time
tWES

5.5


ns
WE hold time
tWEH

0.0


ns
Write data setup time
tWDS

3.5


ns
Write data hold time
tWDH

0.0


ns
DTACK setup time
tDAKS

3.5


ns
DTACK hold time
tDAKH

0.0


ns
DRACK setup time
tDRKS

4.0


ns
DRACK hold time
tDRKH

0.0


ns
Read data delay time (to RD)
tRDDZ

2.5

8.5
ns
Read data delay time
tRDD

4.0

10.5
ns
RDY delay time (to CS)
tRDYDZ

2.0

6.0
ns
RDY delay time
tRDYD

2.5

6.5
ns
INT delay time
tINTD

2.5

7.0
ns
DREQ delay time
tDRQD

2.5

6.5
ns
MODE hold time
tMODH
*


20.0
ns
* : Hold time for reset cancellation
14
Symbol Condition
(Operating condition : External load of 20 pF)
Value
Unit
Min
Typ
Max
MB86292
• Clock
1/fBCLKI
tHBCLKI
tLBCLKI
BCLKI
• Input setup and hold times
BCLKI
A2~A24,
BS, CS,
D0~D31,
DTACK,
DRACK
tADS, tBSS, tCSS,
tWDS, tDAKS, tDRKS
tADH, tBSH, tCSH,
tWDH, tDAKH, tDRKH
• Read/write enable (RD, WE) setup and hold times
BCLKI
BS
CS
tRDS, tWES
RD, WE,
A24 (MWR)
tRDH,
tWEH
15
MB86292
• DREQ/INT output delay time
BCLKI
DREQ (output)
INT (output)
tDRQD, tINTD
• RDY delay value (with respect to CS)
BCLKI
CS
High-Z
High-Z
RDY (output)
tRDYDZ
16
tRDYDZ
MB86292
• RDY, D output delay values
(The D pin outputs effective data from the RDY assert cycle.)
BCLKI
RD (CS)
tRDD
tRDDZ
tRDDZ
D0~D31
(output)
output data
High-Z
High-Z
RDY
tRDYD
tRDYD
• MODE signal hold time
RESET
MODE0~
MODE2
tMODH
17
MB86292
(2) Video Interface
• Clock
Parameter
Symbol Condition
Value
Min
Typ
Max
Unit
CLK frequency
fCLK


14.318

MHz
CLK H period
tHCLK

25


ns
CLK L period
tLCLK

25


ns
DCLKI frequency
fDCLKI



67
MHz
DCLKI H period
tHDCLKI

5


ns
DCLKI L period
tLDCLKI

5


ns
DCLKO frequency
fDCLKO



67
MHz
• Input signals
Parameter
Symbol Condition
Value
Min
Typ
Max
Unit
tWHSYNC0
*1
3


clock
tWHSYNC1
*2
3


clock
HSYNC input setup time
tSHSYNC
*2
10


ns
HSYNC input hold time
tHHSYNC
*2
10


ns
VSYNC input pulse width
tWHSYNC1

1


HSYNC
cycle
HSYNC input pulse width
*1 : Applied only in PLL synchronization mode (CKS = 0) . The reference clock is the internal PLL’s output with
Cycle = 1/ (14 fCLK) .
*2 : Applied only in DCLKI synchronization mode (CKS = 1) . The reference clock is DCLKI.
• Output signals
Parameter
Value
Min
Typ
Max
Unit
RGB output delay time
tRGB

2

10
ns
DISPE output delay time
tDEO

2

10
ns
HSYNC output delay time
tDHSYNC

2

10
ns
VSYNC output delay time
tDVSYNC

2

10
ns
CSYNC output delay time
tDCSYNC

2

10
ns
tDGV

2

10
ns
GV output delay time
18
Symbol Condition
MB86292
• Clock
1/fCLK
tHCLK
tLCLK
CLK
VIH
VIL
• HSYNC signal setup and hold
1/fDCLKI
tHDCLKI
tLDCLKI
DCLKI
HSYNC
(input)
tSHSYNC tHHSYNC
• Output signal delay
DCLKO
R7-R3, G7-G3,
B7-B3, MD63-MD55*,
HSYNC (output),
VSYNC (output),
CSYNC,
GV
*: Valid if RGBEN = 0
tRGB, tDEO, tDHSYNC, tDVSYNC,
tDCSYNC, tDGV
19
MB86292
(3) Graphics Memory Interface
• Clock
Parameter
Symbol Condition
Value
Min
Typ
Max
Unit
MCLKO frequency
fMCLKO



*
MHz
MCLKO H period
tHMCLKO

1.0


ns
MCLKO L period
tLMCLKO

1.0


ns
MCLKI frequency
fMCLKI



*
MHz
MCLKI H period
tHMCLKI

1.0


ns
MCLKI L period
tLMCLKI

1.0


ns
tOID

0.0

3.5
ns
MCLKI delay to MCLKO
* : In BUS asynchronous mode, the frequency is half the internal PLL oscillation frequency. In Bus synchronous
mode, the frequency is the same as BCLKI.
• Input/output signals
Parameter
Symbol Condition
Min
Typ
Max
Unit
MA, MRAS, MCAS, MWE setup time
tMADS
*1
3.2


ns
MA, MRAS, MCAS, MWE hold time
tMADH
*1
1.3


ns
MDQM data setup time
tMDQMDS
*1
3.2


ns
MDQM data hold time
tMDQMDH
*1
1.3


ns
MD output data setup time
tMDODS
*1
3.2


ns
MD output data hold time
tMDODH
*1
1.3


ns
MD input data setup time
tMDIDS
*2
3.0


ns
MD input data hold time
tMDIDH
*2
1.0


ns
*1 : Setup/hold time with respect to MCLKO
*2 : Setup/hold time with respect to MCLKI
20
Value
MB86292
• Clock
1/fMCLKO, 1/fMCLKI
tHMCLKO, tHMCLKI
tLMCLKO, tLMCLKI
MCLKO,
MCLKI
• Input signal setup and hold times
MCLKO
MD0~MD63
Input data
tMDIDS
tMDIDH
• MCLKI signal delay
MCLKO
MCLKI
tOID
• Output signal delay
MCLKO
MA0~MA13,
MRAS, MCAS,
MWE, MD0~MD63,
MDQM0~MDQM7
tMADS, tMDODS, tMDQMDS
tMADH, tMDODH, tMDQMDH
21
MB86292
(4) PLL Standards
Parameter
Min
Typ
Max
Input frequency

14.31818 MHz

Output frequency


101.3 %

93.1 %
180 ps

− 150 ps
Duty ratio
Jitter
22
Value
Remarks
200.45452 MHz Multiplied by 14
PLL output clock H/L pulse width
ratio
Cycle difference between two
consecutive cycles
MB86292
■ ORDERING INFORMATION
Part Number
Package
MB86292PFFS-G-BND
256-pin plastic QFP
(FPT-256P-M09)
Remarks
23
MB86292
■ PACKAGE DIMENSION
256-pin plastic QFP
(FPT-256P-M09)
*Pins width and pins thickness include plating thickness.
30.60±0.20(1.205±.008)SQ
28.00±0.10(1.102±.004)SQ
156
0.145±0.055
(.006±.002)
105
104
157
0.08(.003)
Details of "A" part
3.73±0.30
(Mounting height)
(.147±.012)
+0.10
0.40 –0.15
INDEX
+.004
0°~8°
208
.016 –.006
(Stand off)
53
"A"
LEAD No.
1
0.40(.016)
C
(0.50(.020))
64
0.18±0.05
(.007±.002)
0.07(.003)
M
0.25(.010)
0.60±0.15
(.024±.006)
2000 FUJITSU LIMITED F256025S-c-2-2
Dimensions in mm (inches)
24
MB86292
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC.
3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fma.fujitsu.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmal.fujitsu.com/
Korea
FUJITSU MICROELECTRONICS KOREA LTD.
1702 KOSMO TOWER, 1002 Daechi-Dong,
Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
F0203
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.