FUJITSU SEMICONDUCTOR DATA SHEET DS04-13106-2E Linear IC Converter CMOS A/D Converter (With 24-Channel Input at 10-bit Resolution) MB88111 ■ DESCRIPTION The MB88111 is an analog-to-digital converter that converts its analog input to a 10-bit digital value and outputs it as serial data. The MB88111 employs a successive approximation method for A/D conversion. It has 24 input channels to be A/ D converted selectively by setting in an internal register. Since the MB88111 can input and output 16-bit serial data in synchronization with the clock, it can be easily connected to the serial I/O port in a 16-bit microcontroller. ■ FEATURES • • • • • • • • • • • • • • 24-channel analog input RC-type successive approximation system with a sample-and-hole circuit 10-bit resolution Conversion speed within 50 µs (at a system clock rate of 1 MHz) Digitally converted data output from the MSB Digitally converted data output as 16-bit serial data Clock-synchronous serial transfer system Internal extended serial interface Capable of triggering A/D conversion through an external pin Capable of input through an 8-channel port Serial data output format selectable using an external pin 10-bit monotonicity No missing code Power supply voltage ranging from 3.5 to 5.5 V (Continued) ■ PACKAGES 44-pin, Plastic QFP 48 pin, Plastic SH-DIP (FPT-44P-M11) (DIP-48P-M01) MB88111 (Continued) • Operating temperature ranging from –40 to +50°C • CMOS process • Package options of 44-pin QFP and 48-pin SH-DIP ■ PIN ASSIGNMENT AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 (Top view) 33 32 31 30 29 28 27 26 25 24 23 AN7 34 22 AN19 AN6 35 21 AN20 AN5 36 20 AN21 AN4 37 19 AN22 AN3 38 18 AN23 AN2 39 17 AGND AN1 40 16 AVRL AN0 41 15 V SS AVRH 42 14 TESTI AV CC 43 13 N.C. V CC 44 12 MOD 8 9 10 11 CS1 SIN 7 CS2X CCLK 6 ATGX SCK 5 IRQX 4 ENDC 3 SOT 2 ESIN 1 RSTX INDEX (FPT-44P-M11) (Continued) 2 MB88111 (Continued) (Top view) AN1 1 AN0 2 AVRH 48 AN2 47 AN3 3 46 AN4 AV CC 4 45 AN5 V CC 5 44 AN6 N.C. 6 43 AN7 RSTX 7 42 N.C. SCK 8 41 AN8 CCLK 9 40 AN9 SIN 10 39 AN10 ESIN 11 38 AN11 SOT 12 37 AN12 ENDC 13 36 AN13 IRQX 14 35 AN14 ATGX 15 34 AN15 CS2X 16 33 AN16 CS1 17 32 AN17 N.C. 18 31 AN18 MOD 19 30 N.C. N.C. 20 29 AN19 TESTI 21 28 AN20 V SS 22 27 AN21 AVRL 23 26 AN22 AGND 24 25 AN23 INDEX (DIP-48P-M01) 3 MB88111 ■ PIN DESCRIPTION Pin no. QFP 41 to 26 DIP Symbol 2 to 1, AN0 to AN15 48 to 43, 41 to 34 I/O Circuit type Descriptions I F Analog input pins. The pin to be subject to conversion is selected by the command input through the SIN pin. Also, a series of pins from AN16 to AN23 can be used as a port input. 25 to 18 33 to 31, AN16 to 29 to 25 AN23 G 12 19 MOD I A Pin for selecting a serial data output mode: “L”: Mode A for output from the SOT pin in synchronization with the fall of the SCK signal. “H”: Mode B for output from the SOT pin in synchronization with the rise of the SCK signal. 11 10 17 16 CS1 CS2X I A Input pins for selecting an extended serial interface mode. Setting the CS1 level to “H” and the CS2X level to “L” enables A/D converted data transfer. Setting the CS1 level to “L” or the CS2X level to “H” clears the register command without affecting A/D conversion. Serial data input to the external extended serial input pin ESIN is output to the SOT pin as it is. (See Section 7 “Extended Serial Interface” in “■ OPERATION.”) 4 10 SIN I B Serial data input pin This pin is a hysteresis input with a filter. 6 12 SOT O H Serial data output pin 3 9 CCLK I B System clock input pin This pin is a hysteresis input. 2 8 SCK I B Serial data transfer clock input pin This pin is a hysteresis input with a filter. 9 15 ATGX I C External trigger input pin. This pin incorporates a pullup resistor. The ATC command initiates A/D conversion at the rise of the signal at this pin. The pin is a hysteresis input. 8 14 IRQX O H A/D conversion interrupt signal input pin. The signal level becomes “L” upon completion of A/D conversion; it becomes “H” upon reception of data to be converted. 7 13 ENDC O H A/D conversion completion signal output pin. The signal level becomes “H” upon completion of A/D conversion; it becomes “L” upon reception of data to be converted. 5 11 ESIN I A Serial input extension input pin. When the CS1 level is “L” or the CS2X level is “H,” data input to the ESIN pin is output to the SOT pin as it is. 1 7 RSTX I D Reset signal input pin. This pin incorporates a pull-up resistor. Setting the signal level to “L” initializes the internal circuit of the device. This pin is a hysteresis input with a filter. (Continued) 4 MB88111 (Continued) Pin no. Symbol I/O Circuit type I E Test input pin. This pin incorporates a pull-down resistor. Maintain the pin at “L” level during normal use. VCC — — Digital circuit power supply pin 22 VSS — — Digital circuit ground pin 43 4 AVCC — — Analog circuit power supply pin 17 24 AGND — — Analog circuit ground pin 42 3 AVRH — — Reference (high) voltage input pin 16 23 AVRL — — Reference (low) voltage input pin 13 6, 18, 20, 30, 42 N.C. — — Non-connection pin QFP DIP 14 21 TESTI 44 5 15 Descriptions ■ I/O CIRCUIT TYPE Type Circuit Remarks A • CMOS input B • Hysteresis input • CMOS input C • Input with pull-up resistor • CMOS input (Continued) 5 MB88111 (Continued) Type 6 Circuit Remarks D • Input with pull-up resistor • Hysteresis input • CMOS input E • Input with pull-down resistor • CMOS input F • Analog input G • Analog input • Hysteresis input • CMOS input H • CMOS output MB88111 ■ BLOCK DIAGRAM AGND Multiplexer AV CC AN0 AVRH AVRL 10-bit D/A converter Sample-and-hold circuit AN15 Successive approximation register Port input AN16 Comparator AN23 ENDC Control circuit IRQX SCK ESIN SIN MOD Interface control circuit ATGX Command register Data register CS2X Output select circuit CS1 SOT RSTX TESTI CCLK V CC V SS 7 MB88111 ■ FUNCTIONAL DESCRIPTION 1. SC (Serial Command) Register (Reset status: 0000H) The SC register contains an A/D converter command and an input channel identification. Accessing this register after releasing it from the reset status activates the A/D converter. Note that this register accepts setting even during A/D conversion. Note also that input of a command to the register must take an interval of at least 4 CCLKs after input of the previous command. MSB bf LSB be bd bc bb ba b9 b8 b7 b6 Channel Command b5 b4 b3 b2 b1 b0 Don't care (1) Command bits A string of command bits selects an A/D converter command such as STOP. Setting a command during execution of another command cancels the command currently being executed. bf be bd Command name Function 0 0 0 STOP Stops A/D conversion (if it is being executed) and initializes the A/D converter. This command has the same effect as RSTX. 0 0 1 STC Executes A/D conversion of the specified channel once. (See Section 3 “STC (Standard Conversion) Command.”) 0 1 0 — Unused (*) 0 1 1 — Unused (*) 1 0 0 NOP No-op command. Input of this command during A/D conversion does not affect operation. If followed by this command, the ATC command can transfer converted data while holding the NOP command. The basic operation of this command is the same as that of the STC command. The ATC command can leave the A/D conversion start timing to the external trigger pin ATGX. (See Section 4 “ATC (Auto Trigger Conversion) Command.”) 1 0 1 ATC 1 1 0 — Unused (*) 1 1 1 — Unused (*) * : These command settings cause the STOP command to be executed. 8 MB88111 (2) Channel select bits A string of channel select bits selects the pin to be subject to A/D conversion. This bit string is enabled only for the STC or ATC command. bc bb ba b9 b8 Pin to be selected bc bb ba b9 b8 Pin to be selected 0 0 0 0 0 AN0 0 0 0 0 1 AN1 1 .. . 0 .. . 0 .. . 0 .. . 0 .. . AN16 .. . 0 0 0 1 0 AN2 1 0 1 1 1 AN23 0 0 0 1 1 AN3 1 1 0 0 0 0 .. . 0 .. . 1 .. . 0 .. . 0 .. . AN4 .. . 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 AN11 1 1 0 1 1 0 1 1 0 0 AN12 1 1 1 0 0 0 1 1 0 1 AN13 1 1 1 0 1 0 1 1 1 0 AN14 1 1 1 1 0 0 1 1 1 1 AN15 1 1 1 1 1 Undefined (*1) Port input AN16 to AN23 (*2) *1: These settings of the bit string cause the STOP command to be executed. *2: This setting is enabled only for the STC command. (See Section 5 “Port Input Command.”) If this setting is made for the ATC command, the STOP command is executed. 2. Data Output Format Upon completion of A/D conversion, the ENDC pin level becomes “H” and the IRQX pin level becomes “L.” Execution of serial transfer at this time outputs data in the format illustrated below. The data output timing can be selected by the MOD pin between the falling edge (mode A) or rising edge (mode B) of the SCK signal. When the ENDC pin level is “L,” 0000H is output. MSB Bf LSB Be Bd Bc Bb Ba B9 Converted data B8 B7 B6 B5 ENDC B4 B3 B2 B1 B0 A/D converted pin ENDC (A/D conversion completion flag): This bit is set to “1” upon completion of A/D conversion. It is set to “0” upon completion of serial transfer. Note: SCK input upon low-to-high transition of the ENDC pin level should be avoided. Otherwise, data may not be output correctly. 9 MB88111 3. STC (Standard Conversion) Command Input of the STC command executes A/D conversion of the specified channel once. Impletion of A/D conversion, the ENDC signal rises while the IRQX signal falls. Clock input to the SCK pin after A/D conversion outputs data to the SOT pin. Upon completion of data output, the ENDC signal falls while the IRQX signal rises. If the next command is STOP or NOP, the A/D conversion is terminated. If the STC command is input during A/D conversion, the command currently being executed is cancelled and the STC command is executed. • Example of STC command execution (1) STC command input during A/D conversion cancels the current command and executes A/D conversion of the new specified channel. Output data at this time is 0000H. 16 Cycle SCK SIN AN0 AN1 AN2 STOP SOT 0000H Data 0 0000H Data 2 ENDC IRQX AN0 conversion A/D AN1 conversion AN2 conversion • Example of STC command execution (2) NOP command input during A/D conversion does not affect operation. Output data at this time is 0000H. If A/ D conversion is completed during NOP command input, the ENDC and IRQX pin levels become “H” and “L” respectively upon completion of the NOP command input. 16 Cycle SCK SIN AN3 NOP NOP AN4 NOP STOP SOT 0000H 0000H Data 3 0000H 0000H Data 4 ENDC IRQX A/D 10 AN3 conversion AN4 conversion MB88111 4. ATC (Auto Trigger Conversion) Command The ATC command is the same as the STC command in basic operation. This command can initiates A/D conversion using the external trigger pin ATGX. The external trigger signal is sampled by 1 µs clock and filtered by 1 clock. The external trigger signal input during A/D conversion is ignored. If the next command is the STOP command, A/D conversion is terminated. If it is the NOP command, the ATC command is executed continuously. The channel cannot be changed at this time. To change the channel, input the ATC command to that effect. • Example of ATC command execution (1) NOP command input during A/D conversion enables the same channel to be A/D converted. An attempt to set the ATGX signal low during A/D conversion is ignored. NOP command input during A/D conversion does not affect operation. Output data at this time is 0000H. 16 Cycle SCK SIN AN5 NOP AN6 NOP STOP SOT 0000H Data 5 Data 5 0000H Data 6 ENDC IRQX ATGX A/D AN5 conversion AN5 conversion AN6 conversion • Example of ATC command execution (2) Setting the ATGX signal low again after A/D conversion restarts A/D conversion. In data output mode B, however, do not use the ATC command in this way, or data will not be output correctly. If A/D conversion is completed during NOP command input, the ENDC and IRQX pin levels become “H” and “L” respectively upon completion of the NOP command input. 16 Cycle SCK SIN AN7 AN8 NOP STOP SOT 0000H Data 7 0000H Data 8 ENDC IRQX ATGX A/D AN7 conversion AN7 conversion AN7 conversion AN8 conversion 11 MB88111 5. Port Input Command The port input command executes I/O evaluation of 8-channel inputs from the AN16 to AN23 pins at a prescribed threshold in 10 clock cycles and outputs the results as port input data. The processing sequence is activated each time port input is selected by the STC command. Port input data is output in the following format: MSB Bf LSB Be Bd Bc Bb Ba Evaluation data B9 B8 B7 B6 “0” B5 B4 ENDC B3 B2 B1 B0 “1” Evaluation data: The evaluation values of AN23 to AN16 are output to bits Bf to B8. Evaluation value “H”: Vin ≥ 0.8 x Vcc “L”: Vin ≤ 0.2 x Vcc ENDC (A/D completion flag): This bit is set to “1” upon completion of A/D conversion. It is set to “0” upon completion of serial transfer. • Example of STC command execution (3) (Port input command) 16 Cycle 10 Cycle 16 Cycle SCK SIN CH9 STOP SOT 0000H Data 9 ENDC IRQX AN16 to AN23 A/D 12 Evaluation MB88111 6. Serial Output Select Function The MB88111 can select the serial data output timing between the rising edge or falling edge of the clock signal according to the setting of the MOD pin. Mode A (MOD = “L”) SCK MSB SOT Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 LSB B0 bf be bd bc bb ba b9 b8 b7 b6 b5 b4 b3 b2 b1 LSB b0 MSB SIN Serial data is output at the falling edge of the SCK signal. Note: A/D converted data is not guaranteed if the MOD pin is switched when the ENDC signal is active. Before changing the output mode, make the ENDC inactive or set the RSTX pin level to “L” after switching the MOD pin. Mode B (MOD = “H”) SCK MSB SOT Bf Be Bd Bc Bb Ba B9 B8 B7 B6 B5 B4 B3 B2 B1 LSB B0 MSB SIN bf be bd bc bb ba b9 b8 b7 b6 b5 b4 b3 b2 b1 LSB b0 Serial data is output at the rising edge of the SCK signal. Note: A/D converted data is not guaranteed if the MOD pin is switched when the ENDC signal is active. Before changing the output mode, make the ENDC inactive or set the RSTX pin level to “L” after switching the MOD pin. The first bit is output when the ENDC signal becomes “H.” 7. Extended Serial Interface The MB88111 can select whether to output A/D converted data or to output data input to the ESIN pin by controlling the CS1 and CS2X pins. CS1 CS2X SOT pin H L A/D converted data L L L H H H Connection to the ESIN pin Note: A/D converted data is not guaranteed if the CS1 or CS2X setting is changed during SCK input. 13 MB88111 ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings (VSS = AGND = 0 V) Parameter Symbol Ratings Conditions VCC Power supply voltage AVCC AVRH Based on VSS (Ta = +25°C) Unit Min. Max. –0.3 +7.0 V –0.3 +7.0* V –0.3 +7.0* V Input voltage VIN –0.3 VCC + 0.3 V Output voltage VOUT –0.3 VCC + 0.3 V Power consumption PD — — 150 mW Storage temperature Tstg — –55 +150 °C * : VCC ≥ AVCC ≥ AVRH 2. Recommended Operating Conditions Parameter Power supply voltage Operation temperature * : VCC ≥ AVCC ≥ AVRH 14 Symbol Values Unit Min. Max. VCC AVCC 3.5* 5.5* V VCC AGND 0 0 V AVRH AVCC × 0.8 AVCC V AVRL 0 AVCC × 0.2 V Ta –40 +105 °C MB88111 3. DC Characteristics (1) Digital section Parameter Pin name Power supply voltage Power supply current Low-level input leakage current High-level input leakage current Low-level input voltage High-level input voltage Hysteresis width Low-level output voltage High-level output voltage (VCC = +3.5 V to +5.5 V, VSS = AGND = 0 V, Ta = –40°C to +105°C) Value Symbol Conditions Unit Min. Typ. Max. VCC — 3.5 5.0 5.5 V ICC Operation at CLK = 1 MHz (with no load) — 0.5 1.5 mA MOD, CCLK CS1, CS2X SCK, ESIN SIN IIZL1 VIN = VSS –2 — 2 µA ATGX RSTX IIZL2 VIN = VSS VCC = 5.0 V –200 –100 –50 µA MOD, CCLK CS1, CS2X SCK, ESIN SIN, ATGX RSTX IIZL1 VIN = VCC –2 — 2 µA MOD, ESIN CS1, CS2X VIL — VSS − 0.3 — 0.3 VCC V SCK, CCLK SIN, ATGX RSTX, * VILS — VSS − 0.3 — 0.2 VCC V MOD, ESIN CS1, CS2X VIH — 0.7 VCC — VCC + 0.3 V SCK, CCLK SIN, ATGX RSTX, * VIHS — 0.8 VCC — VCC + 0.3 V SCK, CCLK SIN, ATGX RSTX, * VHYS — 0.02 VCC — 0.3 VCC V — — 0.4 V VCC − 0.4 — — V VCC SOT IRQX ENDC VOL IOL = 2.5 mA VOH IOH = –400 µA * : AN16 to AN23 (port input mode) 15 MB88111 (2) Analog section Parameter (AVCC, VCC = +3.5 V to +5.5 V (VCC ≥ AVCC), VSS = AGND = 0 V, Ta = –40°C to +105°C) Value Pin name Symbol Conditions Unit Min. Typ. Max. Resolution — — — 10 — bits Monotonic increase — — — 10 — bits Linearity error — — — — ±1 LSB — — — — ±1 LSB Full-scale transition error — — — — ±1/2 LSB Zero-transition error — — — — ±1/2 LSB Total error — — — — ±2 LSB — CCLK = 1 MHz — — 50 µs Differential linearity error AN0 to AN23 Conversion time — Input clock frequency CCLK — — 800 1000 1200 KHz Supply current AVCC IA — — 3.0 6.0 mA Reference voltage supply current AVRH IR — — 150 300 µA AVRH — — 0.8 AVCC — AVCC V AVRL — — 0 — 0.2 AVCC V — — AVRL — AVRH V — — –200 — 200 nA Analog reference voltage Analog input voltage Multiplexer OFF-leakage current AN0 to AN23 • No missing code is guaranteed. Notes: • If the output impedance of the external input is too high, the analog voltage sampling time may be insufficient. • In the power-on sequence, turn the power supply for the digital system first before turning that for the analog system on. Analog input equivalent circuit Analog input Comparator R ON1 R ON2 ⋅ RON1 = About 1.5 kΩ ⋅ RON2 =About 1.5 kΩ ⋅ C0 =About 15 pF Note: The above values are reference values. 16 C0 MB88111 4. AC Characteristics (AVCC, VCC = +3.5 V to +5.5 V (VCC ≥ AVCC), VSS = AGND = 0 V, Ta = –40°C to +105°C) Values Parameter Symbol Conditions Unit Min. Max. CCLK clock cycle time fCLK Low-level CCLK clock pulse width tCKL High-level CCLK clock pulse width tCKH fCLK = 1/fCLK 800 1200 KHz — 400 — ns — 400 — ns — – 10 ns 400 1200 KHz CCLK clock rise time tCr CCLK clock fall time tCf SCK clock cycle time fSCK Low-level SCK clock pulse width tSKL — 400 — ns High-level SCK clock pulse width tSKH — 400 — ns — – 10 ns tSCK = 1/fSCK SCK clock rise time tSr SCK clock fall time tSf SIN setup time tSIS — 50 — ns SIN hold time tSIH — 250 — ns Command interval tCOM CCLK = 1 MHz 4 — µs ENDC reset time tENR See “Load conditions.” – 1 µs RSTX pulse width tRSH — 100 — ns RSTX ↑ → SCK ↓ time tRSS — 1 — µs SCK ↑ → CS1 ↓ time SCK ↑ → CS2X ↑ time tCSS — 500 — ns CS1 ↑ → SCK ↓ time CS2X ↓ → SCK ↓ time tCSH — 500 — ns SOT output delay time (mode A) tSODA See “Load conditions.” — 300 ns SOT output delay time (mode B) tSODB See “Load conditions.” — 300 ns ENDC ↑ → SOT output (mode B) tSOHB See “Load conditions.” — 200 ns STC command A/D conversion time tSTC CCLK = 1 MHz — 50 µs ATC command A/D conversion time tSATC CCLK = 1 MHz — 50 µs ATGX setup time tSATS CCLK = 1 MHz 4 — µs ATGX hold time tSATH CCLK = 1 MHz 2 — µs Port input evaluation time tPOT CCLK = 1 MHz — 10 µs Port input setup time tPTS — 0 — ns Port input hold time tPTH — 0 — ns Extended serial HL propagation delay tSHL See “Load conditions.” — 100 ns Extended serial LH propagation delay tSLH See “Load conditions.” — 100 ns Noise filter width tINF — 15 — ns 17 MB88111 AC Test Condition Measurement point C L = 50 pF ■ TIMING DIAGRAM 1. Input Clock Timing t CLK t CKH CCLK t Cf t CKL t Cr t SCK t SKH SCK t Sf t SKL Evaluation levels are 80% and 20% of the VCC. 18 t Sr MB88111 2. Serial Data Input Timing t RSH RSTX t RSS SCK t COM t CSS t CSH CS1 (CS2X) SIN t SIS b0 t SIH bf be t ENR ENDC Evaluation levels are 80% and 20% of the VCC. 3. Serial Data Output Timing Mode A SCK t SODA SOT Bf Be Evaluation levels are 80% and 20% of the VCC. Mode B SCK t SODB SOT Bf Be t SOHB ENDC Evaluation levels are 80% and 20% of the VCC. 19 MB88111 4. A/D Conversion and Port Input Evaluation STC command (normal mode) SCK SIN b0 t STC ENDC Evaluation levels are 80% and 20% of the VCC. ATC command SCK SIN b0 t ATS t ATH ATGX t ATC ENDC Evaluation levels are 80% and 20% of the VCC. 20 MB88111 STC command (port input mode) SCK SOT b0 t PTS AN16 to AN23 t POT t PTH ENDC Evaluation levels are 80% and 20% of the VCC. 5. Extended Serial Interface ESIN t SHL t SLH SOT Evaluation levels are 80% and 20% of the VCC. 6. Noise Filter t INF t INF Evaluation levels are 80% and 20% of the VCC. 21 MB88111 ■ DEFINITIONS OF A/D CONVERTER TERMS • Resolution Analog transition identifiable by the A/D converter • Linearity error Deviation of the straight line drawn between the zero transition point (00 0000 0000 ↔ 00 0000 0001) and the full-scale transition point (11 1111 1110 ↔ 11 1111 1111) of the device from actual conversion characteristics • Differential linearity error Deviation from the ideal input voltage required to shift output code by one LSB • Total error Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, linearity error, quantum error, and by noise. Ideal I/O characteristics 3FF 3FF 3FE 3FE 3FD 004 3FD 1.5 LSB Digital output Digital output Total error VFST (Ideal value) VOT (Ideal value) 003 002 Actual conversion characteristics {1 LSB×(N–1) +0.5 LSB} 004 002 1 LSB (Ideal value) 001 VNT' (Measured value) 003 Actual conversion characteristics Ideal characteristics 001 0.5 LSB AVRL AVRH AVRL Analog input 1 LSB (Ideal value) = AVRH Analog input AVRH–AVRL [v] 1024 V OT (Ideal value) = 0.5 LSB [v] V FST (Ideal value) = AVRH - 1.5 LSB [v] Total error of digital output N = VNT'– {1 LSB × (N–1) +0.5 LSB} 1 LSB (Continued) 22 MB88111 (Continued) Zero transition error Full-scale transition error Ideal characteristics 004 Actual conversion characteristics 3FF Actual conversion characteristics 002 Actual conversion characteristics Digital output Digital output 003 3FE VFST' (Measured value) 3FD Actual conversion characteristics 001 3FC VOT'(Measured value) AVRL AVRH Analog input Analog input VOT'–0.5 LSB Zero transition error = Full scale transition error = VFST' – (AVRH–1.5 LSB) 1 LSB 1 LSB Linearity error 3FF 3FE Differential linearity error Ideal characteristics Actual conversion characteristics N+1 { 1 L S B × ( N – 1 ) + V OT' } Actual conversion characteristics VFST' (Measured value) VNT' (Measured value) Actual conversion characteristics 004 003 Digital output Digital output 3FD N N-1 V(N + 1)T' VNT' (Measured (Measured value) value) 002 Ideal characteristics N-2 001 VOT' (Measured value) AVRL AVRH Analog input VNT' – {1 LSB' × (N–1)+V OT' } Linearity error of digital output N = 1 LSB' 1 LSB' = VFST' – VOT' 1022 Actual conversion characteristics AVRL AVRH Analog input Differential linearity error of digital output N = V(N+1)T' –VNT' 1 LSB' –1 [V] 23 MB88111 ■ ORDERING INFORMATION Part number 24 Package MB88111PFQ 44-pin, Plastic QFP (FPT-44P-M11) MB88111P-SH 48-pin, Plastic SH-DIP (DIP-48P-M01) Remarks MB88111 ■ PACKAGE DIMENSIONS 44-pin, Plastic QFP (FPT-44P-M11) 14.40±0.40 SQ (.567±.016) 10.00±0.20 SQ (.394±.008) 33 2.35(.093)MAX (Mounting height) 0.05(.002)MIN (STAND OFF) 23 Details of "A" part 34 22 0.15(.006) 8.00 (.315) REF INDEX 0.20(.008) 11.60±0.30 (.457±.012) 0.18(.007)MAX 0.53(.021)MAX "A" 44 12 Details of "B" part LEAD No. 1 11 0.80(.0315)TYP 0.30±0.10 (.012±.004) 0.16(.006) M 0.15±0.05 (.006±.002) 0~10° "B" 1.40±0.30 (.055±.012) 0.10(.004) C Dimensions in mm (inches). 1994 FUJITSU LIMITED F44018S-1C-1 48-pin, Plastic SH-DIP (DIP-48P-M01) +0.20 43.69 –0.30 +.008 1.720 –.012 INDEX-1 13.80±0.25 (.543±.010) INDEX-2 0.51(.020)MIN 5.25(.207) MAX 0.25±0.05 (.010±.002) 3.00(.118) MIN +0.50 1.00 –0 +.020 .039 –0 1.778±0.18 (.070±.007) 1.778(.070) MAX C 1994 FUJITSU LIMITED D48002S-3C-3 0.45±0.10 (.018±.004) 15.24(.600) TYP 15°MAX 40.894(1.610)REF Dimensions in mm (inches). 25 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. F9703 FUJITSU LIMITED Printed in Japan 24