INTEGRATED CIRCUITS DATA SHEET SAA2510 Video CD (VCD) decoder Preliminary specification File under Integrated Circuits, IC02 1996 May 21 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 FEATURES (With standard microcode loaded) • Decoding and display of MPEG1 video streams (constrained parameters) • Decoding of MPEG audio streams (layer II) • Decoding, storage (compressed) and display of high-resolution still pictures of 704 × 576 pixels • EBU audio output, fully transparent from input to output in CD-DA mode and generated in MPEG mode • Requires only 4 Mbits of external 70 ns DRAM • Downloadable microcode for internal controllers • Audio transparency mode for CD-DA discs • Internal video timing generator • On-screen display capability • Requires 40 MHz crystal for system clock generation • Play options: • Requires 27 MHz crystal or external 27 MHz source for video timing generation – Play – Stop – Pause/continue • Requires 16.9344 MHz (384 × 44.1 kHz) clock locked to CD drive – Slow-motion forward • Internal generation of 90 kHz MPEG clock – Scan forward • Capability of sharing external DRAM by 3-stating all DRAM pins. – Scan backward. • Supports auto-pause feature • Disc interface: Philips I2S, EIAJ, MEC formats and IEC 958 (EBU) interface APPLICATION • Dedicated video CD players. • Separate error flag input (EFIN) and data valid input (NDAV) GENERAL DESCRIPTION • Performs basic block decoder functions: MPEG1 audio and video CD (VCD) decoder, intended for use in low-cost dedicated video CD players. When used with a 4 Mbit DRAM and a digital video encoder, the decoder adds the required functionality to a CD decoder to implement a low-cost video CD player capable of playing discs coded to version 2.0 of the video CD specification. The SAA2510 is an I2C-bus controlled chip and features serial data input in four common bus formats. It provides digital video output in CCIR601 and 656 formats. – serial-to-parallel conversion – sync detection – descrambling – EDC calculation – error-correction for mode 2 form 1 sectors – header and sub-header interpretation. • I2C-bus interface • Video output YUV 4 : 2 : 2 format. DMSD bus compatible A bit-mapped on-screen display is provided and output video timing can be 525 lines/30 frames per second or 625 lines/25 frames per second. The chip is microcode programmable for feature enhancement. • Also supports CCIR656 video interface, including line and field timing codes • Audio output: 44.1 kHz. 16, 18 or 20 bits per audio sample in Philips I2S, Sony or MEC formats ORDERING INFORMATION PACKAGE TYPE NUMBER NAME SAA2510 1996 May 21 QFP100 DESCRIPTION plastic quad flat package; 100 leads (lead length 1.95 mm); body 14 × 20 × 2.7 mm; high stand-off height 2 VERSION SOT317-1 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. UNIT VDD3 supply voltage 3.0 3.3 3.6 V VDD5 supply voltage 4.5 5.0 5.5 V IDD supply current − tbf − mA fxtal s system clock crystal frequency − 40.0 − MHz fxtal v video clock crystal frequency − 27.0 − MHz fi audio clock input frequency − 16.9344 − MHz Tamb operating ambient temperature −20 − +70 °C 1996 May 21 3 Sys_osc_0 76 74 RESET CAS RAS A0 to A8 VIDEO BUFFER 1 VIDEO BUFFER 0 W VIDEO BUFFER 2 CDIR DR0 to DR15 27 79 84 MEMORY MANAGEMENT UNIT SYSTEM CLOCK 86 82 VIDEO CLOCK 80 EBUIN AUDIOCLK WSIN CLIN BLOCK DECODER VIDEO DECODER 4 EFIN DAIN SYSTEM CONTROLLER NDAV SDA SCL INT DATA SORTER IDCT HOST I2C INTERFACE FRAME RECONSTRUCTOR VIDEO GENERATOR 8 7 to 1 100 8 95 to 88 99 97 11 9 Vid_osc_0 Vid_osc_1 Philips Semiconductors Sys_osc_1 VIDEO FIFO Video CD (VCD) decoder 3k AUDIO FIFO BLOCK DIAGRAM andbook, full pagewidth 1996 May 21 PLAY CONTROL BUFFER 7k OSD BUFFER EXTERNAL 4 Mbit DRAM CLK27 CREF UV0 to UV7 Y0 to Y7 VSYNC HREF TLSAND CSYNC ASEL 12 SAA2510 13 AUDIO DECODER 14 TEST CONTROL 78 DAOUT CLOUT WSOUT 28 MGE325 TP1 TP2 DRAMON SAA2510 Fig.1 Block diagram. Preliminary specification 77 16 EBUOUT Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 PINNING SYMBOL UV6 PIN 1 DESCRIPTION video UV bus output bit 6; 16-bit video output mode: the UV bus outputs alternating U and V chroma samples at 13.5 Mbytes/s CCIR656 mode: this bus is not used (inactive) UV5 2 video UV bus bit 5 UV4 3 video UV bus bit 4 UV3 4 video UV bus bit 3 UV2 5 video UV bus bit 2 UV1 6 video UV bus bit 1 UV0 7 video UV bus bit 0 VDD5 8 5 V external pad power supply CSYNC 9 composite sync output; 525 lines/60 Hz or 625 lines/50 Hz VSS5 10 0 V external pad power supply TLSAND 11 two-level Sandcastle (composite blanking) output; requires external resistor network to define horizontal/vertical blanking level EBUOUT 12 IEC 958 digital audio output DAOUT 13 I2S data; digital audio output WSOUT 14 I2S word select digital audio output VDD3 15 +3 V internal power supply CLOUT 16 I2S bit clock output VSS 17 0 V internal power supply AUDIOCLK 18 16.9 MHz audio clock input VDD5 19 5 V internal power supply EBUIN 20 EBU (IEC 958) input CLIN 21 I2S bit clock input WSIN 22 I2S word select input DAIN 23 I2S digital data input VDD3 24 +3 V internal power supply EFIN 25 error flag input from I2S source VSS 26 0 V internal power supply RESET 27 active low reset input DRAMON 28 DRAM pin 3-state control input; also 3-states video outputs and some timing signals INT 29 active low open drain interrupt request to host microcontroller NDAV 30 data not valid input (data on I2S or EBU input not valid) ASEL 31 I2C-bus address select pin SDA 32 I2C-bus data pin VDD5 33 5 V external pad power supply SCL 34 I2C-bus clock input VSS5 35 0 V external pad power supply DR15 36 DRAM data input/output bit 5 1996 May 21 5 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL SAA2510 PIN DESCRIPTION DR14 37 DRAM data input/output bit 14 DR13 38 DRAM data input/output bit 13 DR12 39 DRAM data input/output bit 12 DR11 40 DRAM data input/output bit 11 DR10 41 DRAM data input/output bit 10 DR9 42 DRAM data input/output bit 9 VDD5 43 5 V external pad power supply DR8 44 DRAM data input/output bit 8 VSS5 45 0 V external pad power supply DR7 46 DRAM data input/output bit 7 DR6 47 DRAM data input/output bit 6 DR5 48 DRAM data input/output bit 5 DR4 49 DRAM data input/output bit 4 DR3 50 DRAM data input/output bit 3 DR2 51 DRAM data input/output bit 2 DR1 52 DRAM data input/output bit 1 DR0 53 DRAM data input/output bit 0 VSS5 54 0 V external pad power supply CAS 55 DRAM column address strobe VDD5 56 5 V external pad power supply A8 57 DRAM row/column address pin A8 A7 58 DRAM row/column address pin A7 A6 59 DRAM row/column address pin A6 A5 60 DRAM row/column address pin A5 A4 61 DRAM row/column address pin A4 VDD3 62 +3 V internal power supply W 63 active low DRAM write strobe VSS 64 0 V internal power supply RAS 65 DRAM row address strobe VDD5 66 5 V internal power supply A3 67 DRAM row/column address pin A3 VSS5 68 0 V external pad power supply A2 69 DRAM row/column address pin A2 VDD5 70 5 V external pad power supply A1 71 DRAM row/column address pin A1 A0 72 DRAM row/column address pin A0 VDDO3 73 3 V internal power supply for oscillator Sys_osc_0 74 oscillator input pin; 40 MHz oscillator VSS 75 0 V internal power supply Sys_osc_1 76 oscillator output pin; 40 MHz oscillator TP1 77 factory test pin; connect to ground 1996 May 21 6 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL SAA2510 PIN DESCRIPTION TP2 78 factory test pin; connect to ground CDIR 79 clock direction control pin; when high, CLK27 is an output CREF 80 clock qualifier output; 13.5 MHz timing signal used in 16-bit video output mode; can also be used as 13.5 MHz video sample clock VSS5 81 0 V external pad power supply CLK27 82 27 MHz clock input or output; direction controlled by CDIR pin VDD5 83 5 V external pad power supply Vid_osc_0 84 oscillator pin; 27 MHz; input pin VSS 85 0 V internal power supply Vid_osc_1 86 oscillator pin; 27 MHz; output pin VDDO3 87 3 V internal power supply for oscillator Y7 88 video Y bus output bit 7 DMSD mode: the Y bus outputs luminance samples at 13.5 Mbytes/s CCIR656 mode: this pin supplies multiplexed chrominance and luminance (27 Mbytes/s) Y6 89 video Y bus bit 6 Y5 90 video Y bus bit 5 Y4 91 video Y bus bit 4 Y3 92 video Y bus bit 3 Y2 93 video Y bus bit 2 Y1 94 video Y bus bit 1 Y0 95 video Y bus bit 0 VSS5 96 0 V external pad power supply HREF 97 horizontal (line) timing reference signal; high during active video part of line, low during line blanking VDD5 98 5 V external pad power supply VSYNC 99 vertical (field/frame) timing reference signal; high during vertical blanking interval of field UV7 100 video UV bus output bit 7 DMSD mode: the UV bus outputs alternating U and V chroma samples at 13.5 Mbytes/s CCIR656 mode: this bus is not used (inactive) 1996 May 21 7 Philips Semiconductors Preliminary specification 81 VSS5 UV6 1 80 CREF UV5 2 79 CDIR UV4 3 78 TP2 UV3 4 77 TP1 UV2 5 76 Sys_osc_1 UV1 6 75 VSS UV0 7 74 Sys_osc_0 VDD5 CSYNC 8 73 VDDO3 9 72 A0 VSS5 10 71 A1 TLSAND 11 70 VDD5 EBUOUT 12 69 A2 DAOUT 13 68 VSS5 WSOUT 14 67 A3 66 VDD5 VDD3 15 SAA2510 CLOUT 16 65 RAS VSS 17 64 VSS AUDIOCLK 18 63 W VDD5 19 EBUIN 20 62 VDD3 61 A4 CLIN 21 60 A5 WSIN 22 59 A6 51 DR2 8 DR3 50 30 DR4 49 DR1 NDAV DR5 48 DR0 52 DR6 47 53 29 DR7 46 28 INT VSS5 45 DRAMON DR8 44 VSS5 VDD5 43 54 DR9 42 27 DR10 41 CAS RESET DR11 40 55 DR12 39 26 DR13 38 VDD5 VSS DR14 37 56 DR15 36 25 VSS5 35 A8 EFIN SCL 34 A7 57 VDD5 33 58 24 SDA 32 23 ASEL 31 DAIN VDD3 Fig.2 Pin configuration. 1996 May 21 83 VDD5 82 CLK27 87 VDDO3 88 Y7 89 Y6 90 Y5 91 Y4 92 Y3 93 Y2 94 Y1 95 Y0 96 VSS5 97 HREF 98 VDD5 99 VSYNC 100 UV7 handbook, full pagewidth 85 VSS 84 Vid_osc_0 SAA2510 86 Vid_osc_1 Video CD (VCD) decoder MGE324 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 The OSD is implemented as 48 vertical ‘slices’ of 8 pixels (horizontally) and 32 (vertically). Each pixel is stored as 2 bits. This gives three programmable logical colours, plus a transparent option. Each slice is identified by a slice code (slice number). FUNCTIONAL DESCRIPTION Block decoder The VCD chip receives MPEG A/V or CD digital audio data from a CD decoder chipset using any one of four common interface formats (Philips I2S, EIAJ, MEC or IEC 958). The Philips I2S, EIAJ and Matsushita input modes use the bit clock (CLIN), word select (WSIN), data (DAIN) and error flag (EFIN) inputs. If IEC 958 (EBU) input mode is selected, only the EBUIN pin needs to be connected. The chip also requires a 16.9 MHz clock input (CLIN) which is synchronous with the data input from the CD decoder providing the serial data input. The horizontal position of a slice is defined by its position in a slice code sequence written to the VCD chip. This arrangement reduces the need to completely update the OSD bit map in many situations. It may be possible to simply reorder the slices, e.g. if a track time display is being updated and slices are prepared to represent digits. At any time, up to 44 of the 48 slices can be displayed. Video decoder The VCD chip contains a block decoder and descrambler which performs error correction on the Video CD data track (form 1) sectors and error detection on real-time audio and video tracks where an error correction code is present. Video output data can be presented in one of two modes: 1. 16-bit wide data is output in YUV 4 : 2 : 2 format as 8 bits of luminance and 8 bits of alternating U and V chrominance. The video output data rate in this mode is 13.5 Mwords/s. In most events, audio output can be in any of the three (I2S, EIAJ or MEC) formats, independent of input type. When playing CD digital audio discs, the input is copied to the outputs. 2. 8-bit wide, CCIR656-like, data is output providing 4 : 2 : 2 format video as an 8-bit UYVY multiplex at 27 Mbytes/s. The block decoder supports some special functions which enable recovery of play control lists. The desired sectors can be acquired by programming a sector address via the I2C-bus microcontroller interface. The microcontroller then instructs the CD servo/decoder subsystem to execute a servo jump to the required disc location and then waits for an interrupt indicating that the desired sector information has been received and error-corrected. In either case, the VCD chip can be programmed to output 525 line or 625 line format timing to match the type of display (TV) connected to its output. Additional programmability is provided to cope with the Video CD disc source picture coding type (525/625 lines). The VCD chip performs vertical and horizontal interpolation to convert the MPEG SIF (352 pixels per line) normal resolution pictures to CCIR601 resolution. Vertically interpolated pixels are output on the odd fields during display of normal resolution pictures. System controller Overall control of the chip and a number of its less time-critical functions is carried out by a dedicated RISC processor. The microcode for this processor is executed from an on-chip RAM. This microcode must be loaded into RAM after power-up by the host microcontroller, using the I2C-bus interface. This enables the functionality of the chip to be customized for specific applications. The Video CD disc being played may have been coded with 525 lines/60 Hz or 625 lines/50 Hz pictures. When the Video CD player is connected to a display with a different timebase to the coded disc material, some adjustments must be made to allow for the different number of lines on the display and the reconstructed picture. Two examples are shown in Figs. 3 and 4. On-screen display The VCD chip can be programmed to position the reconstructed picture with respect to horizontal and vertical syncs anywhere on the display screen with a programmable ‘viewport’ position. Figure 3 shows an MPEG SIF resolution picture (352 pixels by 288 lines) being displayed on an NTSC display having only 240 active display lines per field. In this event, the top and bottom 24 lines are not displayed. The VCD chip provides a bit-mapped On-Screen-Display (OSD), containing 32 display lines of 352 pixels per line. There is a double-height mode which repeats OSD lines so that the maximum height of OSD objects becomes 64 lines. This character-set-independent OSD permits display of ideographic characters and simple graphic displays anywhere on the screen. 1996 May 21 9 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 The second example, illustrated in Fig.4, is where a 240 active lines per field NTSC picture needs to be displayed on a 288 line PAL format display. The ‘missing’ lines can be filled with a programmable border colour. In this event, the horizontal and vertical resolution of the reconstructed picture is double that of normal resolution (moving) pictures. In order to fit the picture in the available frame buffer DRAM, a data compression scheme is applied to the stored picture. High-resolution still pictures can be present on a Video CD disc. handbook, halfpage 24 reconstructed picture 352 not displayed reconstructed picture window 24 handbook, halfpage border = blank viewport 240 288 not displayed MGE333 One field of a 625-line picture on a 525-line display. 1996 May 21 240 288 border = blank MGE332 Fig.3 display window 352 Fig.4 525-line picture on a 625-line display. 10 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 to read data stored in three play-control sector buffers, which normally will be used to store Video CD data track information. This interface features a two or three byte sub-addressing scheme allowing access to any DRAM location. However, in normal use, only two byte sub-addressing is needed. ‘Trickmode’ implementation Compared with CD digital audio players, it is likely that Video CD players will need to offer additional functionality similar to VCRs. These features are commonly called ‘trickmodes’. Typically, the player will offer features such as still picture (freeze frame), scan forwards and backwards as well as slow motion replay. An interrupt pin is available to signal a number of events so that the controlling processor does not need to poll VCD status registers. These features require a combination of CD servo control and Video CD decoder functions for effective implementation. The VCD chip provides high level command features to support these modes in order to minimize microcontroller time-critical software. Input pin NDAV is used to signal that data on the block decoder input is not valid, e.g. during CD servo jumps. A complete memory map and list of registers will be included in a later version of this data sheet. STILL PICTURE DISPLAY I2C-bus slave address selection This is implemented directly using a Pause command, causing the VCD chip to hold the displayed picture at the next frame update. A6 0 A5 A4 0 SCAN FORWARD AND SCAN BACKWARDS Note There is no difference as far as the VCD chip is concerned. The controlling microcomputer must command the CD servo to execute a servo jump and re-synchronize. The VCD chip is then commanded to display the next I (Intra-coded) picture following re-acquisition of sector sync. 1. ASEL. 1 A3 1 A2 0 A1 A0 1 A0(1) R/W The data transfer protocol is as follows: Two and three byte sub-addressing: first the device sub-address is transmitted, preceded by a START condition and the slave address: SLOW-MOTION REPLAY Two and three byte sub-addressing A command is provided by the VCD chip, allowing a slow-motion ‘factor’ in the range 2 to 8 to be selected. This is the factor by which replay will be slowed down. Because the rate of decoding of video sectors has been reduced, the video FIFO fills up. The block decoder is designed to automatically disable acquisition when the video FIFO fills in this way and an interrupt is generated. At this point, the next wanted sector (address) has been loaded into a register in the VCD chip. The controlling microcomputer then commands a CD servo jump to position on the disc just before the next desired sector, making allowance for re-synchronization by the servo and VCD chip. S W SUB_A S = START SLA = Slave address W = Write SUB_A = Sub-address The sub-address can be either 2 or 3 bytes. The 3-byte sub-address is used for DRAM random access. This is not used for normal operation. It exists only as a test mode. Since the Video CD IC is internally fully word (16 bits) oriented, the sub-address must always be an even address. If an odd-numbered address is given, the Video CD IC will not acknowledge this byte. For the sub-address, the least significant byte is sent first. The second sub-address byte contains 2 control bits. I2C-bus interface The VCD chip is programmed via the I2C-bus interface. The chip is a slave transceiver capable of operating at the maximum specified bus clock frequency of 400 kHz. It does not support the general call feature. One of two slave addresses can be used. The address is selected by the ASEL input pin. This bus provides access to the internal registers of the device. The bus is also used to write OSD slice data and 1996 May 21 SLA 11 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 Sub-address byte format MSB A7 A6 A5 A4 A3 A2 A1 LSB MSB A0 C1 When A0 is a ‘1’, the address byte is not acknowledged (odd address). A11 A10 A9 A8 P: STOP condition generated by bus master A: Acknowledge bit generated by master or slave according to transaction type and stage N: Negative acknowledge; acknowledge bit is not set by bus master during last byte of a read 3-byte sub-address - most significant byte format MSB LSB A18 A12 S: START condition generated by bus master C0 = 1; 3-byte sub-address. The next byte transmitted is also an address byte: 0 A13 The following notation is used to describe bus transactions: C0 = 0; 2-byte sub-address. 0 C0 I2C-bus transaction summary Explanation of control bits 0 LSB A17 A16 A15 SLA: 7-bit slave address generated by bus master A14 W: R/W bit after slave address is set to write R: R/W bit after slave address is set to read C1 = 0; sub-address post increment enabled. After each transfer of 2 bytes, the address is automatically incremented by 2. SUB_N: Sub-address byte N (N = 0, 1 or 2); least significant address byte is SUB_0 D(M): A data byte transmitted by master or slave on the bus; D(0) is the first byte sent; as all transfers must be an even number of bytes, it follows that M must be odd. C1 = 1; sub-address post increment disabled. The master will terminate a read action by NOT acknowledging the last read byte followed by a STOP condition. Set 2-byte sub-address and write (M + 1) bytes S SLA W A SUB_0 A SUB_1 A D(0) A D(1) A to D(M) A P Set 2-byte sub-address and read (M + 1) bytes S SLA W A SUB_0 A SUB_1 A S SLA R D(0) A D(1) A to D(M) N P Set 3-byte sub-address and write (M + 1) bytes S SLA W A SUB_0 A SUB_1 A SUB_2 A D(0) A D(1) A to D(M) A P Set 3-byte sub-address and read (M + 1) bytes S SLA W A SUB_0 A SUB_1 A SUB_2 A S SLA R A D(0) A D(1) A to D(M) N P This addressing mode is valid only if sub-address auto incrementing is disabled. It is intended for fast polling of a status register. 1996 May 21 12 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 Byte-order within words LSB MSB Word B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 I2C-bus B7 B6 B5 B4 B3 B2 B1 B0 B15 B14 B13 B12 B11 B10 B9 B8 For each transmitted word (read or written) the least significant byte is transmitted first. CHARACTERISTICS Tamb = −20 to +70 °C; VDD5 = 4.5 to 5.5 V; VDD3 = 3.0 to 3.6 V; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies VDD5 supply voltage (5 V) range 4.5 5 5.5 V IDD5 VDD5 supply current − tbf tbf mA VDD3 supply voltage (3 V) range 3 3.3 3.6 V IDD3 VDD3 supply current − tbf tbf mA IDD(tot) total supply current − tbf tbf mA V Digital inputs ALL INPUTS (EXCEPT RESET AND OSCILLATOR INPUTS) VIL LOW level input voltage −0.3 − +0.8 VIH HIGH level input voltage 2 − VDD + 0.5 V ILI input leakage current −10 − +10 µA Ci input capacitance − − 10 pF V Vi = 0 to VDD RESET INPUT: (SCHMITT INPUT) VIL LOW level input voltage −0.3 +2 VIH HIGH level input voltage 3.5 VDD + 0.5 V ILI input leakage current −10 +10 µA Vhys hysteresis voltage (VIH − VIL) Vi = 0 to VDD 1 − − V V Inputs/outputs SDA AND SCL (I2C-BUS DATA AND CLOCK) VIL LOW level input voltage −0.5 − +1.5 VIH HIGH level input voltage 3 − VDD + 0.5 V ILI input leakage current −10 − +10 µA Vi = 0 to VDD Ci input capacitance − − 10 pF CL load capacitance − − 400 pF VOL LOW level output voltage (IOL = 3.0 mA) 0 − 0.4 V VOL LOW level output voltage (IOL = 6.0 mA) 0 − 0.6 V V CLK27 VIL LOW level input voltage −0.3 − +0.8 VIH HIGH level input voltage 2.4 − VDD + 0.5 V 1996 May 21 13 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL PARAMETER ILI input leakage current SAA2510 CONDITIONS Vi = 0 to VDD MIN. −10 TYP. MAX. UNIT − +10 µA Ci input capacitance − − 10 pF VOL LOW level output voltage (IOL = 1.6 mA) 0 − 0.4 V VOH HIGH level output voltage (IOH = −0.2 mA) 2.6 − VDD V tr input rise time 0.6 to 2.6 V − − 4 ns tf input fall time 0.6 to 2.6 V − − 4 ns V DR15 TO DR0 (DRAM DATA I/O) VIL LOW level input voltage −0.3 − +0.8 VIH HIGH level input voltage 2 − VDD + 0.5 V ILI input leakage current −10 − +10 µA Vi = 0 to VDD Ci input capacitance − − 10 pF CL load capacitance − − 30 pF VOL LOW level output voltage (IOL = 1.6 mA) 0 − 0.4 V VOH HIGH level output voltage (IOH = −0.2 mA) 2.4 − VDD V tr output rise time 0.6 to 2.6 V; load = CL 3 − 10 ns tf output fall time 0.6 to 2.6 V; load = CL 3 − 10 ns − 0.4 V Outputs RAS, CAS, W, A0 TO A8 (DRAM CONTROL AND ADDRESS LINES) VOL LOW level output voltage (IOL = 1.6 mA) 0 VOH HIGH level output voltage (IOH = −0.2 mA) 2.4 CL load capacitance tr output rise time 0.6 to 2.2 V; load = CL tf output fall time − VDD V − 30 pF 3 − 10 ns 0.6 to 2.2 V; load = CL 3 − 10 ns 0 − 0.4 V Y0 TO Y7 (VIDEO OUTPUT Y BUS) VOL LOW level output voltage (IOL = 1.6 mA) VOH HIGH level output voltage (IOH = −0.2 mA) CL load capacitance tr output rise time tf output fall time 2.4 − VDD V − − 30 pF 0.6 to 2.6 V; load = CL − − 4 ns 0.6 to 2.6 V; load = CL − − 4 ns UV0 TO UV7 (VIDEO OUTPUT UV BUS) VOL LOW level output voltage (IOL = 1.6 mA) 0 − 0.4 V VOH HIGH level output voltage (IOH = -0.2 mA) 2.4 − VDD V CL load capacitance − − 30 pF tr output rise time 0.6 to 2.2 V; load = CL − − 10 ns tf output fall time 0.6 to 2.2 V; load = CL 3 − 10 ns INT (OPEN DRAIN; INTERRUPT) VOL LOW level output voltage CL load capacitance tr output rise time 1996 May 21 (IOL = 1.6 mA) 0.6 to 2.2 V; load = CL 14 0 − 0.4 V − − 30 pF − − 10 ns Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL tf PARAMETER output fall time SAA2510 CONDITIONS MIN. TYP. MAX. UNIT 0.6 to 2.2 V; load = CL − − 10 ns EBUOUT (IEC 958 OUT) VOL LOW level output voltage (IOL = 10 mA) 0 − 1 V VOH HIGH level output voltage (IOH = −10 mA) VDD5−1 − VDD V CL load capacitance − − 50 pF tr output rise time 0.8 V to (VDD5 − 0.8 V); load = CL − − 10 ns tr output fall time 0.8 V to (VDD5 − 0.8 V); load = CL − − 10 ns VOL LOW level output voltage (IOL = 1.6 mA) 0 − 0.4 V VOH HIGH level output voltage (IOH = −0.2 mA) CL load capacitance tr output rise time tf output fall time ALL OTHER INPUTS 2.4 − VDD V − − 50 pF 0.6 to 2.6 V; load = CL − − 30 ns 0.6 to 2.6 V; load = CL − − 30 ns I2S input/output timing; (Fig.5) INPUT TIMING fclk input clock frequency − 2.118 − MHz tclkH input clock HIGH period 166 − − ns tclkL input clock LOW period 166 − − ns tsu set-up time (DAIN, EFIN, WSIN) 95 − − ns th1 hold time DAIN, EFIN, WSIN) 0 − − ns fclk output clock frequency − 2.118 − MHz tclkH output clock HIGH period 166 − − ns th2 hold time (DAOUT, WSOUT) 195 − − ns td output delay time (DAOUT, WSOUT) − − 147 ns OUTPUT TIMING I2C-bus input/output timing (Fig.6) 100 kHz CLOCK FREQUENCY fclk clock frequency 0 − 100 kHz tLOW clock LOW period 4.7 − − µs tHIGH period 4 − − µs tSU;DAT data set-up time 250 − − ns tHD;DAT data hold time 0 − − ns tSU;STO set-up time clock HIGH to STOP 4.7 − − µs 1996 May 21 15 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL PARAMETER SAA2510 CONDITIONS MIN. TYP. MAX. UNIT tBUF set-up time STOP to START 4.7 − − µs tHD;STA START hold time 4 − − µs tSU;STA set-up time clock rising edge to START 4.7 − − µs tr rise time (SDA and SCL) VILmin to VIHmax 50 − 1000 ns tf fall time (SDA and SCL) VILmin to VIHmax 50 − 300 ns 400 kHz CLOCK FREQUENCY fclk clock frequency 0 − 400 kHz tLOW clock LOW period 1.3 − − µs tHIGH period 0.6 − − µs tSU;DAT data set-up time 100 − − ns tHD;DAT data hold time 0 − − ns tSU;STO set-up time clock HIGH to STOP 0.6 − − µs tBUF set-up time STOP to START 1.3 − − µs tHD;STA START hold time 0.6 − − µs tSU;STA set-up time clock rising edge to START 0.6 − − µs tr rise time (SDA and SCL) VILmin to VIHmax 50 − 300 ns tf fall time (SDA and SCL) VILmin to VIHmax 50 − 300 ns Video Output Timing (Figs. 7 and 8) 16-BIT VIDEO OUTPUT MODE tsu set-up time (CREF, HREF, UV and Y valid to CLK27) 10 − − ns th2 hold time (CLK27 to CREF, HREF, UV and Y invalid) 3 − − ns tsu set-up time (UV and Y valid to CREF rising edge) 6 − − ns th1 hold time (CREF rising edge to UV and Y invalid) 10 − − ns 8-BIT VIDEO OUTPUT MODE tsu set-up time (HREF and Y valid to CLK27) 7 − − ns th2 hold time (CLK27 to HREF and Y invalid) 5 − − ns DRAM Timing (Fig.9) tCYC cycle time 130 − − ns tRP RAS pre-charge time 50 − − ns tCSH CAS hold time 70 − − ns tRCD RAS to CAS delay time 20 − − ns 1996 May 21 16 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL PARAMETER SAA2510 CONDITIONS MIN. TYP. MAX. UNIT 20 − − ns page mode cycle time 50 − − ns CAS pre-charge time 10 − − ns tRSH RAS hold time after CAS 20 − − ns tCRP CAS to RAS pre-charge time 15 − − ns tASR row address set-up time 0 − − ns tRAH row address hold time 10 − − ns tASC column address set-up time 0 − − ns tCAH column address hold time 15 − − ns tRCS read command set-up time 0 − − ns tRCH read command hold time (CAS) 0 − − ns tRRH read command hold time (RAN) 0 − − ns tWCS write command set-up time 0 − − ns tCAS CAS pulse width LOW tPC tCP tWCH write command hold time 15 − − ns tDS data-in set-up time 0 − − ns tDH data-in hold time 15 − − ns tCAC read access time (CAS) − − 20 ns tRAC read access time (RAS) − − 70 ns V Crystal oscillators 40 MHz SYSTEM CLOCK OSCILLATOR Vosc(p-p) oscillation amplitude (peak-to-peak) − tbf − Gv small signal voltage gain − tbf − Gm mutual conductance tbf − − mA/V Ci input capacitance − − tbf pF Cfb feedback capacitance − tbf − pF fOSC oscillation frequency − 40 − MHz ∆f frequency tolerance − − − ppm V 27 MHz SYSTEM CLOCK OSCILLATOR Vosc(p-p) oscillation amplitude (peak-to-peak) − tbf − GV small signal voltage gain − tbf − Gm mutual conductance tbf − − mA/V Ci input capacitance − − tbf pF 1996 May 21 17 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SYMBOL PARAMETER SAA2510 CONDITIONS MIN. TYP. MAX. UNIT Cfb feedback capacitance − tbf − pF fosc oscillation frequency − 27 − MHz ∆f frequency tolerance − − − ppm tclkH handbook, full pagewidth I2S bit clock CLKIN or CLKOUT tclkL td th I2S data and word select outputs DAOUT, WSOUT tsu th I2S data, word select and error flags inputs DAIN, WSIN, EFIN MGE327 Fig.5 I2S input/output timing. tr handbook, full pagewidth tHIGH tf tLOW SCL tSU; STA tSU; DAT tHD; DAT tSU;STO tHD; STA SDA MGE328 tBUF Fig.6 I2C-bus timing. 1996 May 21 18 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 handbook, full 27pagewidth MHz clock (CLK27) th1 tsu CREF tsu1 HREF th1 th2 tsu2 th2 U0 (Cb0) V0 (Cr0) V718 Y0 Y1 Y719 pixel #0 pixel #719 CSYNC MGE329 (1) Timing applies to CLK27 when programmed as an input or an output of the SAA2510. (1) CSYNC (HIGH-to-LOW) to first sample and HREF (LOW-to-HIGH) = 264.5/244.5 CLK27 periods (625 lines/525 lines mode). Fig.7 16-bit video output mode timing. 27pagewidth MHz clock handbook, full (CLK27) tsu HREF th1 Y bus output Cb th2 Cr Y pixel #0 pixel #719 Fig.8 8-bit video CCIR656 output mode timing. 1996 May 21 Y719 19 MGE330 Philips Semiconductors Preliminary specification Video CD (VCD) decoder handbook, full pagewidth SAA2510 tCYC tRP tRSH RAS tCRP tCSH tPC CAS tCAS tRCD tCP tASC tASR tRAH tCAH ADDRESS tRRH tRCS tRCH W tCAC READ CYCLE DRAM data out tRAC tWCH tWCS W tDS tDH WRITE CYCLE VCD data to DRAM MGE331 Fig.9 DRAM timing. 1996 May 21 20 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 APPLICATION INFORMATION handbook, full pagewidth 40 MHz crystal Sys_osc_0 0V EBU INTERFACE Sys_osc_1 EBU input EBUOUT EBUIN AUDIOCLK CLIN CLOUT DAIN DAOUT WSIN WSOUT Audio L, R AUDIO DAC ESIN COMPACT DISC MECHANISM AND DECODER 16 9 4 Mbit DRAM DR0 to DR15 CVBS HREF A0 to A8 DIGITAL VIDEO ENCODER VSYNC CASN RASN SAA2510 UV0 to 7 Y0 to 7 W 8 8 VP0 to 7 CREF CREF ASEL LLC CLK27 +5 V I2C-bus Y, C e.g.: SAA7185 CDIR SDA SCL Vid_osc_0 RESET MICROCONTROLLER AND USER INTERFACE 27 MHz crystal NDAV Vid_osc_1 INTN DRAMON TEST1, 2 MGE326 2 0V VCD power supply pins not shown. Fig.10 Application diagram; 16-bit video output mode. 1996 May 21 21 0V I2C-bus Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 PACKAGE OUTLINE QFP100: plastic quad flat package; 100 leads (lead length 1.95 mm); body 14 x 20 x 2.7 mm; high stand-off height SOT317-1 c y X 80 A 51 81 50 ZE e E HE A A2 (A 3) A1 θ wM pin 1 index Lp bp L 31 100 detail X 30 1 wM bp e ZD v M A D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y mm 3.3 0.36 0.10 2.87 2.57 0.25 0.40 0.25 0.25 0.13 20.1 19.9 14.1 13.9 0.65 24.2 23.6 18.2 17.6 1.95 1.0 0.6 0.2 0.15 0.1 Z D (1) Z E (1) 0.8 0.4 1.0 0.6 θ o 7 0o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 95-02-04 97-08-01 SOT317-1 1996 May 21 EUROPEAN PROJECTION 22 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 SOLDERING Wave soldering Introduction Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. If wave soldering cannot be avoided, the following conditions must be observed: • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). • The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners. Reflow soldering Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1). Reflow soldering techniques are suitable for all QFP packages. The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our “Quality Reference Handbook” (order code 9397 750 00192). During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. Repairing soldered joints Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. 1996 May 21 23 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1996 May 21 24 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 NOTES 1996 May 21 25 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 NOTES 1996 May 21 26 Philips Semiconductors Preliminary specification Video CD (VCD) decoder SAA2510 NOTES 1996 May 21 27 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02) 805 4455, Fax. (02) 805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. (01) 60 101-1256, Fax. (01) 60 101-1250 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. (172) 200 733, Fax. (172) 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. (359) 2 689 211, Fax. (359) 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556 Chile: see South America China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. (852) 2319 7888, Fax. (852) 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (358) 0-615 800, Fax. (358) 0-61580 920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01) 4099 6161, Fax. (01) 4099 6427 Germany: P.O. Box 10 51 40, 20035 HAMBURG, Tel. (040) 23 53 60, Fax. (040) 23 53 63 00 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, BOMBAY 400 018 Tel. (022) 4938 541, Fax. (022) 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 7640 000, Fax. (01) 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. (03) 645 04 44, Fax. (03) 648 10 07 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. (040) 2783749, Fax. (040) 2788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09) 849-4160, Fax. (09) 849-7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. (022) 74 8000, Fax. (022) 74 8341 Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. (022) 612 2831, Fax. (022) 612 2327 Portugal: see Spain Romania: see Italy Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65) 350 2000, Fax. (65) 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011) 470-5911, Fax. (011) 470-5494 South America: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil, P.O. Box 7383 (01064-970), Tel. (011) 821-2333, Fax. (011) 829-1849 Spain: Balmes 22, 08007 BARCELONA, Tel. (03) 301 6312, Fax. (03) 301 4107 Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM, Tel. (0) 8-632 2000, Fax. (0) 8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01) 488 2211, Fax. (01) 481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 282 6707 Ukraine: PHILIPS UKRAINE, 2A Akademika Koroleva str., Office 165, 252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991 United Kingdom: Philips Semiconductors LTD., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181) 730-5000, Fax. (0181) 754-8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. (381) 11 825 344, Fax. (359) 211 635 777 Internet: http://www.semiconductors.philips.com/ps/ For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31-40-2724825 SCDS48 © Philips Electronics N.V. 1996 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 537021/1200/01/pp28 Document order number: Date of release: 1996 May 21 9397 750 00851