FUJITSU SEMICONDUCTOR DATA SHEET DS07-16301-2E 32-bit RISC Microcontroller CMOS FR30 Series MB91101/MB91101A ■ DESCRIPTION The MB91101 is a standard single-chip microcontroller constructed around the 32-bit RISC CPU (FR* family) core with abundant I/O resources and bus control functions optimized for high-performance/high-speed CPU processing for embedded controller applications. To support the vast memory space accessed by the 32-bit CPU, the MB91101 normally operates in the external bus access mode and executes instructions on the internal 1 Kbyte cache memory and 2 Kbytes RAM for enhanced performance. The MB91101 is optimized for applications requiring high-performance CPU processing such as navigation systems, high-performance FAXs and printer controllers. *: FR Family stands for FUJITSU RISC controller. ■ FEATURES FR CPU • • • • • • 32-bit RISC, load/store architecture, 5-stage pipeline Operating clock frequency: Internal 50 MHz/external 25 MHz (PLL used at source oscillation 12.5 MHz) General purpose registers: 32 bits × 16 16-bit fixed length instructions (basic instructions), 1 instruction/1 cycle Memory to memory transfer, bit processing, barrel shifter processing: Optimized for embedded applications Function entrance/exit instructions, multiple load/store instructions of register contents, instruction systems supporting high level languages • Register interlock functions, efficient assembly language coding • Branch instructions with delay slots: Reduced overhead time in branch executions (Continued) ■ PACKAGE 100-pin Plastic LQFP 100-pin Plastic QFP (FPT-100P-M05) (FPT-100P-M06) MB91101/MB91101A (Continued) • Internal multiplier/supported at instruction level Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles • Interrupt (push PC and PS): 6 cycles, 16 priority levels External bus interface • • • • • • Clock doubler: Internal 50 MHz, external bus 25 MHz operation 25-bit address bus (32 Mbytes memory space) 8/16-bit data bus Basic external bus cycle: 2 clock cycles Chip select outputs for setting down to a minimum memory block size of 64 Kbytes: 6 Interface supported for various memory technologies DRAM interface (area 4 and 5) • Automatic wait cycle insertion: Flexible setting, from 0 to 7 for each area • Unused data/address pins can be configured us input/output ports • Little endian mode supported (Select 1 area from area 1 to 5) DRAM interface • • • • • 2 banks independent control (area 4 and 5) Normal mode (double CAS DRAM)/high-speed page mode (single CAS DRAM)/Hyper DRAM Basic bus cycle: Normally 5 cycles, 2-cycle access possible in high-speed page mode Programmable waveform: Automatic 1-cycle wait insertion to RAS and CAS cycles DRAM refresh CBR refresh (interval time configurable by 6-bit timer) Self-refresh mode • Supports 8/9/10/12-bit column address width • 2CAS/1WE, 2WE/1CAS selective Cache memory • • • • 1-Kbyte instruction cache memory 32 block/way, 4 entry(4 word)/block 2 way set associative Lock function: For specific program code to be resident in cashe memory DMA controller (DMAC) • • • • • 8 channels Transfer incident/external pins/internal resource interrupt requests Transfer sequence: Step transfer/block transfer/burst transfer/continuous transfer Transfer data length: 8 bits/16 bits/32 bits selective NMI/interrupt request enables temporary stop operation UART • • • • • • • • 2 3 independent channels Full-duplex double buffer Data length: 7 bits to 9 bits (non-parity), 6 bits to 8 bits (parity) Asynchronous (start-stop system), CLK-synchronized communication selective Multi-processor mode Internal 16-bit timer (U-TIMER) operating as a proprietary baud rate generator: Generates any given baud rate Use external clock can be used as a transfer clock Error detection: Parity, frame, overrun MB91101/MB91101A (Continued) 10-bit A/D converter (successive approximation conversion type) • • • • • 10-bit resolution, 4 channels Successive approximation type: Conversion time of 5.6 µs at 25 MHz Internal sample and hold circuit Conversion mode: Single conversion/scanning conversion/repeated conversion/stop conversion selective Start: Software/external trigger/internal timer selective 16-bit reload timer • 3 channels • Internal clock: 2 clock cycle resolution, divide by 2/8/32 selective Other interval timers • 16-bit timer: 3 channels (U-TIMER) • PWM timer: 4 channels • Watchdog timer: 1 channel Bit search module First bit transition “1” or “0” from MSB can be detected in 1 cycle Interrupt controller • External interrupt input: Non-maskable interrupt (NMI), normal interrupt × 4 (INT0 to INT3) • Internal interrupt incident: UART, DMA controller (DMAC), A/D converter, U-TIMER and delayed interrupt module • Priority levels of interrupts are programmable except for non-maskable interrupt (in 16 steps) Others • Reset cause: Power-on reset/hardware standby/watchdog timer/software reset/external reset • Low-power consumption mode: Sleep mode/stop mode • Clock control Gear function: Operating clocks for CPU and peripherals are independently selective Gear clock can be selected from 1/1, 1/2, 1/4 and 1/8 (or 1/2, 1/4, 1/8 and 1/16) However, operating frequency for peripherals is less than 25 MHz. • Packages: LQFP-100 and QFP-100 • CMOS technology (0.35 µm) • Power supply voltage 5 V: CPU power supply 5.0 V ±10% (internal regulator) A/D power supply 2.7 V to 3.6 V 3 V: CPU power supply 2.7 V to 3.6 V (without internal regulator) A/D power supply 2.7 V to 3.6 V 3 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27 D24 D25 D26 D27 D28 D29 D30 VSS D31 A00 VCC5 A01 A02 A03 A04 A05 A06 A07 CS1L/PB5/DREQ2 CS1H/PB6/DACK2 DW1/PB7 VCC3 CLK/PA6 CS5/PA5 CS4/PA4 CS3/PA3/EOP1 CS2/PA2 CS1/PA1 CS0 NMI HST RST VSS MD0 MD1 MD2 RDY/P80 BGRNT/P81 BRQ/P82 RD WR0 WR1/P85 D16/P20 4 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 RAS1/PB4/EOP2 DW0/PB3 CS0H/PB2 CS0L/PB1 RAS0/PB0 INT0/PE0 INT1/PE1 VCC5 X0 X1 VSS INT2/SC1/PE2 INT3/SC2/PE3 DREQ0/PE4 DREQ1/PE5 DACK0/PE6 DACK1/PE7 OCPA0/PF7/ATG SO2/OCPA2/PF6 SI2/OCPA1/PF5 SO1/TRG3/PF4 SI1/TRG2/PF3 SC0/OCPA3/PF2 SO0/TRG1/PF1 SI0/TRG0/PF0 MB91101/MB91101A ■ PIN ASSIGNMENT (Top view) (FPT-100P-M05) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 AN3 AN2 AN1 AN0 AVSS/AVRL AVRH AVCC A24/EOP0 A23/P67 A22/P66 VSS A21/P65 A20/P64 A19/P63 A18/P62 A17/P61 A16/P60 A15 A14 A13 A12 A11 A10 A09 A08 MB91101/MB91101A 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 CS0L/PB1 RAS0/PB0 INT0/PE0 INT1/PE1 VCC5 X0 X1 VSS INT2/SC1/PE2 INT3/SC2/PE3 DREQ0/PE4 DREQ1/PE5 DACK0/PE6 DACK1/PE7 OCPA0/PF7/ATG SO2/OCPA2/PF6 SI2/OCPA1/PF5 SO1/TRG3/PF4 SI1/TRG2/PF3 SC0/OCPA3/PF2 (Top view) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 SO0/TRG1/PF1 SI0/TRG0/PF0 AN3 AN2 AN1 AN0 AVSS/AVRL AVRH AVCC A24/EOP0 A23/P67 A22/P66 VSS A21/P65 A20/P64 A19/P63 A18/P62 A17/P61 A16/P60 A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27 D24 D25 D26 D27 D28 D29 D30 VSS D31 A00 VCC5 A01 A02 A03 A04 CS0H/PB2 DW0/PB3 RAS1/PB4/EOP2 CS1L/PB5/DREQ2 CS1H/PB6/DACK2 DW1/PB7 VCC3 CLK/PA6 CS5/PA5 CS4/PA4 CS3/PA3/EOP1 CS2/PA2 CS1/PA1 CS0 NMI HST RST VSS MD0 MD1 MD2 RDY/P80 BGRNT/P81 BRQ/P82 RD WR0 WR1/P85 D16/P20 D17/P21 D18/P22 (FPT-100P-M06) 5 MB91101/MB91101A ■ PIN DESCRIPTION Pin no. LQFP*1 25 to 32 QFP*2 Pin name 28 to 35 D16 to D23 Circuit type C P20 to P27 Function Bit 16 to bit 23 of external data bus Can be configured as I/O ports when external data bus width is set to 8-bit. 33 to 39, 41 36 to 42, D24 to D30, 44 D31 C Bit 24 to bit 31 of external data bus 42, 44 to 58 45, A00, 47 to 61 A01 to A15 F Bit 00 to bit 15 of external address bus 59 to 64, 66, 67 62 to 67, A16 to A21, 69, A22, 70 A23 F Bit 16 to bit 23 of external address bus P60 to P65, P66, P67 68 71 A24 Can be configured as I/O ports when not used as address bus. L EOP0 19 22 RDY Can be configured as DMAC EOP output (ch. 0) when DMAC EOP output is enabled. C P80 20 23 BGRNT 24 BRQ External ready input Inputs “0” when bus cycle is being executed and not completed. Can be configured as a port when RDY is not used. F P81 21 Bit 24 of external address bus External bus release acknowledge output Outputs “L” level when external bus is released. Can be configured as a port when BGRNT is not used. C P82 External bus release request input Inputs “1” when release of external bus is required. Can be configured as a port when BRQ is not used. 22 25 RD L Read strobe output pin for external bus 23 26 WR0 L Write strobe output pin for external bus Relation between control signals and effective byte locations is as follows: 24 27 WR1 F 16-bit bus width 8-bit bus width D15 to D08 WR0 WR0 D07 to D00 WR1 (I/O port enabled) Note: WR1 is Hi-Z during resetting. Attach an external pull-up resister when using at 16-bit bus width. P85 *1: FPT-100P-M05 *2: FPT-100P-M06 6 Can be configured as a port when WR1 is not used. (Continued) MB91101/MB91101A Pin no. 1 2 Pin name Circuit type Function LQFP* QFP* 11 14 CS0 L Chip select 0 output (“L” active) 10 13 CS1 F Chip select 1 output (“L” active) PA1 9 12 CS2 Can be configured as a port when CS1 is not used. F PA2 8 7 11 10 CS3 Can be configured as a port when CS2 is not used. F 9 Can be configured as a port when CS3 and EOP1 are not used. EOP1 EOP output pin for DMAC (ch. 1) This function is available when EOP output for DMAC is enabled. CS4 F CS5 8 CLK F 99 RAS0 F 100 CS0L F 1 CS0H F 2 DW0 F 3 *1: FPT-100P-M05 *2: FPT-100P-M06 RAS1 CASH output for DRAM bank 0 Refer to the DRAM interface for details. Can be configured as a port when CS0H is not used. F PB3 100 CASL output for DRAM bank 0 Refer to the DRAM interface for details. Can be configured as a port when CS0L is not used. PB2 99 RAS output for DRAM bank 0 Refer to the DRAM interface for details. Can be configured as a port when RAS0 is not used. PB1 98 System clock output Outputs clock signal of external bus operating frequency. Can be configured as a port when CLK is not used. PB0 97 Chip select 5 output (“L” active) Can be configured as a port when CS5 is not used. PA6 96 Chip select 4 output (“L” active) Can be configured as a port when CS4 is not used. PA5 5 Chip select 3 output (“L” active) PA3 PA4 6 Chip select 2 output (“L” active) WE output for DRAM bank 0 (“L” active) Refer to the DRAM interface for details. Can be configured as a port when DW0 is not used. F RAS output for DRAM bank 1 Refer to the DRAM interface for details. PB4 Can be configured as a port when RAS1 and EOP2 are not used. EOP2 DMAC EOP output (ch. 2) This function is available when DMAC EOP output is enabled. (Continued) 7 MB91101/MB91101A Pin no. 1 LQFP* QFP* 1 4 2 3 5 6 2 Pin name CS1L Circuit type F Can be configured as a port when CS1L and DREQ2 are not used. DREQ2 External transfer request input pin for DMA This pin is used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. CS1H F CASH output for DRAM bank 1 Refer to the DRAM interface for details. PB6 Can be configured as a port when CS1H and DACK2 are not used. DACK2 External transfer request acknowledge output pin for DMAC (ch. 2) This function is available when transfer request output for DMAC is enabled. DW1 F 19 to 21 MD0 to MD2 WE output for DRAM bank 1 (“L” active) Refer to the DRAM interface for details. Can be configured as a port when DW1 is not used. G Mode pins 0 to 2 MCU basic operation mode is set by these pins. Directly connect these pins with VCC or VSS for use. 92 95 X0 A Clock (oscillator) input 91 94 X1 A Clock (oscillator) output 14 17 RST B External reset input 13 16 HST H Hardware standby input (“L” active) 12 15 NMI H NMI (non-maskable interrupt pin) input (“L” active) 95, 94 98, 97 INT0, INT1 F External interrupt request input pins These pins are used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from these pins unless such output is made intentionally. PE0, PE1 89 92 *1: FPT-100P-M05 *2: FPT-100P-M06 8 CASL output for DRAM bank 1 Refer to the DRAM interface for details. PB5 PB7 16 to 18 Function INT2 Can be configured as a I/O port when INT0, INT1 are not used. F External interrupt request input pin This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. SC1 Clock I/O pin for UART1 Clock output is available when clock output of UART1 is enabled. PE2 Can be configured as a I/O port when INT2 and SC1 are not used. This function is available when UART1 clock output is disabled. (Continued) MB91101/MB91101A Pin no. LQFP* 88 87, 86 1 2 QFP* 91 90, 89 Pin name INT3 Circuit type F 88 UART2 clock I/O pin Clock output is available when UART2 clock output is enabled. PE3 Can be configured as a I/O port when INT3 and SC2 are not used. This function is available when UART2 clock output is disabled. DREQ0, DREQ1 F DACK0 87 DACK1 F 79 *1: FPT-100P-M05 *2: FPT-100P-M06 SI0 External transfer request acknowledge output pin for DMAC (ch. 0) This function is available when transfer request output for DMAC is enabled. Can be configured as a I/O port when DACK0 is not used. This function is available when transfer request acknowledge output for DMAC or DACK0 output is disabled. F PE7 76 External transfer request input pins for DMA These pins are used for input when external trigger is selected to cause DMAC operation, and it is necessary to disable output for other functions from these pins unless such output is made intentionally. Can be configured as a I/O port when DREQ0, DREQ1 are not used. PE6 84 External interrupt request input pin This pin is used for input during corresponding interrupt is enabled, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. SC2 PE4, PE5 85 Function External transfer request acknowledge output pin for DMAC (ch. 1) This function is available when transfer request output for DMAC is enabled. Can be configured as a I/O port when DACK1 is not used. This function is available when transfer request output for DMAC or DACK1 output is disabled. F UART0 data input pin This pin is used for input during UART0 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. TRG0 PWM timer external trigger input pin This pin is used for input during PWM timer external trigger is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. PF0 Can be configured as a I/O port when SI0 and TRG0 are not used. (Continued) 9 MB91101/MB91101A Pin no. 1 LQFP* QFP* 77 80 78 79 80 81 2 81 82 83 84 *1: FPT-100P-M05 *2: FPT-100P-M06 10 Pin name SO0 Circuit type F Function UART0 data output pin This function is available when UART0 data output is enabled. TRG1 PWM timer external trigger input pin This function is available when serial data output of PF1, UART0 are disabled. PF1 Can be configured as a I/O port when SO0 and TRG1 are not used. This function is available when serial data output of UART0 is disabled. SC0 F UART0 clock I/O pin Clock output is available when UART0 clock output is enabled. OCPA3 PWM timer output pin This function is available when PWM timer output is enabled. PF2 Can be configured as a I/O port when SC0 and OCPA3 are not used. This function is available when UART0 clock output is disabled. SI1 F UART1 data input pin This pin is used for input during UART1 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. TRG2 PWM timer external trigger input pin This pin is used for input during PWM timer external trigger is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. PF3 Can be configured as a I/O port when SI1 and TRG2 are not used. SO1 F UART1 data output pin This function is available when UART1 data output is enabled. TRG3 PWM timer external trigger input pin This function is available when PF4, UART1 data outputs are disabled. PF4 Can be configured as a I/O port when SO1 and TRG3 are not used. This function is available when UART1 data output is disabled. SI2 F UART2 data input pin This pin is used for input during UART2 is in input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. OCPA1 PWM timer output pin This function is available when PWM timer output is enabled. PF5 Can be configured as a I/O port when SI2 and OCPA1 are not used. (Continued) MB91101/MB91101A (Continued) Pin no. 1 LQFP* QFP* 82 85 83 72 to 75 86 2 Pin name SO2 Circuit type F Function UART2 data output pin This function is available when UART2 data output is enabled. OCPA2 PWM timer output pin This function is available when PWM timer output is enabled. PF6 Can be configured as a I/O port when SO2 and OCPA2 are not used. This function is available when UART2 data output is disabled. OCPA0 F PWM timer output pin This function is available when PWM timer output is enabled. PF7 Can be configured as a I/O port when OCPA0 and ATG are not used. This function is available when PWM timer output is disabled. ATG External trigger input pin for A/D converter This pin is used for input when external trigger is selected to cause A/D converter operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally. 75 to 78 AN0 to AN3 D Analog input pins of A/D converter This function is available when AIC register is set to specify analog input mode. 69 72 AVCC — Power supply pin (VCC) for A/D converter 70 73 AVRH — Reference voltage input (high) for A/D converter Make sure to turn on and off this pin with potential of AVRH or more applied to VCC. 71 74 AVSS / AVRL — Power supply pin (VSS) for A/D converter and reference voltage input pin (low) 43, 93 46, 96 VCC5 — 5 V power supply pin (VCC) for digital circuit Always two pins must be connected to the power supply (connect to 3 V power supply when operating at 3 V). 4 7 VCC3 — Bypass capacitor pin for internal capacitor. Also connect this pin to 3 V power supply when operating at 3 V. 15, 40, 65, 90 18, 43, 68, 93 VSS — Earth level (VSS) for digital circuit *1: FPT-100P-M05 *2: FPT-100P-M06 Note: In most of the above pins, I/O port and resource I/O are multiplexed e.g. P82 and BRQ. In case of conflict between output of I/O port and resource I/O, priority is always given to the output of resource I/O. 11 MB91101/MB91101A ■ DRAM CONTROL PIN Pin name 12 Data bus 16-bit mode 2CAS/1WR mode 1CAS/2WR mode Data bus 8-bit mode — RAS0 Area 4 RAS Area 4 RAS Area 4 RAS RAS1 Area 5 RAS Area 5 RAS Area 5 RAS CS0L Area 4 CASL Area 4 CAS Area 4 CAS CS0H Area 4 CASH Area 4 WEL Area 4 CAS CS1L Area 5 CASL Area 5 CAS Area 5 CAS CS1H Area 5 CASH Area 5 WEL Area 5 CAS CW0 Area 4 WE Area 4 WEH Area 4 WE DW1 Area 5 WE Area 5 WEH Area 5 WE Remarks Correspondence of “L” “H” to lower address 1 bit (A0) in data bus 16bit mode “L”: “0” “H”: “1” CASL: CAS which A0 corresponds to “0” area CASH: CAS which A0 corresponds to “1” area WEL: WE which A0 corresponds to “0” area WEH: WE which A0 corresponds to “1” area MB91101/MB91101A ■ I/O CIRCUIT TYPE Type Circuit Remarks A X1 Clock input • Oscillation feedback resistance 1 MΩ approx. With standby control X0 Standby control signal B • CMOS level Hysteresis input Without standby control With pull-up resistance VCC P-ch P-ch R N-ch VSS Digital input C • CMOS level I/O With standby control R P-ch Digital output N-ch Digital output Digital input Standby control signal D • Analog input R P-ch Digital output N-ch Digital output Analog input (Continued) 13 MB91101/MB91101A Type Circuit Remarks E • N-ch open-drain output • CMOS level input With standby control P-ch R N-ch Digital output Digital input Standby control signal F R P-ch Digital output N-ch Digital output • CMOS level output • CMOS level Hysteresis input With standby control Digital input Standby control signal G • CMOS level input Without standby control P-ch R N-ch Digital input H • CMOS level Hysteresis input Without standby control P-ch R N-ch Digital input (Continued) 14 MB91101/MB91101A (Continued) Type Circuit Remarks I R P-ch Digital output N-ch Digital output • CMOS level output • CMOS level Hysteresis input Without standby control Digital input J R P-ch Digital output N-ch Digital output • CMOS level output • TTL level input With standby control Digital input Standby control signal TTL K R P-ch Digital output N-ch Digital output • CMOS level input/output With standby control • Large current drive Digital input Standby control signal L • CMOS level output P-ch Digital output N-ch Digital output 15 MB91101/MB91101A ■ HANDLING DEVICES 1. Preventing Latchup In CMOS ICs, applying voltage higher than VCC or lower than VSS to input/output pin or applying voltage over rating across VCC and VSS may cause latchup. This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating. Take care that the analog power supply (AVCC , AVR) and the analog input do not exceed the digital power supply (VCC) when the analog power supply turned on or off. 2. Treatment of Unused Pins Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors. 3. External Reset Input It takes at least 5 machine cycle to input “L” level to the RST pin and to ensure inner reset operation properly. 4. Remarks for External Clock Operation When external clock is selected, supply it to X0 pin generally, and simultaneously the opposite phase clock to X0 must be supplied to X1 pin. However, in this case the stop mode must not be used (because X1 pin stops at “H” output in stop mode). And can be used to supply only to X0 pin with 5 V power supply at 12.5 MHz and less than. • Using an external clock X0 X1 MB91101 Using an external clock (normal) Note: Can not be used stop mode (oscillation stop mode). X0 Open X1 MB91101 Using an external clock (can be used at 12.5 MHz and less than.) (5 V power supply only) 16 MB91101/MB91101A 5. Power Supply Pins When there are several VCC and VSS pins, each of them is equipotentially connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect all VCC and VSS pins to the power supply or GND. It is preferred to connect VCC and VSS of MB91101 to power supply with minimal impedance possible. It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1 µF between VCC and VSS at a position as close as possible to MB91101. MB91101 has an internal regulator. When using with 5 V power supply, supply 5 V to VCC5 pin and make sure to connect about 0.1 µF bypass capacitor to VCC3 pin for regulator. And another 3 V power supply is needed for the A/D convertor. When using with 3 V power supply, connect both VCC5 pin and VCC3 pin to the 3 V power supply. • Connecting to a power supply [Using with 3 V power supply] [Using with 5 V power supply] 3V 5V 3V VCC5 AVCC AVRH AVSS VSS GND VCC3 VCC5 VCC3 AVCC About 0.1 µF AVRH AVSS GND VSS 6. Crystal Oscillator Circuit Noises around X0 and X1 pins may cause malfunctions of MB91101. In designing the PC board, layout X0, X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible. It is strongly recommended to design PC board so that X1 and X0 pins are surrounded by grounding area for stable operation. 7. Turning-on Sequence of A/D Converter Power Supply and Analog Input Make sure to turn on the digital power supply (VCC) before turning on the A/D converter (AVCC, AVRH) and applying voltage to analog input (AN0 to AN3). Make sure to turn off digital power supply after power supply to A/D converters and analog inputs have been switched off. (There are no such limitations in turning on power supplies. Analog and digital power supplies may be turned on simultaneously.) Make sure that AVRH never exceeds AVCC when turning on/off power supplies. 8. Treatment of N.C. Pins Make sure to leave N.C. pins open. 17 MB91101/MB91101A 9. Fluctuation of Power Supply Voltage Warranty range for normal operation against fluctuation of power supply voltage VCC is as given in rating. However, sudden fluctuation of power supply voltage within the warranty range may cause malfunctions. It is recommended to make every effort to stabilize the power supply voltage to IC. It is also recommended that by controlling power supply as a reference of stabilizing, VCC ripple fluctuation (P-P value) at the commercial frequency (50 Hz to 60 Hz) should be less than 10% of the standard VCC value and the transient regulation should be less than 0.1 V/ms at instantaneous deviation like turning off the power supply. 10. Mode Setting Pins (MD0 to MD2) Connect mode setting pins (MD0 to MD2) directly to VCC or VSS. Arrange each mode setting pin and VCC or VSS patterns on the printed circuit board as close as possible and make the impedance between them minimal to prevent mistaken entrance to the test mode caused by noises. 11. Internal DC Regulator Internal DC regulator stops in stop mode. When the regulator stops owing to the increase of inner leakage current (ICCH) in stop mode, malfunction caused by noise or any troubles about power supply in normal operation, the internal 3 V power supply voltage may decrease less than the warranty range for normal operation. So when using the internal regulator and stop mode with 5 V power supply, never fail to support externally so that 3 V power supply voltage might not decrease. However, even in such a case, the internal regulator can be restarted by inputting the reset procedure. (In this case, set the reset to “L” level within the oscillation stabilizing waiting time.) • Using STOP mode with 5 V power supply 5V VCC5 3.6 kΩ VCC3 VSS 0.1 µF approx. 6.8 kΩ 12. Turning on the Power Supply When turning on the power supply, never fail to start from setting the RST pin to “L” level. And after the power supply voltage goes to VCC level, at least after ensuring the time for 5 machine cycle, then set to “H” level. 13. Pin Condition at Turning on the Power Supply The pin condition at turning on the power supply is unstable. The circuit starts being initialized after turning on the power supply and then starting oscillation and then the operation of the internal regulator becomes stable. So it takes about 42 ms for the pin to be initialized from the oscillation starting at the source oscillation 12.5 MHz. Take care that the pin condition may be output condition at initial unstable condition. (With the MB91101A, however, initalization can be achieved in less than about 42 ms after turning on the internal power supply by maintaining the RST pin at "L" level.) 18 MB91101/MB91101A 14. Source Oscillation Input at Turning on the Power Supply At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting. 15. Hardware Stand-by at Turning on the Power Supply When turning on the power supply with the HST pin being set to “L” level, the hardware doesn’t stand by. However the HST pin becomes available after the reset cancellation, the HST pin must once be back to “H” level. 16. Power on Reset Make sure to make power on reset at turning on the power supply or returning on the power supply when the power supply voltage is below the warranty range for normal operation. 19 MB91101/MB91101A ■ BLOCK DIAGRAM I-bus (16 bits) FR CPU Bit search module DREQ0 to DREQ2 DACK0 to DACK2 EOP0 to EOP2 3 3 D-bus (32 bits) RAM (2 Kbytes) Instruction cache (1 Kbyte) Bus converter (Harvard↔Princeton) DMA controller (DMAC) (8 ch.) 3 Bus converter (32 bits↔16 bits) 16 25 X0 X1 RST HST Clock control unit (Watchdog timer) 2 Bus controller 6 Interrupt control unit C-bus (32 bits) AN0 to AN3 AVCC AVSS /AVRL AVRH ATG 4 4 10-bit A/D converter (4 ch.) RAS0 RAS1 CS0L CS0H CS1L CS1H DW0 DW1 DRAM controller Reload timer (3 ch.) R-bus (16 bits) INT0 to INT3 NMI D16 to D31 A00 to A24 RD WR0, WR1 RDY CLK CS0 to CS5 BRQ BGRNT Port 0 to port B Port Other pins UART (3 ch.) (Baud rate timer) 3 3 MD0 to MD2, P20 to P27, P60 to P67, P80 to P82, P85, PA1 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7, VCC3, VCC5, VSS PWM timer (4 ch.) 4 4 SI0 to SI2 SO0 to SO2 SC0 to SC2 OCPA0 to OCPA3 TRG0 to TRG3 Note: Pins are display for functions (Actually some pins are multiplexer). When using REALOS, time control should be done by using external interrupt or inner timer. 20 MB91101/MB91101A ■ CPU CORE 1. Memory Space The FR family has a logical address space of 4 Gbytes (232 bytes) and the CPU linearly accesses the memory space. • Memory space Address External ROM/external bus mode 0000 0000H I/O area Direct addressing area 0000 0400H See “■ I/O MAP” I/O area 0000 0800H Access inhibited 0000 1000H Embedded RAM 0000 1800H Access inhibited 0001 0000H External area FFFF FFFFH • Direct addressing area The following areas on the memory space are assigned to direct addressing area for I/O. In these areas, an address can be specified in a direct operand of a code. Direct areas consists of the following areas dependent on accessible data sizes. Byte data access: 000H to 0FFH Half word data access: 000H to 1FFH Word data access: 000H to 3FFH 21 MB91101/MB91101A 2. Registers The FR family has two types of registers; dedicated registers embedded on the CPU and general-purpose registers on memory. • Dedicated registers Program counter (PC): Program status (PS): Table base register (TBR): 32-bit length, indicates the location of the instruction to be executed. 32-bit length, register for storing register pointer or condition codes Holds top address of vector table used in EIT (Exceptional/Interrupt/Trap) processing. Return pointer (RP): Holds address to resume operation after returning from a subroutine. System stack pointer (SSP): Indicates system stack space. User's stack pointer (USP): Indicates user’s stack space. Multiplication/division result register (MDH/MDL): 32-bit length, register for multiplication/division 32 bits PC Program counter PS Program status Initial value XXXX XXXXH Indeterminate Table base register 000F Return pointer XXXX XXXXH SSP System stack pointer 0000 USP User’s stack pointer XXXX XXXXH Indeterminate XXXX XXXXH Indeterminate XXXX XXXXH Indeterminate TBR RP MDH Multiplication/division result register MDL FC00H Indeterminate 0000H • Program status (PS) The PS register is for holding program status and consists of a condition code register (CCR), a system condition code register (SCR) and a interrupt level mask register (ILM). 31 to 21 20 PS — 19 18 16 11 to 15 10 ILM4 ILM3 ILM2 ILM1 ILM0 ILM 22 17 — D1 9 8 7 6 5 4 3 2 1 0 D0 T — — S I N Z V C SCR CCR MB91101/MB91101A • Condition code register (CCR) S-flag: I-flag: N-flag: Z-flag: V-flag: Specifies a stack pointer used as R15. Controls user interrupt request enable/disable. Indicates sign bit when division result is assumed to be in the 2’s complement format. Indicates whether or not the result of division was “0”. Assumes the operand used in calculation in the 2’s complement format and indicates whether or not overflow has occurred. Indicates if a carry or borrow from the MSB has occurred. C-flag: • System condition code register (SCR) T-flag: Specifies whether or not to enable step trace trap. • Interrupt level mask register (ILM) ILM4 to ILM0: Register for holding interrupt level mask value. The value held by this register is used as a level mask. When an interrupt request issued to the CPU is higher than the level held by ILM, the interrupt request is accepted. ILM4 ILM3 ILM2 ILM1 ILM0 Interrupt level High-low 0 0 0 0 0 0 High : : 0 1 0 : : 0 0 : : 1 1 1 15 : : 1 1 31 Low 23 MB91101/MB91101A ■ GENERAL-PURPOSE REGISTERS R0 to R15 are general-purpose registers embedded on the CPU. These registers functions as an accumulator and a memory access pointer (field for indicating address). • Register bank structure 32 bits Initial value R0 R13 AC (accumulator) R14 FP (frame pointer) XXXX XXXXH : : : : : : : : : : : XXXX XXXXH R15 SP (stack pointer) 0 0 0 0 0 0 0 0H R1 : : R12 Of the above 16 registers, following registers have special functions. To support the special functions, part of the instruction set has been sophisticated to have enhanced functions. R13: Virtual accumulator (AC) R14: Frame pointer (FP) R15: Stack pointer (SP) Upon reset, values in R0 to R14 are not fixed. Value in R15 is initialized to be 0000 0000H (SSP value). 24 MB91101/MB91101A ■ SETTING MODE 1. Pin • Mode setting pins and modes Mode setting pins Mode name Reset vector access area External data bus width MD2 MD1 MD0 Bus mode 0 0 0 External vector mode 0 External 8 bits 0 0 1 External vector mode 1 External 16 bits 0 1 0 — — — 0 1 1 Internal vector mode Internal (Mode register) 1 — — — — — External ROM/external bus mode Inhibited Single-chip mode* Inhibited * : MB91101 does not support single-chip mode. 2. Registers • Mode setting registers (MODR) and modes Address 0000 07FFH M1 M0 * * * * * * Initial value Access XXXX XXXXB W Bus mode setting bit W : Write only X : Indeterminate * : Always write “0” except for M1 and M0. • Bus mode setting bits and functions M1 M0 Functions 0 0 Single-chip mode 0 1 Internal ROM/external bus mode 1 0 External ROM/external bus mode 1 1 — Note Inhibited Note: Because of without internal ROM, MB91101 allows “10B” setting value only. 25 MB91101/MB91101A ■ I/O MAP Address Register name (abbreviated) Register name 0000H 0001H Initial value R/W XXXXXXXXB R/W XXXXXXXXB (Vacancy) PDR2 Port 2 data register 0002H to 0004H 0005H Read/write (Vacancy) PDR6 Port 6 data register 0006H (Vacancy) 0007H 0008H PDRB Port B data register R/W XXXXXXXXB 0009H PDRA Port A data register R/W – XXXXXX – B R/W – – X – – XXXB 000AH 000BH (Vacancy) PDR8 Port 8 data register 000CH to 0011H (Vacancy) 0012H PDRE Port E data register R/W XXXXXXXXB 0013H PDRF Port F data register R/W XXXXXXXXB 0014H to 001BH (Vacancy) 001CH SSR0 Serial status register 0 R/W 00001–00B 001DH SIDR0/SODR0 Serial input register 0/serial output register 0 R/W XXXXXXXXB 001EH SCR0 Serial control register 0 R/W 00000100B 001FH SMR0 Serial mode register 0 R/W 00––0–00B 0020H SSR1 Serial status register 1 R/W 00001–00B 0021H SIDR1/SODR1 Serial input register 1/serial output register 1 R/W XXXXXXXXB 0022H SCR1 Serial control register 1 R/W 00000100B 0023H SMR2 Serial mode register 1 R/W 00––0–00B 0024H SSR2 Serial status register 2 R/W 00001–00B 0025H SIDR2/SODR2 Serial input register 2/serial output register 2 R/W XXXXXXXXB 0026H SCR2 Serial control register 2 R/W 00000100B 0027H SMR2 Serial mode register 2 R/W 00––0–00B (Continued) 26 MB91101/MB91101A Address 0028H 0029H 002AH 002BH Register name (abbreviated) Register name TMRLR0 16-bit reload register ch. 0 W TMR0 16-bit timer register ch. 0 R 002CH 002FH 0030H 0031H 0032H 0033H TMCSR0 16-bit reload timer control status register ch. 0 TMRLR1 16-bit reload register ch. 1 W TMR1 16-bit timer register ch. 1 R 0034H 0037H 0038H 0039H 003AH 003BH 003CH 003DH 003EH 003FH 16-bit reload timer control status register ch. 1 ADCR A/D converter data register ADCS A/D converter control status register TMRLR2 16-bit reload register ch. 2 W TMR2 16-bit timer register ch. 2 R 0044H to 0077H XXXXXXXXB XXXXXXXXB XXXXXXXXB ––––0000B 00000000B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB R/W R R/W ––––0000B 00000000B – – – – – – XXB XXXXXXXXB 00000000B 00000000B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (Vacancy) 0041H 0043H R/W TMCSR1 0040H 0042H XXXXXXXXB (Vacancy) 0035H 0036H Initial value (Vacancy) 002DH 002EH Read/write TMCSR2 16-bit reload timer control status register ch. 2 R/W ––––0000B 00000000B (Vacancy) (Continued) 27 MB91101/MB91101A Address 0078H 0079H Register name (abbreviated) UTIM0/UTIMR0 Register name U-TIMER register ch. 0/reload register ch. 0 007AH 007BH 007CH 007DH 0080H 0081H UTIMC0 U-TIMER control register ch. 0 R/W UTIM1/UTIMR1 U-TIMER register ch. 1/reload register ch. 1 R/W 00000000B 00000000B 0––00001B 00000000B 00000000B (Vacancy) UTIMC1 U-TIMER control register ch. 1 R/W UTIM2/UTIMR2 U-TIMER register ch. 2/reload register ch. 0 R/W 0082H 0083H R/W Initial value (Vacancy) 007EH 007FH Read/write 0––00001B 00000000B 00000000B (Vacancy) UTIMC2 U-TIMER control register ch. 2 0084H to 0093H R/W 0––00001B (Vacancy) 0094H EIRR External interrupt cause register R/W 00000000B 0095H ENIR Interrupt enable register R/W 00000000B R/W 00000000B 0096H to 0098H 0099H (Vacancy) ELVR External interrupt request level setting register 009AH to 00D1H (Vacancy) 00D2H DDRE Port E data direction register W 00000000B 00D3H DDRF Port F data direction register W 00000000B 00D4H to 00DBH 00DCH 00DDH (Vacancy) GCN1 General control register 1 00DEH 00DFH R/W 00110010B 00010000B (Vacancy) GCN2 General control register 2 R/W 00000000B (Continued) 28 MB91101/MB91101A Address 00E0H Register name (abbreviated) Register name Read/write Initial value 11111111B PTMR0 Ch. 0 timer register R PCSR0 Ch. 0 cycle setting register W PDUT0 Ch. 0 duty setting register W 00E6H PCNH0 Ch. 0 control status register H R/W 0000000–B 00E7H PCNL0 Ch. 0 control status register L R/W 00000000B PTMR1 Ch. 1 timer register R PCSR1 Ch. 1 cycle setting register W PDUT1 Ch. 1 duty setting register W 00EEH PCNH1 Ch. 1 control status register H R/W 0000000–B 00EFH PCNL1 Ch. 1 control status register L R/W 00000000B PTMR2 Ch. 2 timer register R PCSR2 Ch. 2 cycle setting register W PDUT2 Ch. 2 duty setting register W 00F6H PCNH2 Ch. 2 control status register H R/W 0000000–B 00F7H PCNL2 Ch. 2 control status register L R/W 00000000B PTMR3 Ch. 3 timer register R PCSR3 Ch. 3 cycle setting register W PDUT3 Ch. 3 duty setting register W 00FEH PCNH3 Ch. 3 control status register H R/W 0000000–B 00FFH PCNL3 Ch. 3 control status register L R/W 00000000B 00E1H 00E2H 00E3H 00E4H 00E5H 00E8H 00E9H 00EAH 00EBH 00ECH 00EDH 00F0H 00F1H 00F2H 00F3H 00F4H 00F5H 00F8H 00F9H 00FAH 00FBH 00FCH 00FDH 11111111B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB 11111111B 11111111B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB 11111111B 11111111B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB 11111111B 11111111B XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (Continued) 29 MB91101/MB91101A Address Register name (abbreviated) 0100H to 01FFH Register name Read/write (Vacancy) 0200H 0201H 0202H Initial value XXXXXXXXB DPDP DMAC parameter descriptor pointer R/W XXXXXXXXB XXXXXXXXB 0203H X0000000B 0204H 00000000B 0205H 0206H DACSR DMAC control status register R/W 00000000B 00000000B 0207H 00000000B 0208H XXXXXXXXB 0209H 020AH DATCR DMAC pin control register R/W 020BH (Vacancy) 03E4H 03E6H ––––––––B ICHCR Instruction cache control register R/W 03E7H ––––––––B (Vacancy) 03F0H 03F2H ––––––––B ––000000B 03E8H to 03EFH 03F1H XXXX 0 0 0 0 B XXXX 0 0 0 0 B 020CH to 03E3H 03E5H XXXX 0 0 0 0 B XXXXXXXXB BSD0 Bit search module 0-detection data register W XXXXXXXXB XXXXXXXXB 03F3H XXXXXXXXB 03F4H XXXXXXXXB 03F5H 03F6H 03F7H BSD1 Bit search module 1-detection data register R/W XXXXXXXXB XXXXXXXXB XXXXXXXXB (Continued) 30 MB91101/MB91101A Address Register name (abbreviated) Register name Read/write 03F8H 03F9H 03FAH Initial value XXXXXXXXB BSDC Bit search module transition-detection data register W XXXXXXXXB XXXXXXXXB 03FBH XXXXXXXXB 03FCH XXXXXXXXB 03FDH 03FEH BSRR Bit search module detection result register R 03FFH XXXXXXXXB XXXXXXXXB XXXXXXXXB 0400H ICR00 Interrupt control register 0 R/W –––11111B 0401H ICR01 Interrupt control register 1 R/W –––11111B 0402H ICR02 Interrupt control register 2 R/W –––11111B 0403H ICR03 Interrupt control register 3 R/W –––11111B 0404H ICR04 Interrupt control register 4 R/W –––11111B 0405H ICR05 Interrupt control register 5 R/W –––11111B 0406H ICR06 Interrupt control register 6 R/W –––11111B 0407H ICR07 Interrupt control register 7 R/W –––11111B 0408H ICR08 Interrupt control register 8 R/W –––11111B 0409H ICR09 Interrupt control register 9 R/W –––11111B 040AH ICR10 Interrupt control register 10 R/W –––11111B 040BH ICR11 Interrupt control register 11 R/W –––11111B 040CH ICR12 Interrupt control register 12 R/W –––11111B 040DH ICR13 Interrupt control register 13 R/W –––11111B 040EH ICR14 Interrupt control register 14 R/W –––11111B 040FH ICR15 Interrupt control register 15 R/W –––11111B 0410H ICR16 Interrupt control register 16 R/W –––11111B 0411H ICR17 Interrupt control register 17 R/W –––11111B 0412H ICR18 Interrupt control register 18 R/W –––11111B 0413H ICR19 Interrupt control register 19 R/W –––11111B 0414H ICR20 Interrupt control register 20 R/W –––11111B 0415H ICR21 Interrupt control register 21 R/W –––11111B 0416H ICR22 Interrupt control register 22 R/W –––11111B (Continued) 31 MB91101/MB91101A Address Register name (abbreviated) Register name Read/write Initial value 0417H ICR23 Interrupt control register 23 R/W –––11111B 0418H ICR24 Interrupt control register 24 R/W –––11111B 0419H ICR25 Interrupt control register 25 R/W –––11111B 041AH ICR26 Interrupt control register 26 R/W –––11111B 041BH ICR27 Interrupt control register 27 R/W –––11111B 041CH ICR28 Interrupt control register 28 R/W –––11111B 041DH ICR29 Interrupt control register 29 R/W –––11111B 041EH ICR30 Interrupt control register 30 R/W –––11111B 041FH ICR31 Interrupt control register 31 R/W –––11111B 042FH ICR47 Interrupt control register 47 R/W –––11111B 0430H DICR Delayed interrupt control register R/W –––––––0B 0431H HRCL Hold request cancel request level setting register R/W –––11111B 0432H to 047FH (Vacancy) 0480H RSRR/WTCR Reset cause register/ watchdog peripheral control register R/W 0481H STCR Standby control register R/W 000111––B 0482H PDRR DMA controller request squelch register R/W ––––0000B 0483H CTBR Timebase timer clear register W XXXXXXXX B 0484H GCR Gear control register R/W 110011–1B 0485H WPR Watchdog reset occurrence postpone register W XXXXXXXXB R/W 00––0–––B W 00000000B W 00000000B 0486H PCTR 0489H to 0600H 0601H 0606H 0607H PLL control register (Vacancy) DDR2 0602H to 0604H 0605H B (Vacancy) 0487H 0488H 1X X X X – 0 0 Port 2 data direction register (Vacancy) DDR6 Port 6 data direction register (Vacancy) (Continued) 32 MB91101/MB91101A Address Register name (abbreviated) Register name Read/write Initial value 0608H DDRB Port B data direction register W 00000000B 0609H DDRA Port A data direction register W –000000–B ––0––000B 060AH 060BH (Vacancy) DDR8 Port 8 data direction register W ASR1 Area select register 1 W AMR1 Area mask register 1 W ASR2 Area select register 2 W AMR2 Area mask register 2 W ASR3 Area select register 3 W AMR3 Area mask register 3 W ASR4 Area select register 4 W AMR4 Area mask register 4 W ASR5 Area select register 5 W AMR5 Area mask register 5 W 0620H AMD0 Area mode register 0 R/W –––00111B 0621H AMD1 Area mode register 1 R/W 0––00000B 0622H AMD32 Area mode register 32 R/W 00000000B 0623H AMD4 Area mode register 4 R/W 0––00000B 0624H AMD5 Area mode register 5 R/W 0––00000B 0625H DSCR DRAM signal control register W 00000000B RFCR Refresh control register 060CH 060DH 060EH 060FH 0610H 0611H 0612H 0613H 0614H 0615H 0616H 0617H 0618H 0619H 061AH 061BH 061CH 061DH 061EH 061FH 0626H 0627H R/W 00000000B 00000001B 00000000B 00000000B 00000000B 00000010B 00000000B 00000000B 00000000B 00000011B 00000000B 00000000B 00000000B 00000100B 00000000B 00000000B 00000000B 00000101B 00000000B 00000000B – – XXXXXXB 00–––000B (Continued) 33 MB91101/MB91101A (Continued) Address 0628H 0629H Register name (abbreviated) EPCR0 Register name External pin control register 0 062AH 062BH 062CH 062DH 062EH 062FH W Initial value ––––1100B –1111111B (Vacancy) EPCR1 External pin control register 1 DMCR4 DRAM control register 4 R/W DMCR5 DRAM control register 5 R/W 0630H to 07FDH W 11111111B 00000000B 0000000–B 00000000B 0000000–B (Vacancy) 07FEH LER Little endian register W –––––000B 07FFH MODR Mode register W XXXXXXXXB Note: Do not use (vacancy). 34 Read/write MB91101/MB91101A ■ INTERRUPT CAUSES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTER ALLOCATIONS Interrupt number Interrupt level Decimal Hexadecimal Register Offset TBR default address Reset 0 00 — 3FCH 000FFFFCH Reserved for system 1 01 — 3F8H 000FFFF8H Reserved for system 2 02 — 3F4H 000FFFF4H Reserved for system 3 03 — 3F0H 000FFFF0H Reserved for system 4 04 — 3ECH 000FFFECH Reserved for system 5 05 — 3E8H 000FFFE8H Reserved for system 6 06 — 3E4H 000FFFE4H Reserved for system 7 07 — 3E0H 000FFFE0H Reserved for system 8 08 — 3DCH 000FFFDCH Reserved for system 9 09 — 3D8H 000FFFD8H Reserved for system 10 0A — 3D4H 000FFFD4H Reserved for system 11 0B — 3D0H 000FFFD0H Reserved for system 12 0C — 3CCH 000FFFCCH Reserved for system 13 0D — 3C8H 000FFFC8H Exception for undefined instruction 14 0E — 3C4H 000FFFC4H NMI request 15 0F FH fixed 3C0H 000FFFC0H External interrupt 0 16 10 ICR00 3BCH 000FFFBCH External interrupt 1 17 11 ICR01 3B8H 000FFFB8H External interrupt 2 18 12 ICR02 3B4H 000FFFB4H External interrupt 3 19 13 ICR03 3B0H 000FFFB0H UART0 receive complete 20 14 ICR04 3ACH 000FFFACH UART1 receive complete 21 15 ICR05 3A8H 000FFFA8H UART2 receive complete 22 16 ICR06 3A4H 000FFFA4H UART0 transmit complete 23 17 ICR07 3A0H 000FFFA0H UART1 transmit complete 24 18 ICR08 39CH 000FFF9CH UART2 transmit complete 25 19 ICR09 398H 000FFF98H DMAC0 (complete, error) 26 1A ICR10 394H 000FFF94H DMAC1 (complete, error) 27 1B ICR11 390H 000FFF90H DMAC2 (complete, error) 28 1C ICR12 38CH 000FFF8CH DMAC3 (complete, error) 29 1D ICR13 388H 000FFF88H DMAC4 (complete, error) 30 1E ICR14 384H 000FFF84H DMAC5 (complete, error) 31 1F ICR15 380H 000FFF80H Interrupt causes (Continued) 35 MB91101/MB91101A Interrupt number Interrupt level Decimal Hexadecimal Register Offset TBR default address DMAC6 (complete, error) 32 20 ICR16 37CH 000FFF7CH DMAC7 (complete, error) 33 21 ICR17 378H 000FFF78H A/D converter (successive approximation conversion type) 34 22 ICR18 374H 000FFF74H 16-bit reload timer 0 35 23 ICR19 370H 000FFF70H 16-bit reload timer 1 36 24 ICR20 36CH 000FFF6CH 16-bit reload timer 2 37 25 ICR21 368H 000FFF68H PWM 0 38 26 ICR22 364H 000FFF64H PWM 1 39 27 ICR23 360H 000FFF60H PWM 2 40 28 ICR24 35CH 000FFF5CH PWM 3 41 29 ICR25 358H 000FFF58H U-TIMER 0 42 2A ICR26 354H 000FFF54H U-TIMER 1 43 2B ICR27 350H 000FFF50H U-TIMER 2 44 2C ICR28 34CH 000FFF4CH Reserved for system 45 2D ICR29 348H 000FFF48H Reserved for system 46 2E ICR30 344H 000FFF44H Reserved for system 47 2F ICR31 340H 000FFF40H Reserved for system 48 30 ICR32 33CH 000FFF3CH Reserved for system 49 31 ICR33 338H 000FFF38H Reserved for system 50 32 ICR34 334H 000FFF34H Reserved for system 51 33 ICR35 330H 000FFF30H Reserved for system 52 34 ICR36 32CH 000FFF2CH Reserved for system 53 35 ICR37 328H 000FFF28H Reserved for system 54 36 ICR38 324H 000FFF24H Reserved for system 55 37 ICR39 320H 000FFF20H Reserved for system 56 38 ICR40 31CH 000FFF1CH Reserved for system 57 39 ICR41 318H 000FFF18H Reserved for system 58 3A ICR42 314H 000FFF14H Reserved for system 59 3B ICR43 310H 000FFF10H Reserved for system 60 3C ICR44 30CH 000FFF0CH Reserved for system 61 3D ICR45 308H 000FFF08H Reserved for system 62 3E ICR46 304H 000FFF04H Delayed interrupt cause bit 63 3F ICR47 300H 000FFF00H Interrupt causes (Continued) 36 MB91101/MB91101A (Continued) Interrupt number Interrupt level Decimal Hexadecimal Register Offset TBR default address Reserved for system (used in REALOS*) 64 40 — 2FCH 000FFEFCH Reserved for system (used in REALOS*) 65 41 — 2F8H 000FFEF8H Used in INT instructions 66 to 255 42 to FF — 2F4H to 000H 000FFEF4H to 000FFC00H Interrupt causes * : When using in REALOS/FR, interrupt 0x40, 0x41 for system code. 37 MB91101/MB91101A ■ PERIPHERAL RESOURCES 1. I/O Ports There are 2 types of I/O port register structure; port data register (PDR0 to PDRF) and data direction register (DDR0 to DDRF), where bits PDR0 to PDRF and bits DDR0 to DDRF corresponds respectively. Each bit on the register corresponds to an external pin. In port registers input/output register of the port configures input/ output function of the port, while corresponding bit (pin) configures input/output function in data direction registers. Bit “0” specifies input and “1” specifies output. • For input (DDR = “0”) setting; PDR reading operation: reads level of corresponding external pin. PDR writing operation: writes set value to PDR. • For output (DDR = “1”) setting; PDR reading operation: reads PDR value. PDR writing operation: outputs PDR value to corresponding external pin. • Block diagram Resource input 0 1 Data bus PDR read 0 PDR (Port data register) Resource output 1 Resource output enable DDR (Data direction register) 38 Pin MB91101/MB91101A • Port data register Address bit 7 bit 0 Initial value 000001H PDR2 XXXXXXXX B (R/W) 000005H PDR6 XXXXXXXX B (R/W) 00000BH PDR8 - - X - - XXX B (R/W) 000009H PDRA - XXXXXX - B (R/W) 000008H PDRB XXXXXXXX B (R/W) 000012H PDRE XXXXXXXX B (R/W) 000013H PDRF XXXXXXXX B (R/W) ( ) : Access R/W : Readable and writable X : Indeterminate • Data direction register Address bit 7 bit 0 Initial value 000601H DDR2 00000000 B (W) 000605H DDR6 00000000 B (W) 00060BH DDR8 - - 0 - - 000 B (W) 000609H DDRA - 000000 - B (W) 000608H DDRB 00000000 B (W) 0000D2H DDRE 00000000 B (W) 0000D3H DDRF 00000000 B (W) ( ) : Access W : Write only – : Unused 39 MB91101/MB91101A 2. DMA Controller (DMAC) The DMA controller is a module embedded in FR family devices, and performs DMA (direct memory access) transfer. DMA transfer performed by the DMA controller transfers data without intervention of CPU, contributing to enhanced performance of the system. • • • • • • • 8 channels Mode: single/block transfer, burst transfer and continuous transfer: 3 kinds of transfer Transfer all through the area Max. 65536 of transfer cycles Interrupt function right after the transfer Selectable for address transfer increase/decrease by the software External transfer request input pin, external transfer request accept output pin, external transfer complete output pin three pins for each • Block diagram DREQ0 to DREQ2 3 Edge/level detection circuit 3 3 DACK0 to DACK2 3 Sequencer EOP0 to EOP2 8 Interrupt request 5 Inner resource Transfer request Data buffer Switcher DACSR DATCR Mode BLK DEC BLK DMACT INC / DEC SADR DADR 40 Data bus DPDP MB91101/MB91101A • Registers (DMAC internal registers) Address 00000200H 00000201H 00000202H 00000203H Initial value bit 31 XXXXXXXX XXXXXXXX XXXXXXXX X0000000 B 0 0 0 0 B DACSR 0 0 0 0 B DATCR XXXXXXXX XXXX0 0 0 0 XXXX0 0 0 0 XXXX0 0 0 0 bit 16 bit 0 DPDP 00000204H 00000205H 00000206H 00000207H 00000208H 00000209H 0000020AH 0000020BH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B B (R/W) B B B (R/W) B B B (R/W) B ( ) : Access R/W : Readable and writable X : Indeterminate • Registers (DMA descriptor) Address DPDP + 0H bit 31 bit 0 DMA ch.0 Descriptor DPDP + 0CH DMA ch.1 Descriptor DPDP + 54H DMA ch.7 Descriptor 41 MB91101/MB91101A 3. UART The UART is a serial I/O port for supporting asynchronous (start-stop system) communication or CLK synchronous communication, and it has the following features. The MB91101 consists of 3 channels of UART. • • • • • • • • 42 Full double double buffer Both a synchronous (start-stop system) communication and CLK synchronous communication are available. Supporting multi-processor mode Perfect programmable baud rate Any baud rate can be set by internal timer (refer to section “4. U-TIMER”). Any baud rate can be set by external clock. Error checking function (parity, framing and overrun) Transfer signal: NRZ code Enable DMA transfer/start by interrupt. MB91101/MB91101A • Block diagram Control signals Receive interrupt (to CPU) SC (clock) Transmit interrupt (to CPU) Transmit clock From U-TIMER Clock select circuit Receive clock From external clock SC SI (receive data) Receive control circuit Transmit control circuit Start bit detect circuit Transmit start circuit Receive bit counter Transmit bit counter Receive parity counter Transmit parity counter SO (transmit data) Receive status judge circuit Receive shifter Receive error generate signal for DMA (to DMAC) Transmit shifter Receive complete Transmit start SODR SIDR R-bus MD1 MD0 SMR register SCR register CS0 SCKE SOE PEN P SBL CL A/D REC RXE TXE SSR register PE ORE FRE RDRF TDRE RIE TIE Control signals 43 MB91101/MB91101A • Register configuration Address bit 8 bit 0 Initial value 0000001EH SCR0 00000100 B (R/W) 00000022H SCR1 00000100 B (R/W) 00000026H SCR2 00000100 B (R/W) 0000001FH SMR0 00 - - 0 - 00 B (R/W) 00000023H SMR1 00 - - 0 - 00 B (R/W) 00000027H SMR2 00 - - 0 - 00 B (R/W) 0000001CH SSR0 00001 - 00 B (R/W) 00000020H SSR1 00001 - 00 B (R/W) 00000024H SSR2 00001 - 00 B (R/W) 0000001DH SIDR0/SODR0 XXXXXXXX B (R/W) 00000021H SIDR1/SIDR1 XXXXXXXX B (R/W) 00000002H SIDR2/SIDR2 XXXXXXXX B (R/W) () R/W – X 44 bit 15 : : : : Access Readable and writable Unused Indeterminate MB91101/MB91101A 4. U-TIMER (16-bit Timer for UART Baud Rate Generation) The U-TIMER is a 16-bit timer for generating UART baud rate. Combination of chip operating frequency and reload value of U-TIMER allows flexible setting of baud rate. The U-TIMER operates as an interval timer by using interrupt issued on counter underflow. The MB91101 has 3 channel U-TIMER embedded on the chip. An interval of up to 216 × φ can be counted. • Block diagram bit 15 bit 0 UTIMR (reload register) Load bit 15 bit 0 UTIM ( U-TIMER register) Underflow Clock φ (Peripheral clock) Control f.f. To UART • Register configuration Address bit 15 bit 0 00000078H 00000079H UTIM0/UTIMR0 0000007CH 0000007DH UTIM1/UTIMR1 00000080H 00000081H UTIM2/UTIMR2 0000007BH 0000007FH 00000083H Initial value (R/W) 00000000 00000000 B 00000000 00000000 B 00000000 00000000 B UTIMC0 0 - - 00001 B (R/W) UTIMC1 0 - - 00001 B (R/W) UTIMC2 0 - - 00001 B (R/W) B (R/W) B (R/W) B ( ) : Access R/W : Readable and writable – : Unused 45 MB91101/MB91101A 5. PWM Timer The PWM timer can output high accurate PWM waves efficiently. MB91101 has inner 4-channel PWM timers, and has the following features. • Each channel consists of a 16-bit down counter, a 16-bit data resister with a buffer for scyde setting, a 16bit compare resister with a buffer for duty setting, and a pin controller. • The count clock of a 16-bit down counter can be selected from the following four inner clocks. Inner clock φ, φ/4, φ/16, φ/64 • The counter value can be initialized “FFFFH” by the resetting or the counter borrow. • PWM output (each channel) • Resister description • Block diagram (general construction) 16-bit reload timer ch.0 16-bit reload timer ch.1 General control register 2 General control register 1 (cause selection) 4 4 External TRG0 to TRG3 46 TRG input PWM timer ch.0 PWM0 TRG input PWM timer ch.1 PWM1 TRG input PWM timer ch.2 PWM2 TRG input PWM timer ch.3 PWM3 MB91101/MB91101A • Block diagram (for one channel) PDUT PCSR Prescaler 1/1 1/4 1 / 16 1 / 64 cmp ck Load 16-bit down counter Start Borrow PPG mask S Peripheral clock Q PWM output R Enable TRG input Edge detect Interrupt selection Reverse bit IRQ Soft trigger 47 MB91101/MB91101A • Register configuration Address Initial value bit 15 bit 8 000000DCH 000000DDH GCN1 000000DFH GCN2 00110010 00010000 B 00000000 B (R/W) (R) B (R/W) 000000E0H 000000E1H PTMR0 11111111 11111111 B 000000E2H 000000E3H PCSR0 XXXXXXXX XXXXXXXX B 000000E4H 000000E5H PDUT0 XXXXXXXX XXXXXXXX B 0000000 - B (R/W) 00000000 B (R/W) (R) 000000E6H PCNH0 000000E7H PCNL0 B B B (W) (W) 000000E8H 000000E9H PTMR1 11111111 11111111 B 000000EAH 000000EBH PCSR1 XXXXXXXX XXXXXXXX B 000000ECH 000000EDH PDUT1 XXXXXXXX XXXXXXXX B 0000000 - B (R/W) 00000000 B (R/W) 000000EEH PCNH1 PCNL1 000000EFH B B B (W) (W) 000000F0H 000000F1H PTMR2 11111111 11111111 B 000000F2H 000000F3H PCSR2 XXXXXXXX XXXXXXXX B 000000F4H 000000F5H PDUT2 XXXXXXXX XXXXXXXX B 0000000 - B (R/W) 00000000 B (R/W) (R) 000000F6H PCNH2 PCNL2 000000F7H B B B (R) (W) (W) 000000F8H 000000F9H PTMR3 11111111 11111111 B 000000FAH 000000FBH PCSR3 XXXXXXXX XXXXXXXX B 000000FCH 000000FDH PDUT3 XXXXXXXX XXXXXXXX B 0000000 - B (R/W) 00000000 B (R/W) 000000FEH PCNH3 000000FFH () R/W R W – X 48 bit 0 : : : : : : Access Readable and writable Read only Write only Unused Indeterminate PCNL3 B B B (W) (W) MB91101/MB91101A 6. 16-bit Reload Timer The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload timer, a prescaler for generating internal count clock and control registers. Internal clock can be selected from 3 types of internal clocks (divided by 2/8/32 of machine clock). The DMA transfer can be started by the interruption. The MB91101 consists of 3 channels of the 16-bit reload timer. • Block diagram 16 16-bit reload register 8 Reload RELD 16 OUTE 16-bit down counter UF OUTL 2 OUT CTL. R-bus GATE INTE 2 IRQ UF CSL1 Clock selector CNTE CSL0 TRG 2 Retrigger IN CTL. EXCK φ φ φ – – – 21 2 3 2 5 PWM (ch.0, ch.1) A/D (ch.2) 3 Prescaler clear MOD2 MOD1 Internal clock MOD0 3 49 MB91101/MB91101A • Register configuration Address bit 15 Initial value 0000002EH 0000002FH TMCSR0 - - - - 0000 00000000 B 00000036H 00000037H TMCSR1 - - - - 0000 00000000 B 00000042H 00000043H TMCSR2 - - - - 0000 00000000 B 0000002AH 0000002BH TMR0 XXXXXXXX XXXXXXXX B 00000032H 00000033H TMR1 XXXXXXXX XXXXXXXX B 0000003EH 0000003FH TMR2 XXXXXXXX XXXXXXXX B TMRLR0 XXXXXXXX XXXXXXXX B 00000030H 00000031H TMRLR1 XXXXXXXX XXXXXXXX B 0000003CH 0000003DH TMRLR2 XXXXXXXX XXXXXXXX B 00000028H 00000029H () R/W R W – X 50 bit 0 : : : : : : Access Readable and writable Read only Write only Unused Indeterminate B B B (R/W) (R/W) (R/W) (R) B (R) B B B B B (R) (W) (W) (W) MB91101/MB91101A 7. Bit Search Module The bit search module detects transitions of data (0 to 1/1 to 0) on the data written on the input registers and returns locations of the transitions. • Block diagram Input latch Detection mode D-bus Address decoder Single-detection data recovery Bit search circuit Search result • Register configuration Address bit 31 bit 16 bit 0 Initial value 000003F0H 000003F1H 000003F2H 000003F3H BSD0 XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (W) 000003F4H 000003F5H 000003F6H 000003F7H BSD1 XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (W) 000003F8H 000003F9H 000003FAH 000003FBH BSDC XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (W) 000003FCH 000003FEH 000003FDH 000003FFH BSRR XXXXXXXXB XXXXXXXXB XXXXXXXXB XXXXXXXXB (W) () R/W R W X : : : : : Access Readable and writable Read only Write only Indeterminate 51 MB91101/MB91101A 8. 10-bit A/D Converter (Successive Approximation Conversion Type) The A/D converter is the module which converts an analog input voltage to a digital value, and it has following features. Minimum converting time: 5.6 µs/ch. (system clock: 25 MHz) Inner sample and hold circuit Resolution: 10 bits Analog input can be selected from 4 channels by program. Single convert mode: 1 channel is selected and converted. Scan convert mode: Converting continuous channels. Maximum 4 channels are programmable. Continuous convert mode: Converting the specified channel repeatedly. Stop convert mode: After converting one channel then stop and wait till next activation synchronising at the beginning of conversion can be peformed. • DMA transfer operation is available by interruption. • Operating factor can be selected from the software, the external trigger (falling edge), and 16-bit reroad timer (rising edge). • • • • • Block diagram AVCC AVR AVSS Internal voltage generator MPX AN0 AN2 Successive approximation register Input circuit AN1 Comparator AN3 Decoder R-bus Sample & hold circuit Data register (ADCR) A/D control register (ADCS) Trigger start ATG TIM0 (internal connection) (16-bit reload timer ch.2) φ (Peripheral clock) 52 Timer start Operating clock Prescaler MB91101/MB91101A • Register configuration Address bit 15 bit 0 Initial value 0000003AH 0000003BH ADCS 00000000 00000000 B 00000038H 00000039H ADCR - - - - - - XX XXXXXXXX B () R/W R – X : : : : : B B (R/W) (R) Access Readable and writable Read only Unused Indeterminate 53 MB91101/MB91101A 9. Interrupt Controller The interrupt controller processes interrupt acknowledgments and arbitration between interrupts. • Block diagram INT0*2 IM Priority judgment OR 5 NMI 5 NMI processing 4 Level judgment ICR00 RI00 • • • 6 • • • Vector judgment 6 HLDCAN*3 VCT5 to VCT0*5 ICR47 RI47 (DLYIRQ) • • Level vector generation HLDREQ cancel request LEVEL4 to LEVEL0*4 DLYI*1 R-bus *1: DLYI stands for delayed interrupt module (delayed interrupt generation block) (refer to the section “11. Delayed Interrupt Module” for detail). *2: INT0 is a wake-up signal to clock control block in the sleep or stop status. *3: HLDCAN is a bus release request signal for bus masters other than CPU. *4: LEVEL5 to LEVEL0 are interrupt level outputs. *5: VCT5 to VCT0 are interrupt vector outputs. 54 MB91101/MB91101A • Register configuration Address bit 7 bit 0 Initial value Address bit 7 bit 0 Initial value 00000400H ICR00 - - - 11111 B (R/W) 00000411H ICR17 - - - 11111 B (R/W) 00000401H ICR01 - - - 11111 B (R/W) 00000412H ICR18 - - - 11111 B (R/W) 00000402H ICR02 - - - 11111 B (R/W) 00000413H ICR19 - - - 11111 B (R/W) 00000403H ICR03 - - - 11111 B (R/W) 00000414H ICR20 - - - 11111 B (R/W) 00000404H ICR04 - - - 11111 B (R/W) 00000415H ICR21 - - - 11111 B (R/W) 00000405H ICR05 - - - 11111 B (R/W) 00000416H ICR22 - - - 11111 B (R/W) 00000406H ICR06 - - - 11111 B (R/W) 00000417H ICR23 - - - 11111 B (R/W) 00000407H ICR07 - - - 11111 B (R/W) 00000418H ICR24 - - - 11111 B (R/W) 00000408H ICR08 - - - 11111 B (R/W) 00000419H ICR25 - - - 11111 B (R/W) 00000409H ICR09 - - - 11111 B (R/W) 0000041AH ICR26 - - - 11111 B (R/W) 0000040AH ICR10 - - - 11111 B (R/W) 0000041BH ICR27 - - - 11111 B (R/W) 0000040BH ICR11 - - - 11111 B (R/W) 0000041CH ICR28 - - - 11111 B (R/W) 0000040CH ICR12 - - - 11111 B (R/W) 0000041DH ICR29 - - - 11111 B (R/W) 0000040DH ICR13 - - - 11111 B (R/W) 0000041EH ICR30 - - - 11111 B (R/W) 0000040EH ICR14 - - - 11111 B (R/W) 0000041FH ICR31 - - - 11111 B (R/W) 0000040FH ICR15 - - - 11111 B (R/W) 0000042FH ICR47 - - - 11111 B (R/W) 00000410H ICR16 - - - 11111 B (R/W) 00000431H HRCL - - - 11111 B (R/W) 00000430H DICR - - - - - - - 0 B (R/W) ( ) : Access R/W : Redable and writable – : Unused 55 MB91101/MB91101A 10. External Interrupt/NMI Control Block The external interrupt/NMI control block controls external interrupt request signals input to NMI pin and INT0 to INT3 pins. Detecting levels can be selected from “H”, “L”, rising edge and falling edge (not for NMI pin). • Block diagram 8 Interrupt enable register 9 5 Gate R-bus Interrupt request Cause F/F INT0 to INT3 NMI Edge detection circuit 8 Interrupt cause register 8 Request level setting register • Register configuration Address bit 15 bit 8 ENIR 00000095H 00000094H EIRR 00000099H ( ) : Access R/W : Redable and writable 56 bit 0 ELVR Initial value 00000000 B (R/W) 00000000 B (R/W) 00000000 B (R/W) MB91101/MB91101A 11. Delayed Interrupt Module Delayed interrupt module is a module which generates a interrupt for changing a task. By using this delayed interrupt module, an interrupt request to CPU can be generated/cancelled by the software. Refer to the section “9. Interrupt Controller” for delayed interrupt module block diagram. • Register configuration Address bit 7 00000430H bit 0 DICR Initial value - - - - - - - 0 B (R/W) ( ) : Access R/W : Redable and writable – : Unused 57 MB91101/MB91101A 12. Clock Generation (Low-power consumption mechanism) The clock control block is a module which undertakes the following functions. • • • • • • CPU clock generation (including gear function) Peripheral clock generation (including gear function) Reset generation and cause hold Standby function (including hardware standby) DMA request prohibit PLL (multiplier circuit) embedded • Block diagram [Gear control block] Gear control register (GCR) X0 X1 Oscillator circuit PCTR register PLL 1/2 Internal interrupt request Internal reset Peripheral gear Selection circuit R-bus CPU gear CPU clock Internal bus clock External bus clock Peripheral DMA clock Internal peripheral clock Internal clock generation circuit [Stop/sleep control block] Standby control register (STCR) STOP state Status transition control circuit CPU hold enable HST pin SLEEP state CPU hold request Reset generation F/F [DMA prohibit circuit] DMA request DMA request prohibit register (PDRR) [Reset cause circuit] Power on sel RST pin Reset cause register (RSRR) [Watchdog control block] Watchdog reset generation postpone register (WPR) Watchdog reset postpone register Timebase timer clear register (CTBR) Timebase timer 58 Count clock Internal reset MB91101/MB91101A • Register configuration Address 00000480H bit 15 bit 8 RSRR/WTCR 00000481H 00000482H STCR PDRR 00000483H 00000484H CTBR GCR 00000485H 00000488H () R/W W – X : : : : : bit 0 WPR PCTR Initial value 1XXXX - 0 0 B (R/W) 000111 - - B (R/W) - - - - 0000 B (R/W) XXXXXXXX B (W) 110011 - 1 B (R/W) XXXXXXXX B (W) 00 - - 0 - - - B (R/W) Access Redable and writable Write only Unused Indeterminate 59 MB91101/MB91101A 13. External Bus Interface The external bus interface controls the interface between the device and the external memory and also the external I/O, and has the following features. • 25-bit (32 Mbytes) address output • 6 independent banks owing to the chip select function. Can be set to anywhere on the logical address space for minimum unit 64 Kbytes. Total 32 Mbytes × 6 area setting is available by the address pin and the chip select pin. • 8/16-bit bus width setting are available for every chip select area. • Programmable automatic memory wait (max. for 7 cycles) can be inserted. • DRAM interface support Three kinds of DRAM interface: Double CAS DRAM (normally DRAM I/F) Single CAS DRAM Hyper DRAM 2 banks independent control (RAS, CAS, etc. control signals) DRAM select is available from 2CAS/1WE and 1CAS/2WE. Hi-speed page mode supported CBR/self refresh supported Programmable wave form • Unused address/data pin can be used for I/O port. • Little endian mode supported • Clock doubler: Internal bus 50 MHz, external bus 25 MHz 60 MB91101/MB91101A • Block diagram Address bus 32 A-OUT Data bus 32 External data bus Write buffer Switch Read buffer Switch MUX DATA BLOCK ADDRESS BLOCK +1 or +2 External address bus Inpage Shifter Address buffer 6 ASR AMR CS0 to CS5 Comparator 8 DRAM control RAS0, RAS1 CS0L, CS1L CS0H, CS1H DW0, DW1 Underflow DMCR Refresh counter To TBT 3 External pin control block All blocks control 4 Registers and control RD WR0, WR1 BRQ BGRNT CLK RDY 61 MB91101/MB91101A • Register configuration Address Initial value bit 31 bit 16 0000060CH 0000060DH bit 0 ASR1 0000060EH 0000060FH AMR1 00000610H 00000611H ASR2 00000612H 00000613H AMR2 00000614H 00000615H ASR3 00000616H 00000617H AMR3 00000618H 00000619H ASR4 0000061AH 0000061BH AMR4 0000061CH 0000061DH ASR5 0000061EH 0000061FH 00000620H AMR5 AMD0 00000621H AMD1 00000622H AMD32 00000623H 00000624H AMD4 AMD5 00000625H DSCR 00000626H 00000627H 00000628H 00000629H RFCR EPCR0 EPCR1 0000062BH 0000062CH 0000062DH DMCR4 0000062EH 0000062FH 000007FEH 000007FFH () R/W W – X 62 : : : : : Access Redable and writable Write only Unused Indeterminate DMCR5 LER MODR 00000000 00000001 B 00000000 00000000 B 00000000 00000010 B 00000000 00000000 B 00000000 00000011 B 00000000 00000000 B 00000000 00000100 B 00000000 00000000 B 00000000 00000101 B 00000000 00000000 B - - - 00111 B (R/W) 0 - - 00000 B (R/W) 00000000 B (R/W) 0 - - 00000 B (R/W) 0 - - 00000 B (R/W) 00000000 B (W) - - XXXXXX 00 - - - 000 B (R/W) - - - - 1100 - 1111111 B 11111111 B (W) 00000000 0000000 - B (R/W) 00000000 0000000 - B - - - - - 000 B (W) XXXXXXXX B (W) B B B B B B B B B B B B B (W) (W) (W) (W) (W) (W) (W) (W) (W) (W) (W) (R/W) B MB91101/MB91101A ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings (VSS = AVSS = 0.0 V) Parameter Symbol Value Unit Remarks Min. Max. VCC5 VSS – 0.3 VSS + 6.5 V VCC3 — — V VCC5 VCC3 – 0.3 VSS + 6.5 V *1 VCC3 VSS – 0.3 VSS + 3.6 V *1 Analog supply voltage AVCC VSS – 0.3 VSS + 3.6 V *2 Analog reference voltage AVRH VSS – 0.3 VSS + 3.6 V *2 Analog pin input voltage VIA VSS – 0.3 AVCC + 0.3 V Input voltage VI VSS – 0.3 VCC5 + 0.3 V Output voltage VO VSS – 0.3 VCC5 + 0.3 V “L” level maximum output current IOL — 10 mA *3 “L” level average output current IOLAV — 4 mA *4 “L” level maximum total output current ΣIOL — 100 mA “L” level average total output current ΣIOLAV — 50 mA *5 “H” level maximum output current IOH — –10 mA *3 “H” level average output current IOHAV — –4 mA *4 “H” level maximum total output current ΣIOH — –50 mA “H” level average total output current ΣIOHAV — –20 mA Power consumption PD — 500 mW Operating temperature TA 0 +70 °C Storage temperature Tstg –55 +150 °C At 5 V power supply Power supply voltage At 3 V power supply *1: *2: *3: *4: *5: *5 VCC5 must not be less than VSS – 0.3 V. Make sure that the voltage does not exceed VCC5 + 0.3 V, such as when turning on the device. Maximum output current is a peak current value measured at a corresponding pin. Average output current is an average current for a 100 ms period at a corresponding pin. Average total output current is an average current for a 100 ms period for all corresponding pins. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 63 MB91101/MB91101A 2. Recommended Operating Conditions (1) At 5 V operation (4.5 V to 5.5 V) (VSS = AVSS = 0.0 V) Value Symbol Parameter Unit Remarks Min. Max. VCC5 4.5 5.5 V Normal operation VCC5 *1 *1 V Retaining the RAM state in stop mode VCC3 — — V *2 Analog supply voltage AVCC VSS + 2.7 VCC + 3.6 V Analog reference voltage AVRH VSS – 0.3 AVCC V Operating temperature TA 0 +70 °C Smoothing capacitor CS 0.1 1.0 µF Power supply voltage VCC3 pin *2 *1: At VCC5, the RAM state holding is not warranted in stop mode. *2: VCC3 is used for the bypass capacitor pin. *3: Use the ceramic capacitor or the capacitor whose frequency characteristic is equivalent to that of the ceramic capacitor. And select the larger capacity smoothing condenser to connect to the power supply (VCC5) than CS. (2) At 3 V operation (2.7 V to 3.6 V) (VSS = AVSS = 0.0 V) Value Symbol Parameter Unit Remarks Min. Max. VCC5 2.7 3.6 V Normal operation VCC5 2.7 3.6 V Retaining the RAM state in stop mode VCC3 2.7 3.6 V * Analog power supply voltage AVCC VSS + 2.7 VCC + 3.6 V Analog reference voltage AVRH AVSS AVCC V Operating temperature TA 0 +70 °C Power supply voltage * : Connect to VCC5 for the power supply pin. • Connecting to a power supply Using with 3 V power supply Using with 5 V power supply 3V 5V 3V VCC5 AVCC AVRH AVSS VSS GND 64 VCC3 VCC5 AVCC About 0.1 µF AVRH AVSS GND VSS VCC3 MB91101/MB91101A VCC (V) Normal operation warranty range (TA = 0°C to +70°C) Net masked area are fCPP. Power supply at 5 V Supply voltage 5.5 4.5 3.0 V ±0.3 V Power supply at 3 V 3.6 3.3 3.0 2.7 3.3 V ±0.3 V 0 25 Internal clock 0.625 40 50 fCP/fCPP (MHz) Max. internal clock frequency setting fCP/fCPP (MHz) fCP 50 CPU 40 fCPP PLL system (4 multiplication) 25 Peripheral 20 Divide-by-2 system 12.5 5 0 0 10 12.5 25 50 External clock fC (MHz) Source oscillating input clock Self-oscillation Notes: • When using PLL, the external clock must be used between 10.0 MHz to 12.5 MHz. • PLL oscillation stabilizing period > 100 µs • The setting of internal clock must be within above ranges. WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device’s electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand. 65 MB91101/MB91101A 3. DC Characteristics (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition VIH Input pin except for hysteresis input Value Unit Remarks Min. Typ. Max. — 0.65 × VCC3 — VCC5 + 0.3 V * VIHS HST, NMI, RST, PA1 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7 — 0.8 × VCC3 — VCC5 + 0.3 V Hysteresis input * VIL Input other than following symbols — VSS – 0.3 — 0.25 × VCC3 V * VILS HST, NMI, RST, PA1 to PA6, PB0 to PB7, PE0 to PE7, PF0 to PF7 — VSS – 0.3 — 0.2 × VCC3 V Hysteresis input * “H” level input voltage “L” level input voltage “H” level output VOH voltage D16 to D31, A00 to A24, P6 to PF VCC5 = 4.5 V IOH = –4.0 mA VCC – 0.5 — — V “L” level output voltage D16 to D31, A00 to A24, P6 to PF VCC5 = 4.5 V IOL = 4.0 mA — — 0.4 V Input leakage current ILI (Hi-Z output leakage current) D00 to D31, A00 to A23, P8 to PF VCC5 = 5.5 V 0.45 V < VI < VCC –5 — +5 µA Pull-up resistance RPULL RST VCC5 = 5.5 V VI = 0.45 V 25 50 100 kΩ ICC VCC FC = 12.5 MHz VCC5 = 5.5 V — 75 100 mA Operation at 50 MHz ICCS VCC FC = 12.5 MHz VCC5 = 5.5 V — 40 60 mA Sleep mode ICCH VCC TA = +25°C VCC5 = 5.5 V — 10 100 µA Stop mode CIN Except for VCC5, VCC3, AVCC, AVSS, VSS — 10 — Power supply current Input capacitance VOL — (4 multiplication) pF * : VCC3 = 3.3 ±0.2 V (internal regulator output voltage) when using 5 V power supply, VCC3 = power supply voltage when using 3 V power supply (internal regulator unused) 66 MB91101/MB91101A 4. AC Characteristics Measurement Conditions • VCC = 5.0 V ±10% Parameter Symbol Value Min. Typ. Max. Unit “H” level input voltage VIH — 2.4 — V “L” level input voltage VIL — 0.8 — V “H” level output voltage VOH — 2.4 — V “L” level output voltage VOL — 0.8 — V VCC Input Remarks Output VIH VOH VIL VOL 0.0 V • VCC = 2.7 V to 3.6 V Parameter Symbol Value Min. Typ. Max. Unit “H” level input voltage VIH — 1/2 × VCC — V “L” level input voltage VIL — 1/2 × VCC — V “H” level output voltage VOH — 1/2 × VCC — V “L” level output voltage VOL — 1/2 × VCC — V VCC Input Remarks Output VIH VOH VIL VOL 0.0 V • Load conditions Output pin C = 50 pF (VCC = 5.0V ± 10%) 67 MB91101/MB91101A • Load capacitance - Delay characteristics (Output delay with reference to the internal) (ns) 35 5 V Fall 30 3 V Rise 25 20 15 5 V Rise 10 5 3 V Fall 0 0 68 20 40 50 60 80 100 120 C (pF) MB91101/MB91101A (1) Clock Timing Rating (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Symbol Parameter Clock frequency Clock cycle time Frequency shift ratio (when locked) Input clock pulse width Input clock rising/falling time Internal operating clock frequency Internal operating clock cycle time Pin name Condition Value Min. Max. Unit Remarks fC X0, X1 When using PLL 10 12.5 MHz fC X0, X1 Self-oscillation (divide-by-2 input) 10 25 MHz fC X0, X1 External clock (divide-by-2 input) 10 25 MHz tC X0, X1 When using PLL 80 100 ns tC X0, X1 40 100 ns ∆f — — 5 % *1 — When using PLL 25 — ns Input to X0 only, when using 5 V power supply X0, X1 10 — ns Input to X0, X1 tCR, tCF X0, X1 — 8 ns (tCR + tCF) fCP — CPU system fCPB — fCPP PWH, PWL X0, X1 PWH, PWL — 0.625*2 50 MHz Bus system 2 0.625* 25* — Peripheral system 0.625*2 25 MHz tCP — CPU system 20 1600*2 ns tCPB — Bus system 40*3 1600*2 ns tCPP — Peripheral system 40 1600*2 ns 3 MHz *1: Frequency shift ratio stands for deviation ratio of the operating clock from the center frequency in the clock multiplication system. + +α ∆f = |α| × 100 (%) f0 Center frequency f 0 –α – *2: These values are for a minimum clock of 10 MHz input to X0, a divide-by-2 system of the source oscillation and a 1/8 gear. *3: Values when using the doubler and CPU operation at 50 MHz. 69 MB91101/MB91101A • Clock timing rating measurement conditions tC 0.8 VCC 0.2 VCC PWH PWL tCF 70 tCR MB91101/MB91101A (2) Clock Output Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name tCYC CLK tCYC CLK CLK ↑ → CLK ↓ tCHCL CLK CLK ↓ → CLK ↑ tCLCH CLK Cycle time Value Condition — Using the doubler — Unit Min. Max. tCP — ns tCPB — ns Remarks *1 1/2 × tCYC – 10 1/2 × tCYC + 10 ns *2 1/2 × tCYC – 10 1/2 × tCYC + 10 ns *3 tCP, tCPB (internal operating clock cycle time): Refer to “(1) Clock Timing Rating.” *1: tCYC is a frequency for 1 clock cycle including a gear cycle. Use the doubler when CPU frequency is above 25 MHz. *2: Rating at a gear cycle of × 1. When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8, respectively. Min. : (1 – n/2) × tCYC – 10 Max. : (1 – n/2) × tCYC + 10 Select a gear cycle of × 1 when using the doubler. *3: Rating at a gear cycle of × 1. When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equations with 1/2, 1/4, 1/8, respectively. Min. : n/2 × tCYC – 10 Max. : n/2 × tCYC + 10 Select a gear cycle of × 1 when using the doubler. tCYC tCLCH tCHCL CLK VOH VOH VOL 71 MB91101/MB91101A The relation between source oscillation input and CLK pin for configured by CHC/CCK1/CCK0 settings of GCR (gear control register) is as follows: However, in this chart source oscillation input means X0 input clock. Source oscillation input (when using the doublure) (1) PLL system (CHC bit of GCR set to “0”) (a) Gear × 1 CLK pin CCK1/0: “00” tCYC Source oscillation input (2) 2 dividing system (CHC bit of GCR set to “1”) (a) Gear × 1 CLK pin CCK1/0: “00” (b) Gear × 1/2 CLK pin CCK1/0: “01” (c) Gear × 1/4 CLK pin CCK1/0: “10” (d) Gear × 1/8 CLK pin CCK1/0: “11” 72 tCYC tCYC tCYC tCYC MB91101/MB91101A • Ceramic oscillator applications Recommended circuit (3 contacts) Recommended circuit (2 contacts) X0 X0 X1 X1 * * C1 C1 C2 C2 C1, C2 internally connected. * : Murata Mfg. Co., Ltd. • Discreet type Oscillation frequency [MHz] 5.00 to 6.30 6.31 to 10.0 10.1 to 13.0 13.01 to 15.00 Model Load capacitance C1 = C2 [pF] 30 CSA MG CST MGW CSA MG093 CST MGW093 CSA MTZ 30 CST MTW (30) CSA MTZ093 30 CST MTW093 (30) CSA MTZ 30 CST MTW (30) CSA MTZ093 30 CST MTW093 (30) (30) 30 (30) CSA MXZ040 15 CST MXW0C3 (15) Power supply voltage VCC5 [V] 2.9 to 5.5 2.7 to 5.5 2.9 to 5.5 2.7 to 5.5 3.0 to 5.5 2.9 to 5.5 3.2 to 5.5 ( ): C1 and C2 internally connected 3 contacts type. 73 MB91101/MB91101A (3) Reset/Hardware Standby Input Ratings (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Reset input time tRSTL RST Hardware standby input time tHSTL HST — Value Max. tCP × 5 — ns tCP × 5 — ns tCP (internal operating clock cycle time): Refer to “(1) Clock Timing Rating.” tRSTL, tHSTL RST HST 0.2 VCC 74 Unit Min. 0.2 VCC Remarks MB91101/MB91101A (4) Power on Supply Specifications (Power-on Reset) (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name tR VCC tR VCC tR VCC tR VCC Power supply shut off time tOFF VCC Oscillation stabilizing time tOSC Power supply rising time Value Condition 50 — µs * — 30 ms * 50 — µs * — 18 ms * 1 — ms Repeated operations 2 × tC × 221 + 100 µs — ns VCC = 3.0/ 3.3 V — Remarks Max. VCC = 5.0 V — Unit Min. tC (clock cycle time): Refer to “(1) Clock Timing Rating.” * : VCC < 0.2 V before the power supply rising tR VCC 0.9 × VCC 0.2 V tOFF Note: Sudden change in supply voltage during operation may initiate a power-on sequence. To change supply voltage during operation, it is recommended to smoothly raise the voltage to avoid rapid fluctuations in the supply voltage. VCC A voltage rising rate of 50 mV/ms or less is recommended. VSS 42 ms approx. 336 ms approx. (@12.5 MHz) VCC Regulator (Oscillation stabilizing time) tOSC Stabilizing time * RST tRSTL + (tC × 219) tRSTL: Reset input time *: Reset can’t be done during regulator stabilizing time. Note: Set RST pin to “L” level when turning on the device, at least the described above duration after the supply voltage reaches Vcc is necessary before turning the RST to “H” level. 75 MB91101/MB91101A (5) Normal Bus Access Read/write Operation (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Value Min. Max. Unit Remarks tCHCSL CLK, CS0 to CS5 — 15 ns tCHCSH CLK, CS0 to CS5 — 15 ns Address delay time tCHAV CLK, A24 to A00 — 15 ns Data delay time tCHDV CLK, D31 to D16 — 15 ns tCLRL CLK, RD — 6 ns tCLRH CLK, RD — 6 ns tCLWL CLK, WR0, WR1 — 6 ns tCLWH CLK, WR0, WR1 — 6 ns tAVDV A24 to A00, D31 to D16 — 3/2 × tCYC – 25 ns *1 *2 RD ↓→ valid data input time tRLDV RD, D31 to D16 — tCYC – 10 ns *1 Data set up → RD ↑ time tDSRH RD, D31 to D16 10 — ns RD ↑→ data hold time tRHDX RD, D31 to D16 0 — ns CS0 to CS5 delay time RD delay time WR0, WR1 delay time Valid address → valid data input time — tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” *1: When bus timing is delayed by automatic wait insertion or RDY input, add (tCYC × extended cycle number for delay) to this rating. *2: Rating at a gear cycle of × 1. When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8, respectively. Equation: (2 – n/2) × tCYC – 25 76 MB91101/MB91101A BA2 BA1 tCYC CLK VOH VOH VOL VOH VOL tCHCSL CS0 to CS5 tCHCSH VOH VOL tCHAV A24 to A00 VOH VOL VOH VOL tCLRL tCLRH RD VOH VOL tRLDV tRHDX tAVDV VIH VIL D31 to D16 VIH VIL Read tDSRH tCLWL WR0, WR1 VOH VOL tCLWH tCHDV D31 to D16 VOH VOL Write VOH VOL 77 MB91101/MB91101A (6) Ready Input Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name RDY set up time → CLK ↓ tRDYS RDY, CLK CLK ↓→ RDY hold time RDY, CLK tRDYH Condition Value Max. 15 — ns 0 — ns — tCYC CLK VOH VOH VOL RDY When wait(s) is inserted. RDY When no wait is inserted. 78 VIL VIH VOL tRDYH tRDYS VIH VIL Unit Min. tRDYH tRDYS VIL VIH VIH VIL Remarks MB91101/MB91101A (7) Hold Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Symbol Pin name Condition Parameter Value Unit Min. Max. — 6 ns — 6 ns tCHBGL CLK, BGRNT tCHBGH CLK, BGRNT Pin floating → BGRNT ↓ time tXHAL BGRNT tCYC – 10 tCYC + 10 ns BGRNT ↑→ pin valid time tHAHV BGRNT tCYC – 10 tCYC + 10 ns BGRNT delay time — Remarks tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” Note: There is a delay time of more than 1 cycle from BRQ input to BGRNT change. tCYC CLK VOH VOH VOH VOH BRQ tCHBGH tCHBGL BGRNT VOH VOL tXHAL Each pin VOH VOL tHAHV High impedance VOH VOL 79 MB91101/MB91101A (8) Normal DRAM Mode Read/Write Cycle (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Value Min. Max. Unit Remarks tCLRAH CLK, RAS — 6 ns tCHRAL CLK, RAS — 6 ns tCLCASL CLK, CAS — 6 ns tCLCASH CLK, CAS — 6 ns ROW address delay time tCHRAV CLK, A24 to A00 — 15 ns COLUMN address delay time tCHCAV CLK, A24 to A00 — 15 ns tCHDWL CLK, DW — 15 ns tCHDWH CLK, DW — 15 ns Output data delay time tCHDV1 CLK, D31 to D16 — 15 ns RAS ↓→ valid data input time tRLDV RAS, D31 to D16 — 5/2 × tCYC – 16 ns *1 *2 CAS ↓→ valid data input time tCLDV CAS, D31 to D16 — tCYC – 17 ns *1 CAS ↑→ data hold time tCADH CAS, D31 to D16 0 — ns RAS delay time CAS delay time DW delay time — tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” CAS: CS0L to CS1H pins are for CAS signal outputs. DW: DW0, DW1 and CS0H to CS1H are used for WE outputs. *1: When Q1 cycle or Q4 cycle is extended for 1 cycle, add tCYC time to this rating. *2: Rating at a gear cycle of × 1. When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute “n” in the following equation with 1/2, 1/4, 1/8, respectively. Equation: (3 – n/2) × tCYC – 16 80 MB91101/MB91101A Q1 Q2 Q3 Q4 Q5 tCYC CLK VOH VOL VOH VOH VOH RAS VOH VOL VOL VOH VOL tCLRAH tCHRAL tCLCASH tCLCASH CAS VOH VOL tCHCAV tCHRAV VOH VOL A24 to A00 ROW address VOH VOL VOH VOL COLUMN address VOH VOL tRLDV tCADH tCLDV VIH VIL D31 to D16 VIH VIL Read VOH DW VOL tCHDWH tCHDWL D31 to D16 VOH VOL Write VOH VOL tCHDV1 81 MB91101/MB91101A (9) Normal DRAM Mode Fast Page Read/Write Cycle (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter RAS delay time Symbol Pin name Condition Value Min. Max. tCLRAH CLK, RAS — 6 ns tCLCASL CLK, CAS — 6 ns tCLCASH CLK, CAS — 6 ns COLUMN address delay time tCHCAV CLK, A24 to A00 — 15 ns DW delay time tCHDWH CLK, DW — 15 ns Output data delay time tCHDV1 CLK, D31 to D16 — 15 ns CAS ↓→ valid data input time tCLDV CAS, D31 to D16 — tCYC – 17 ns CAS ↑→ data hold time tCADH CAS, D31 to D16 0 — ns CAS delay time — tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” CAS: CS0L to CS1H pins are for CAS signal outputs. DW: DW0, DW1 and CS0H to CS1H are used for WE outputs. * : When Q4 cycle is extended for 1 cycle, add tCYC time to this rating. 82 Unit Remarks * MB91101/MB91101A Q5 Q4 VOH CLK Q5 VOL Q4 Q5 VOH VOL VOL tCLRAH VOH RAS tCLCASL CAS tCLCASH VOH VOL tCHCAV A24 to A00 VOH VOL COLUMN address VOH VOL COLUMN address tCADH tCLDV D31 to D16 VIH VIL Read VIH VIL VIH VIL VOH VOL COLUMN address Read VIH VIL VIH VIL Read VIH VIL tCHDWH VOH DW tCHDV1 D31 to D16 VOH VOL Write VOH VOL VOH VOL Write VOH VOL 83 MB91101/MB91101A (10) Single DRAM Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Value Max. — 6 ns 6 ns tCLRAH2 CLK, RAS tCHRAL2 CLK, RAS tCHCASL2 CLK, CAS — n/2 × tCYC ns tCHCASH2 CLK, CAS — 6 ns ROW address delay time tCHRAV2 CLK, A24 to A00 — 15 ns COLUMN address delay time tCHCAV2 CLK, A24 to A00 — 15 ns RAS delay time CAS delay time — tCHDWL2 CLK, DW — 15 ns tCHDWH2 CLK, DW — 15 ns Output data delay time tCHDV2 CLK, D31 to D16 — 15 ns CAS ↓→ Valid data input time tCLDV2 CAS, D31 to D16 — (1 – n/2) × tCYC – 17 ns CAS ↑→ data hold time tCADH2 CLK, D31 to D16 0 — ns DW delay time tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” 84 Unit Min. Remarks MB91101/MB91101A tCYC *1 Q1 CLK VOH Q2 Q3 VOH VOL VOH RAS Q4S Q4S VOH Q4S VOH VOH VOL tCHRAL2 tCLRAH2 tCHCASL2 tCHCASH2 CAS VOH VOL VOH VOL A24 to A00 ROW address tCHRAV2 VOH VOL VOH VOL COLUMN-0 VOH VOL COLUMN-1 COLUMN-2 tCHCAV2 tCADH2 tCLDV2 Read-0 D31 to D16 VIH VIL Read-1 VIH VIL Read-2 DW VOH VOL tCHDWL2 D31 to D16 VOH VOL Write-0 tCHDV2 *2 VOH VOL tCHDWH2 VOH VOL tCHDV2 VOH VOH VOL VOL Write-1 Write-2 *1: Q4S indicates Q4SR (Read) of Single DRAM cycle or Q4SW (Write) cycle. *2: indicates the timing when the bus cycle begins from the high spead page mode. 85 MB91101/MB91101A (11) Hyper DRAM Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Value Min. Max. tCLRAH3 CLK, RAS — 6 ns tCHRAL3 CLK, RAS — 6 ns tCHCASL3 CLK, CAS — n/2 × tCYC ns tCHCASH3 CLK, CAS — 6 ns ROW address delay time tCHRAV3 CLK, A24 to A00 — 15 ns COLUMN address delay time tCHCAV3 CLK, A24 to A00 — 15 ns tCHRL3 CLK, RD — 15 ns — 15 ns RAS delay time CAS delay time — tCHRH3 CLK, RD tCLRL3 CLK, RD — 15 ns tCHDWL3 CLK, DW — 15 ns tCHDWH3 CLK, DW — 15 ns Output data delay time tCHDV3 CLK, D31 to D16 — 15 ns CAS ↓→ valid data input time tCLDV3 CAS, D31 to D16 — tCYC – 17 ns CAS ↓→ data hold time tCADH3 CLK, D31 to D16 0 — ns RD delay time DW delay time tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” 86 Unit Remarks MB91101/MB91101A tCYC *1 Q1 CLK VOH Q2 Q3 VOH VOL VOH RAS Q4H VOH Q4H Q4H VOH VOL VOH VOL tCHRAL3 tCLRAH3 tCHCASL3 tCHCASH3 CAS VOH VOL VOH VOL A24 to A00 ROW address tCHRAV3 VOH VOL VOHCOLUMN-0 VOL VOL VOL COLUMN-1 COLUMN-2 tCHCAV3 *2 VOL RD VOL tCHRL3 VOH tCLRL3 tCHRH3 tCLDV3 tCADH3 Read-0 D31 to D16 VIH VIL Read-1 VIH VIL DW VOH VOL tCHDWL3 D31 to D16 VOH VOL Write-0 tCHDV3 *2 VOH VOL tCHDWH3 VOH VOL tCHDV3 VOH VOH VOL VOL Write-1 Write-2 *1: Q4H indicates Q4HR (Read) of Single DRAM cycle or Q4HW (Write) cycle. *2: indicates the timing when the bus cycle begins from the high spead page mode. 87 MB91101/MB91101A (12) CBR Refresh (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter RAS delay time CAS delay time Symbol Pin name tCLRAH CLK, RAS tCHRAL CLK, RAS tCLCASL CLK, CAS tCLCASH CLK, CAS Value Condition Unit Min. Max. — 6 ns — 6 ns — 6 ns — 6 ns — CAS: CS0L to CS1H pins are for CAS signal outputs. tCYC R1 CLK RAS VOH R2 VOH VOL R3 VOH VOL VOH tCHRAL VOL tCLCASL DW 88 VOL VOL tCLRAH CAS R4 VOH tCLCASH Remarks MB91101/MB91101A (13) Self Refresh (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Symbol Parameter RAS delay time CAS delay time Pin name tCLRAH CLK, RAS tCHRAL CLK, RAS tCLCASL CLK, CAS tCLCASH CLK, CAS Condition — Value Unit Min. Max. — 6 ns — 6 ns — 6 ns — 6 ns Remarks CAS: CS0L to CS1H pins are for CAS signal outputs. tCYC SR1 CLK VOH SR2 VOH SR3 VOL VOH VOL tCHRAL RAS CAS VOL SR3 tCLRAH VOH VOH VOL tCLCASL tCLCASH 89 MB91101/MB91101A (14) UART Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Serial clock cycle time tSCYC SCLK ↓→ SCLK ↑ tSCLCH SCLK ↑→ SCLK ↓ tSCHCL — SCLK ↓→ SOUT delay time tSLOV — Valid SIN → SCLK ↑ tIVSH — SCLK ↑→ valid SIN hold time tSHIX Serial clock “H” pulse width Serial clock “L” pulse width Internal shift clock mode Value Min. Max. 8 × tCYCP — Unit ns 4 × tCYCP –10 4 × tCYCP +10 ns 4 × tCYCP –10 4 × tCYCP +10 ns –80 80 ns 100 — ns — 60 — ns tSHSL — 4 × tCYCP — ns tSLSH — 4 × tCYCP — ns — 150 ns 60 — ns 60 — ns SCLK ↓→ SOUT delay time tSLOV — Valid SIN → SCLK ↑ tIVSH — SCLK ↑→ valid SIN hold time tSHIX — External shift clock mode tCYCP: A cycle time of peripheral system clock Notes: This rating is for AC characteristics in CLK synchronous mode. • Internal shift clock mode tSCYC tSCLCH tSCHCL VOH SCLK VOL VOL tSLOV VOH VOL SOUT tIVSH tSHIX VIH VIL SIN VIH VIL • External shift clock mode tSLSH tSHSL VIH VIH SCLK VIL VIL tSLOV SOUT VOH VOL tIVSH SIN 90 VIH VIL tSHIX VIH VIL Remarks MB91101/MB91101A (15) Trigger System Input Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter A/D start trigger input time Symbol tTRGH, tTRGL PWM external trigger input tTRGH, tTRGL time Pin name Condition ATG Value Unit Min. Max. 5 × tCYCP — ns 5 × tCYCP — ns Remarks — TRG0 to TRG3 tCYCP: A cycle time of peripheral system clock tTRGH ATG TRG0 to TRG3 VIH tTRGL VIH VIL VIL 91 MB91101/MB91101A (16) DMA Controller Timing (VCC5 = 5.0 V ±10%, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) (VCC5 = VCC3 = 2.7 V to 3.6 V, VSS = AVSS = 0.0 V, TA = 0°C to +70°C) Parameter Symbol Pin name Condition Value Max. DREQ0 to DREQ2 2 × tCYC — ns tCLDL CLK, DACK0 to DACK2 — 6 ns tCLDH CLK, DACK0 to DACK2 — 6 ns EOP delay time (Normal bus) (Normal DRAM) tCLEL CLK, EOP0 to EOP2 — 6 ns tCLEH CLK, EOP0 to EOP2 — 6 ns DACK delay time (Single DRAM) (Hyper DRAM) tCHDL CLK, DACK0 to DACK2 — n/2 × tCYC ns tCHDH CLK, DACK0 to DACK2 — 6 ns tCHEL CLK, EOP0 to EOP2 — n/2 × tCYC ns tCHEH CLK, EOP0 to EOP2 — 6 ns DREQ input pulse width tDRWH DACK delay time (Normal bus) (Normal DRAM) EOP delay time (Single DRAM) (Hyper DRAM) — tCYC (a cycle time of peripheral system clock): Refer to “(2) Clock Output Timing.” tCYC CLK VOH VOH VOL VOL tCLDL tCLEL DACK0 to DACK2 EOP0 to EOP2 (Normal bus) (Normal DRAM) tCLDH tCLEH VOH VOL DACK0 to DACK2 EOP0 to EOP2 (Single DRAM) (Hyper DRAM) VOH VOL tCHDL tCHEL tCHDH tDRWH DREQ0 to DREQ2 92 Unit Min. VIH VIH Remarks MB91101/MB91101A 5. A/D Converter Block Electrical Characteristics (AVCC = 2.7 V to 3.6 V, AVSS = 0.0 V, AVRH = 2.7 V, TA = 0°C to +70°C) Symbol Pin name Resolution — Total error Parameter Value Unit Min. Typ. Max. — — 10 10 bit — — — — ±4.0 LSB Linearity error — — — — ±3.5 LSB Differentiation linearity error — — — — ±2.0 LSB –1.5 +0.5 +2.5 LSB Zero transition voltage VOT AN0 to AN3 Full-scale transition voltage VFST AN0 to AN3 AVRH – 4.5 AVRH – 1.5 AVRH + 0.5 LSB Conversion time — — 5.6 *1 — — µs Analog port input current IAIN AN0 to AN3 — 0.1 10 µA Analog input voltage VAIN AN0 to AN3 AVSS — AVRH V AVRH AVSS — AVCC V IA AVCC — 4 — mA IAH AVCC — — 5* IR AVRH — 200 — IRH AVRH — — 5* AN0 to AN3 — — 4 Reference voltage — Power supply current Reference voltage supply current Conversion variance between channels — 2 2 µA µA µA LSB *1: AVCC = 2.7 V – 3.6 V *2: Current value for A/D converters not in operation, CPU stop mode (VCC = AVCC = AVRH = 3.6 V) Notes: • As the absolute value of AVRH decreases, relative error increases. • Output impedance of external circuit of analog input under following conditions; Output impedance of external circuit < 10 kΩ. If output impedance of external circuit is too high, analog voltage sampling time may be too short for accurate sampling (sampling time is 5.6 µs for a machine clock of 25 MHz). • Analog input circuit model plan Sample and hold circuit Analog input C0 Comparator RON1 RON1 : 0.2 kΩ RON2 : 1.4 kΩ RON3 : 1.4 kΩ RON4 : 0.2 kΩ RON2 RON3 RON4 C1 C0 : 16.6 pF C1 : 4.0 pF Note: Listed values are for reference purposes only. 93 MB91101/MB91101A 6. A/D Converter Glossary • Resolution The smallest change in analog voltage detected by A/D converter. • Linearity error A deviation of actual conversion characteristic from a line connecting the zero-traction point (between “00 0000 0000” ↔ “00 0000 0001”) to the full-scale transition point (between “11 1111 1110” ↔ “11 1111 1111”). • Differential linearity error A deviation of a step voltage for changing the LSB of output code from ideal input voltage. Differential linearity error Linearity error 3FF Ideal characteristic Actual conversion characteristic 3FE N+1 {1 LSB × (N – 1) + VOT} Actual characteristic Digital output Digital output 3FD VFST (measured value) 004 VNT (measured value) Actual conversion characteristic 003 N N–1 V(N + 1)T VNT (measured value) (measured value) 002 Ideal characteristic N–2 001 VOT (measured value) AVRL Actual conversion characteristic AVRH AVRL Linearity error of digital output N = 1 LSB = VFST – VOT 1022 VNT – {1 LSB × (N – 1) + VOT} 1 LSB AVRH Analog input Analog input [LSB] Differential linearity error of digital output N = V(N + 1)T – VNT 1 LSB – 1 [LSB] [V] VOT: A voltage for causing transition of digital output from (000)H to (001)H VFST: A voltage for causing transition of digital output from (3FE)H to (3FF)H VNT: A voltage for causing transition of digital output from (N – 1)H to N (Continued) 94 MB91101/MB91101A (Continued) • Total error A difference between actual value and theoretical value. The overall error includes zero-transition error, fullscale transition error and linearity error. Total error 3FF 1.5 LSB’ 3FE Actual conversion characteristic Digital output 3FD {1 LSB’ × (N – 1) + 0.5 LSB’} 004 VNT (measured value) 003 Actual conversion characteristic 002 Ideal characteristic 001 0.5 LSB’ AVRL AVRH Analog input Total error of digital output N = 1 LSB’ (ideal value) = AVRH – AVRL 1024 VOT’ VNT – {1 LSB’ × (N – 1) + 0.5 LSB’} 1 LSB' [LSB] [V] (ideal value) = AVRL + 0.5 LSB’ [V] VFST’ (ideal value) = AVRL – 1.5 LSB’ [V] VNT: A voltage for causing transition of digital output from (N – 1) to N 95 MB91101/MB91101A ■ REFERENCE DATA 1. Operating frequency vs. ICC characteristics Internal DC - DC regulator is not used (VCC = 3 V) Internal DC - DC regulator is used (VCC = 5 V) ICC (mA) ICC (mA) 90 90 (VCC) 80 (VCC) 80 3.6 V 4.5 V to 5.5 V 70 70 3.3 V 60 60 3.0 V 50 50 2.7 V 40 40 30 30 20 20 10 10 0 0 0 10 f (MHz) 20 30 40 50 0 10 f (MHz) 20 30 40 50 Operating conditions : Source oscillation 12.5 MHz (crystal), PLL is used (50 M, 25 M, 12.5 M) Gear : CPU = 1/1, Peripherals = 1/1 (Doubler is used for 50MHz, Gear peripherals = 1/2) 2. VCC vs. ICC characteristics Internal DC - DC regulator is not used (VCC = 3 V) Internal DC - DC regulator is used (VCC = 5 V) ICC (mA) Icc (mA) 18 18 Gear : 1/1 16 16 14 14 Gear : 1/1 Gear : 1/2 12 12 14 14 Gear : 1/2 Gear : 1/4 10 10 Gear : 1/8 Gear : 1/4 8 8 Gear : 1/8 (PLL : off) 4 Gear : 1/8 4 Gear : 1/8 (PLL : off) 2 2 0 0 VCC (V) 2.7 3.0 3.3 3.6 VCC (V) 4.5 5.0 5.5 Operating conditions : Source oscillation 12.5 MHz (crystal), divide-by-2 input, PLL : ON Gear : CPU = Peripherals 96 MB91101/MB91101A ■ INSTRUCTIONS (165 INSTRUCTIONS) 1. How to Read Instruction Set Summary Mnemonic ADD * ADD ↓ (1) Rj, Ri #s5, Ri , , ↓ (2) Type OP CYC NZVC Operation A C , , A6 A4 , , 1 1 , , CCCC CCCC , , Ri + Rj → Ri Ri + s5 → Ri , , ↓ (3) ↓ (4) ↓ (5) ↓ (6) ↓ (7) Remarks (1) Names of instructions Instructions marked with * are not included in CPU specifications. These are extended instruction codes added/extended at assembly language levels. (2) Addressing modes specified as operands are listed in symbols. Refer to “2. Addressing mode symbols” for further information. (3) Instruction types (4) Hexa-decimal expressions of instructions (5) The number of machine cycles needed for execution a: Memory access cycle and it has possibility of delay by Ready function. b: Memory access cycle and it has possibility of delay by Ready function. If an object register in a LD operation is referenced by an immediately following instruction, the interlock function is activated and number of cycles needed for execution increases. c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or if the instruction belongs to instruction format A group, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed. d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed. For a, b, c and d, minimum execution cycle is 1. (6) Change in flag sign • Flag change C : Change – : No change 0 : Clear 1 : Set • Flag meanings N : Negative flag Z : Zero flag V : Over flag C : Carry flag (7) Operation carried out by instruction 97 MB91101/MB91101A 2. Addressing Mode Symbols Ri Rj R13 Ps Rs CRi CRj #i8 : Register direct (R0 to R15, AC, FP, SP) : Register direct (R0 to R15, AC, FP, SP) : Register direct (R13, AC) : Register direct (Program status register) : Register direct (TBR, RP, SSP, USP, MDH, MDL) : Register direct (CR0 to CR15) : Register direct (CR0 to CR15) : Unsigned 8-bit immediate (–128 to 255) Note: –128 to –1 are interpreted as 128 to 255 #i20 : Unsigned 20-bit immediate (–0X80000 to 0XFFFFF) Note: –0X7FFFF to –1 are interpreted as 0X7FFFF to 0XFFFFF #i32 : Unsigned 32-bit immediate (–0X80000000 to 0XFFFFFFFF) Note: –0X80000000 to –1 are interpreted as 0X80000000 to 0XFFFFFFFF #s5 : Signed 5-bit immediate (–16 to 15) #s10 : Signed 10-bit immediate (–512 to 508, multiple of 4 only) #u4 : Unsigned 4-bit immediate (0 to 15) #u5 : Unsigned 5-bit immediate (0 to 31) #u8 : Unsigned 8-bit immediate (0 to 255) #u10 : Unsigned 10-bit immediate (0 to 1020, multiple of 4 only) @dir8 : Unsigned 8-bit direct address (0 to 0XFF) @dir9 : Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only) @dir10 : Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only) label9 : Signed 9-bit branch address (–0X100 to 0XFC, multiple of 2 only) label12 : Signed 12-bit branch address (–0X800 to 0X7FC, multiple of 2 only) label20 : Signed 20-bit branch address (–0X80000 to 0X7FFFF) label32 : Signed 32-bit branch address (–0X80000000 to 0X7FFFFFFF) @Ri : Register indirect (R0 to R15, AC, FP, SP) @Rj : Register indirect (R0 to R15, AC, FP, SP) @(R13, Rj) : Register relative indirect (Rj: R0 to R15, AC, FP, SP) @(R14, disp10) : Register relative indirect (disp10: –0X200 to 0X1FC, multiple of 4 only) @(R14, disp9) : Register relative indirect (disp9: –0X100 to 0XFE, multiple of 2 only) @(R14, disp8) : Register relative indirect (disp8: –0X80 to 0X7F) @(R15, udisp6) : Register relative (udisp6: 0 to 60, multiple of 4 only) @Ri+ : Register indirect with post-increment (R0 to R15, AC, FP, SP) @R13+ : Register indirect with post-increment (R13, AC) @SP+ : Stack pop @–SP : Stack push (reglist) : Register list 98 MB91101/MB91101A 3. Instruction Types MSB Type A Type B LSB 16 bits OP Rj Ri 8 4 4 OP i8/o8 Ri 4 8 4 Type C OP u4/m4 Ri 8 4 4 ADD, ADDN, CMP, LSL, LSR and ASR instructions only Type *C’ Type D Type E Type F OP s5/u5 Ri 7 5 4 OP u8/rel8/dir/reglist 8 8 OP SUB-OP Ri 8 4 4 OP rel11 5 11 99 MB91101/MB91101A 4. Detailed Description of Instructions • Add/subtract operation instructions (10 instructions) Mnemonic Type OP Cycle N Z V C Operation ADD * ADD Rj, Ri #s5, Ri A C’ A6 A4 1 1 C C C C Ri + Rj → Ri C C C C Ri + s5 → Ri ADD ADD2 #i4, Ri #i4, Ri C C A4 A5 1 1 C C C C Ri + extu (i4) → Ri C C C C Ri + extu (i4) → Ri ADDC Rj, Ri A A7 1 C C C C Ri + Rj + c → Ri ADDN * ADDN Rj, Ri #s5, Ri A C’ A2 A0 1 1 – – – – Ri + Rj → Ri – – – – Ri + s5 → Ri ADDN ADDN2 #i4, Ri #i4, Ri C C A0 A1 1 1 – – – – Ri + extu (i4) → Ri – – – – Ri + extu (i4) → Ri SUB Rj, Ri A AC 1 C C C C Ri – Rj → Ri SUBC Rj, Ri A AD 1 C C C C Ri – Rj – c → Ri SUBN Rj, Ri A AE 1 – – – – Ri – Rj → Ri Remarks MSB is interpreted as a sign in assembly language Zero-extension Sign-extension Add operation with sign MSB is interpreted as a sign in assembly language Zero-extension Sign-extension Subtract operation with carry • Compare operation instructions (3 instructions) Mnemonic Type OP Cycle N Z V C Operation CMP * CMP Rj, Ri #s5, Ri A C’ AA A8 1 1 C C C C Ri – Rj C C C C Ri – s5 CMP CMP2 #i4, Ri #i4, Ri C C A8 A9 1 1 C C C C Ri + extu (i4) C C C C Ri + extu (i4) Remarks MSB is interpreted as a sign in assembly language Zero-extension Sign-extension • Logical operation instructions (12 instructions) 100 Mnemonic Type OP Cycle N Z V C AND AND ANDH ANDB Rj, Ri Rj, @Ri Rj, @Ri Rj, @Ri A A A A 82 84 85 86 1 1 + 2a 1 + 2a 1 + 2a CC CC CC CC – – – – – – – – Ri & (Ri) & (Ri) & (Ri) & = Rj = Rj = Rj = Rj Word Word Half word Byte OR OR ORH ORB Rj, Ri Rj, @Ri Rj, @Ri Rj, @Ri A A A A 92 94 95 96 1 1 + 2a 1 + 2a 1 + 2a CC CC CC CC – – – – – – – – Ri (Ri) (Ri) (Ri) | | | | = Rj = Rj = Rj = Rj Word Word Half word Byte EOR EOR EORH EORB Rj, Ri Rj, @Ri Rj, @Ri Rj, @Ri A A A A 9A 9C 9D 9E 1 1 + 2a 1 + 2a 1 + 2a CC CC CC CC – – – – – – – – Ri ^ (Ri) ^ (Ri) ^ (Ri) ^ = Rj = Rj = Rj = Rj Word Word Half word Byte Operation Remarks MB91101/MB91101A • Bit manipulation arithmetic instructions (8 instructions) Mnemonic BANDL BANDH * BAND BORL BORH * BOR BEORL BEORH * BEOR BTSTL BTSTH #u4, @Ri (u4: 0 to 0FH) #u4, @Ri (u4: 0 to 0FH) #u8, @Ri #u4, @Ri (u4: 0 to 0FH) #u4, @Ri (u4: 0 to 0FH) #u8, @Ri #u4, @Ri (u4: 0 to 0FH) #u4, @Ri (u4: 0 to 0FH) #u8, @Ri Type OP Cycle N Z V C C 80 1 + 2a – – – – (Ri) & = (F0H + u4) Manipulate lower 4 bits C 81 1 + 2a – – – – (Ri) & = ((u4<<4) + 0FH) Manipulate upper 4 bits – *1 Remarks – – – – (Ri) & = u8 C 90 1 + 2a – – – – (Ri) | = u4 Manipulate lower 4 bits C 91 1 + 2a – – – – (Ri) | = (u4<<4) Manipulate upper 4 bits – *2 – – – – (Ri) | = u8 C 98 1 + 2a – – – – (Ri) ^ = u4 Manipulate lower 4 bits C 99 1 + 2a – – – – (Ri) ^ = (u4<<4) Manipulate upper 4 bits – *3 #u4, @Ri (u4: 0 to 0FH) #u4, @Ri (u4: 0 to 0FH) Operation – – – – (Ri) ^ = u8 C 88 2+a 0 C – – (Ri) & u4 Test lower 4 bits C 89 2+a C C – – (Ri) & (u4<<4) Test upper 4 bits *1: Assembler generates BANDL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates BANDH if “u8&0xF0” leaves an active bit. Depending on the value in the “u8” format, both BANDL and BANDH may be generated. *2: Assembler generates BORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates BORH if “u8&0xF0” leaves an active bit. *3: Assembler generates BEORL if result of logical operation “u8&0x0F” leaves an active (set) bit and generates BEORH if “u8&0xF0” leaves an active bit. • Add/subtract operation instructions (10 instructions) Mnemonic Type OP Cycle N Z V C MUL MULU MULH MULUH Rj, Ri Rj, Ri Rj, Ri Rj, Ri A A A A AF AB BF BB 5 5 3 3 CCC CCC CC– CC– DIVOS DIVOU DIV1 DIV2 DIV3 DIV4S * DIV Ri Ri Ri Ri E E E E E E 97 – 4 97 – 5 97 – 6 97 – 7 9F – 6 9F – 7 Ri *1 1 1 d 1 1 1 – – – – – – – – * DIVU Ri *2 – – – C C – – C – – – – – – – – – – – Operation Rj × Ri → MDH, MDL Rj × Ri → MDH, MDL Rj × Ri → MDL Rj × Ri → MDL – – C C – – C MDL/Ri → MDL, MDL%Ri → MDH – C – C MDL/Ri → MDL, MDL%Ri → MDH Remarks 32-bit × 32-bit = 64-bit Unsigned 16-bit × 16-bit = 32-bit Unsigned Step calculation 32-bit/32-bit = 32-bit Unsigned *1: DIVOS, DIV1 × 32, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes. *2: DIVOU and DIV1 × 32 are generated. A total instruction code length of 66 bytes. 101 MB91101/MB91101A • Shift arithmetic instructions (9 instructions) Mnemonic Type OP Cycle N Z V C Operation Remarks LSL * LSL LSL LSL2 Rj, Ri #u5, Ri #u4, Ri #u4, Ri A C’ C C B6 B4 B4 B5 1 1 1 1 CC CC CC CC – – – – C C C C Ri<<Rj → Ri Ri<<u5 → Ri Ri<<u4 → Ri Ri<<(u4 + 16) → Ri Logical shift LSR * LSR LSR LSR2 Rj, Ri #u5, Ri #u4, Ri #u4, Ri A C’ C C B2 B0 B0 B1 1 1 1 1 CC CC CC CC – – – – C C C C Ri>>Rj → Ri Ri>>u5 → Ri Ri>>u4 → Ri Ri>>(u4 + 16) → Ri Logical shift ASR * ASR ASR ASR2 Rj, Ri #u5, Ri #u4, Ri #u4, Ri A C’ C C BA B8 B8 B9 1 1 1 1 CC CC CC CC – – – – C C C C Ri>>Rj → Ri Ri>>u5 → Ri Ri>>u4 → Ri Ri>>(u4 + 16) → Ri Logical shift • Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer instruction) (3 instructions) Mnemonic Type OP Cycle N Z V C Operation LDI: 32 LDI: 20 #i32, Ri #i20, Ri E C 9F – 8 9B 3 2 – – – – i32 → Ri – – – – i20 → Ri LDI: 8 * LDI #i8, Ri # {i8 | i20 | i32}, Ri *1 B C0 1 – – – – i8 → Ri {i8 | i20 | i32} → Ri Remarks Upper 12 bits are zeroextended Upper 24 bits are zeroextended *1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection. If an immediate value contains relative value or external reference, assembler selects i32. • Memory load instructions (13 instructions) Mnemonic Type OP Cycle N Z V C Operation (Rj) → Ri (R13 + Rj) → Ri (R14 + disp10) → Ri (R15 + udisp6) → Ri (R15) → Ri, R15 + = 4 (R15) → Rs, R15 + = 4 Remarks LD LD LD LD LD LD @Rj, Ri @(R13, Rj), Ri @(R14, disp10), Ri @(R15, udisp6), Ri @R15 +, Ri @R15 +, Rs A A B C E E 04 00 20 03 07 – 0 07 – 8 b b b b b b LD @R15 +, PS E 07 – 9 1+a+b LDUH LDUH LDUH @Rj, Ri @(R13, Rj), Ri @(R14, disp9), Ri A A B 05 01 40 b b b – – – – (Rj) → Ri – – – – (R13 + Rj) → Ri – – – – (R14 + disp9) → Ri Zero-extension Zero-extension Zero-extension LDUB LDUB LDUB @Rj, Ri @(R13, Rj), Ri @(R14, disp8), Ri A A B 06 02 60 b b b – – – – (Rj) → Ri – – – – (R13 + Rj) → Ri – – – – (R14 + disp8) → Ri Zero-extension Zero-extension Zero-extension – – – – – – – – – – – – – – – – – – – – – – – – C C C C (R15) → PS, R15 + = 4 Rs: Special-purpose register Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows: disp8 → o8 = disp8 disp9 → o8 = disp9>>1 Each disp is a code extension. disp10 → o8 = disp10>>2 udisp6 → u4 = udisp6>>2 udisp4 is a 0 extension. 102 MB91101/MB91101A • Memory store instructions (13 instructions) Mnemonic Type OP Cycle N Z V C – – – – – – – – – – – – – – – – – – Operation Ri → (Rj) Ri → (R13 + Rj) Ri → (R14 + disp10) Ri → (R15 + usidp6) R15 – = 4, Ri → (R15) R15 – = 4, Rs → (R15) Remarks ST ST ST ST ST ST Ri, @Rj Ri, @(R13, Rj) Ri, @(R14, disp10) Ri, @(R15, udisp6) Ri, @–R15 Rs, @–R15 A A B C E E 14 10 30 13 17 – 0 17 – 8 a a a a a a – – – – – – Word Word Word ST PS, @–R15 E 17 – 9 a – – – – R15 – = 4, PS → (R15) STH STH STH Ri, @Rj Ri, @(R13, Rj) Ri, @(R14, disp9) A A B 15 11 50 a a a – – – – Ri → (Rj) – – – – Ri → (R13 + Rj) – – – – Ri → (R14 + disp9) Half word Half word Half word STB STB STB Ri, @Rj Ri, @(R13, Rj) Ri, @(R14, disp8) A A B 16 12 70 a a a – – – – Ri → (Rj) – – – – Ri → (R13 + Rj) – – – – Ri → (R14 + disp8) Byte Byte Byte Rs: Special-purpose register Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows: disp8 → o8 = disp8 disp9 → o8 = disp9>>1 Each disp is a code extension. disp10 → o8 = disp10>>2 udisp6 → u4 = udisp6>>2 udisp4 is a 0 extension. • Transfer instructions between registers/special-purpose registers transfer instructions (5 instructions) Mnemonic Type OP Cycle N Z V C Operation MOV Rj, Ri A 8B 1 – – – – Rj → Ri MOV Rs, Ri A B7 1 – – – – Rs → Ri MOV Ri, Rs A B3 1 – – – – Ri → Rs MOV MOV PS, Ri Ri, PS E E 17 – 1 07 – 1 1 c – – – – PS → Ri C C C C Ri → PS Remarks Transfer between general-purpose registers Rs: Special-purpose register Rs: Special-purpose register 103 MB91101/MB91101A • Non-delay normal branch instructions (23 instructions) Mnemonic Type OP Cycle N Z V C Operation JMP @Ri E 97 – 0 2 – – – – Ri → PC CALL label12 F D0 2 CALL @Ri E 97 – 1 2 – – – – PC + 2 → RP, PC + 2 + rel11 × 2 → PC – – – – PC + 2 → RP, Ri → PC E 97 – 2 2 – – – – RP → PC D 1F 3+3a RET INT #u8 Remarks Return – – – – SSP – = 4, PS → (SSP), SSP – = 4, PC + 2 → (SSP), 0 → I flag, 0 → S flag, (TBR + 3FC – u8 × 4) → PC INTE E 9F – 3 3 + 3a – – – – SSP – = 4, PS → (SSP), For emulator SSP – = 4, PC + 2 → (SSP), 0 → S flag, (TBR + 3D8 – u8 × 4) → PC RETI E 97 – 3 2 + 2a C C C C (R15) → PC, R15 – = 4, (R15) → PS, R15 – = 4 BNO BRA BEQ BNE BC BNC BN BP BV BNV BLT BGE BLE BGT BLS BHI label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 D D D D D D D D D D D D D D D D E1 E0 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF 1 2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Non-branch PC + 2 + rel8 × 2 → PC PCif Z = = 1 PCif Z = = 0 PCif C = = 1 PCif C = = 0 PCif N = = 1 PCif N = = 0 PCif V = = 1 PCif V = = 0 PCif V xor N = = 1 PCif V xor N = = 0 PCif (V xor N) or Z = = 1 PCif (V xor N) or Z = = 0 PCif C or Z = = 1 PCif C or Z = = 0 Notes: • “2/1” in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch. • The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows. label9 → rel8 = (label9 – PC – 2)/2 label12 → rel11 = (label12 – PC – 2)/2 • RETI must be operated while S flag = 0. 104 MB91101/MB91101A • Branch instructions with delays (20 instructions) Mnemonic Type OP Cycle N Z V C Operation JMP:D @Ri E 9F – 0 1 – – – – Ri → PC CALL:D label12 F D8 1 CALL:D @Ri E 9F – 1 1 – – – – PC + 4 → RP, PC + 2 + rel11 × 2 → PC – – – – PC + 4 → RP, Ri → PC E 9F – 2 1 – – – – RP → PC D D D D D D D D D D D D D D D D F1 F0 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – – – – – – – – – – – – – – RET:D BNO:D BRA:D BEQ:D BNE:D BC:D BNC:D BN:D BP:D BV:D BNV:D BLT:D BGE:D BLE:D BGT:D BLS:D BHI:D label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 label9 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Remarks Return Non-branch PC + 2 + rel8 × 2 → PC PCif Z = = 1 PCif Z = = 0 PCif C = = 1 PCif C = = 0 PCif N = = 1 PCif N = = 0 PCif V = = 1 PCif V = = 0 PCif V xor N = = 1 PCif V xor N = = 0 PCif (V xor N) or Z = = 1 PCif (V xor N) or Z = = 0 PCif C or Z = = 1 PCif C or Z = = 0 Notes: • The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows. label9 → rel8 = (label9 – PC – 2)/2 label12 → rel11 = (label12 – PC – 2)/2 • Delayed branch operation always executes next instruction (delay slot) before making a branch. • Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other instruction is stored, this device may operate other operation than defined. The instruction described “1” in the other cycle column than branch instruction. The instruction described “a”, “b”, “c” or “d” in the cycle column. 105 MB91101/MB91101A • Direct addressing instructions Mnemonic Type OP Cycle N Z V C Operation Remarks DMOV DMOV DMOV DMOV DMOV DMOV @dir10, R13, @dir10, @R13+, @dir10, @R15+, R13 @dir10 @R13+ @dir10 @–R15 @dir10 D D D D D D 08 18 0C 1C 0B 1B b a 2a 2a 2a 2a – – – – – – – – – – – – – – – – – – – – – – – – (dir10) → R13 R13 → (dir10) (dir10) → (R13), R13 + = 4 (R13) → (dir10), R13 + = 4 R15 – = 4, (dir10) → (R15) (R15) → (dir10), R15 + = 4 Word Word Word Word Word Word DMOVH DMOVH DMOVH DMOVH @dir9, R13, @dir9, @R13+, R13 @dir9 @R13+ @dir9 D D D D 09 19 0D 1D b a 2a 2a – – – – – – – – – – – – – – – – (dir9) → R13 R13 → (dir9) (dir9) → (R13), R13 + = 2 (R13) → (dir9), R13 + = 2 Half word Half word Half word Half word DMOVB DMOVB DMOVB DMOVB @dir8, R13, @dir8, @R13+, R13 @dir8 @R13+ @dir8 D D D D 0A 1A 0E 1E b a 2a 2a – – – – – – – – – – – – – – – – (dir8) → R13 R13 → (dir8) (dir8) → (R13), R13 + + (R13) → (dir8), R13 + + Byte Byte Byte Byte Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from disp8 to disp10 are as follows: disp8 → dir + disp8 disp9 → dir = disp9>>1 Each disp is a code extension disp10 → dir = disp10>>2 • Resource instructions (2 instructions) Mnemonic Type OP Cycle N Z V C Operation Remarks LDRES @Ri+, #u4 C BC a – – – – (Ri) → u4 resource Ri + = 4 u4: Channel number STRES #u4, @Ri+ C BD a – – – – u4 resource → (Ri) Ri + = 4 u4: Channel number • Co-processor instructions (4 instructions) Mnemonic COPOP COPLD COPST COPSV 106 #u4, #CC, CRj, CRi #u4, #CC, Rj, CRi #u4, #CC, CRj, Ri #u4, #CC, CRj, Ri Type OP E E E E 9F – C 9F – D 9F – E 9F – F Cycle N Z V C 2+a 1 + 2a 1 + 2a 1 + 2a – – – – – – – – – – – – – – – – Operation Calculation Rj → CRi CRj → Ri CRj → Ri Remarks No error traps MB91101/MB91101A • Other instructions (16 instructions) Mnemonic Type OP NOP E 9F – A 1 – – – – No changes ANDCCR #u8 ORCCR #u8 D D 83 93 c c C C C C CCR and u8 → CCR C C C C CCR or u8 → CCR STILM #u8 D 87 1 – – – – i8 → ILM Set ILM immediate value ADDSP #s10 D A3 1 – – – – R15 + = s10 ADD SP instruction EXTSB EXTUB EXTSH EXTUH Ri Ri Ri Ri E E E E 97 – 8 97 – 9 97 – A 97 – B 1 1 1 1 – – – – LDM0 (reglist) D 8C *4 Load-multi R0 to R7 LDM1 (reglist) D 8D *4 * LDM (reglist) – – – – (R15) → reglist, R15 increment – – – – (R15) → reglist, R15 increment – – – – (R15 + +) → reglist, STM0 (reglist) D 8E *6 Store-multi R0 to R7 STM1 (reglist) D 8F *6 * STM2 (reglist) *5 – – – – R15 decrement, reglist → (R15) – – – – R15 decrement, reglist → (R15) – – – – reglist → (R15 + +) ENTER #u10 *2 LEAVE XCHB @Rj, Ri *1 *3 Cycle N Z V C – – – – – – – – – – – – – – Operation Remarks Sign extension 8 → 32 bits Zero extension 8 → 32 bits Sign extension 16 → 32 bits Zero extension 16 → 32 bits Load-multi R8 to R15 Load-multi R0 to R15 Store-multi R8 to R15 Store-multi R0 to R15 D 0F 1+a – – – – R14 → (R15 – 4), R15 – 4 → R14, R15 – u10 → R15 Entrance processing of function E 9F – 9 b – – – – R14 + 4 → R15, (R15 – 4) → R14 Exit processing of function A 8A 2a – – – – Ri → TEMP, (Rj) → Ri, TEMP → (Rj) For SEMAFO management Byte data *1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler description s10 is as follows. s10 → s8 = s10>>2 *2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler description u10 is as follows. u10 → u8 = u10>>2 *3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified, assembler generates LDM1. Both LDM0 and LDM1 may be generated. *4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following calculation; a × (n – 1) + b + 1 when “n” is number of registers specified. *5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified, assembler generates STM1. Both STM0 and STM1 may be generated. *6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following calculation; a × n + 1 when “n” is number of registers specified. 107 MB91101/MB91101A • 20-bit normal branch macro instructions Mnemonic Operation Remarks * CALL20 label20, Ri Next instruction address → RP, label20 → PC Ri: Temporary register *1 * BRA20 * BEQ20 * BNE20 * BC20 * BNC20 * BN20 * BP20 * BV20 * BNV20 * BLT20 * BGE20 * BLE20 * BGT20 * BLS20 * BHI20 label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20 → PC if (Z = = 1) then label20 → PC ifs/Z = = 0 ifs/C = = 1 ifs/C = = 0 ifs/N = = 1 ifs/N = = 0 ifs/V = = 1 ifs/V = = 0 ifs/V xor N = = 1 ifs/V xor N = = 0 ifs/(V xor N) or Z = = 1 ifs/(V xor N) or Z = = 0 ifs/C or Z = = 1 ifs/C or Z = = 0 Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register *2 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *1: CALL20 (1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows; CALL label12 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:20 #label20, Ri CALL @Ri *2: BRA20 (1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; BRA label9 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:20 #label20, Ri JMP @Ri *3: Bcc20 (BEQ20 to BHI20) (1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; Bcc label9 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; Bxcc false xcc is a revolt condition of cc LDI:20 #label20, Ri JMP @Ri false: 108 MB91101/MB91101A • 20-bit delayed branch macro instructions Mnemonic Operation Remarks * CALL20:D label20, Ri Next instruction address + 2 → RP, label20 → PC Ri: Temporary register *1 * BRA20:D * BEQ20:D * BNE20:D * BC20:D * BNC20:D * BN20:D * BP20:D * BV20:D * BNV20:D * BLT20:D * BGE20:D * BLE20:D * BGT20:D * BLS20:D * BHI20:D label20 → PC if (Z = = 1) then label20 → PC ifs/Z = = 0 ifs/C = = 1 ifs/C = = 0 ifs/N = = 1 ifs/N = = 0 ifs/V = = 1 ifs/V = = 0 ifs/V xor N = = 1 ifs/V xor N = = 0 ifs/(V xor N) or Z = = 1 ifs/(V xor N) or Z = = 0 ifs/C or Z = = 1 ifs/C or Z = = 0 Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register *2 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri label20, Ri *1: CALL20:D (1) If label20 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows; CALL:D label12 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:20 #label20, Ri CALL:D @Ri *2: BRA20:D (1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; BRA:D label9 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:20 #label20, Ri JMP:D @Ri *3: Bcc20:D (BEQ20:D to BHI20:D) (1) If label20 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; Bcc:D label9 (2) If label20 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; Bxcc false xcc is a revolt condition of cc LDI:20 #label20, Ri JMP:D @Ri false: 109 MB91101/MB91101A • 32-bit normal macro branch instructions Mnemonic Operation Remarks * CALL32 label32, Ri Next instruction address → RP, label32 → PC Ri: Temporary register *1 * BRA32 * BEQ32 * BNE32 * BC32 * BNC32 * BN32 * BP32 * BV32 * BNV32 * BLT32 * BGE32 * BLE32 * BGT32 * BLS32 * BHI32 label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32 → PC if (Z = = 1) then label32 → PC ifs/Z = = 0 ifs/C = = 1 ifs/C = = 0 ifs/N = = 1 ifs/N = = 0 ifs/V = = 1 ifs/V = = 0 ifs/V xor N = = 1 ifs/V xor N = = 0 ifs/(V xor N) or Z = = 1 ifs/(V xor N) or Z = = 0 ifs/C or Z = = 1 ifs/C or Z = = 0 Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register *2 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *1: CALL32 (1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows; CALL label12 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:32 #label32, Ri CALL @Ri *2: BRA32 (1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; BRA label9 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:32 #label32, Ri JMP @Ri *3: Bcc32 (BEQ32 to BHI32) (1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; Bcc label9 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; Bxcc false xcc is a revolt condition of cc LDI:32 #label32, Ri JMP @Ri false: 110 MB91101/MB91101A • 32-bit delayed macro branch instructions Mnemonic Operation Remarks * CALL32:D label32, Ri Next instruction address + 2 → RP, label32 → PC Ri: Temporary register *1 * BRA32:D * BEQ32:D * BNE32:D * BC32:D * BNC32:D * BN32:D * BP32:D * BV32:D * BNV32:D * BLT32:D * BGE32:D * BLE32:D * BGT32:D * BLS32:D * BHI32:D label32 → PC if (Z = = 1) then label32 → PC ifs/Z = = 0 ifs/C = = 1 ifs/C = = 0 ifs/N = = 1 ifs/N = = 0 ifs/V = = 1 ifs/V = = 0 ifs/V xor N = = 1 ifs/V xor N = = 0 ifs/(V xor N) or Z = = 1 ifs/(V xor N) or Z = = 0 ifs/C or Z = = 1 ifs/C or Z = = 0 Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register Ri: Temporary register *2 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri label32, Ri *1: CALL32:D (1) If label32 – PC – 2 is between –0x800 and +0x7fe, instruction is generated as follows; CALL:D label12 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:32 #label32, Ri CALL:D @Ri *2: BRA32:D (1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; BRA:D label9 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; LDI:32 #label32, Ri JMP:D @Ri *3: Bcc32:D (BEQ32:D to BHI32:D) (1) If label32 – PC – 2 is between –0x100 and +0xfe, instruction is generated as follows; Bcc:D label9 (2) If label32 – PC – 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows; Bxcc false xcc is a revolt condition of cc LDI:32 #label32, Ri JMP:D @Ri false: 111 MB91101/MB91101A ■ ORDERING INFORMATION Part number 112 Package MB91101APFV 100-pin Plastic LQFP (FPT-100P-M05) MB91101APF 100-pin Plastic QFP (FPT-100P-M06) Remarks MB91101/MB91101A ■ PACKAGE DIMENSIONS 100-pin Plastic LQFP (FPT-100P-M05) +0.20 16.00±0.20(.630±.008)SQ 75 1.50 –0.10 +.008 14.00±0.10(.551±.004)SQ 76 (Mouting height) .059 –.004 51 50 12.00 (.472) REF 15.00 (.591) NOM Details of "A" part 0.15(.006) INDEX 100 0.15(.006) 26 0.15(.006)MAX LEAD No. 1 "B" 25 0.40(.016)MAX "A" 0.50(.0197)TYP +0.08 0.18 –0.03 +.003 .007 –.001 +0.05 0.08(.003) M 0.127 –0.02 +.002 Details of "B" part .005 –.001 0.10±0.10 (STAND OFF) (.004±.004) 0.10(.004) C 1995 FUJITSU LIMITED F100007S-2C-3 0.50±0.20(.020±.008) 0~10° Dimensions in mm (inches) (Continued) 113 MB91101/MB91101A (Continued) 100-pin Plastic QFP (FPT-100P-M06) 23.90±0.40(.941±.016) 3.35(.132)MAX (Mounting height) 0.05(.002)MIN (STAND OFF) 20.00±0.20(.787±.008) 80 51 81 50 14.00±0.20 (.551±.008) 12.35(.486) REF 17.90±0.40 (.705±.016) 16.30±0.40 (.642±.016) INDEX 31 100 "A" LEAD No. 1 30 0.65(.0256)TYP 0.30±0.10 (.012±.004) 0.13(.005) 0.15±0.05(.006±.002) M Details of "A" part 0.25(.010) Details of "B" part "B" 0.10(.004) 18.85(.742)REF 22.30±0.40(.878±.016) C 1994 FUJITSU LIMITED F100008-3C-2 0.30(.012) 0.18(.007)MAX 0.53(.021)MAX 0 10° 0.80±0.20 (.031±.008) Dimensions in mm (inches) Note: The design may be modified changed without notice, contact to Fujitsu sales division when using the device. 114 MB91101/MB91101A FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 http://www.fmap.com.sg/ All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F9907 FUJITSU LIMITED Printed in Japan 115