FUJITSU SEMICONDUCTOR DATA SHEET DS07-12515-2E 8-bit Proprietary Microcontroller CMOS F2MC-8L MB89630 Series MB89635/T635/636/637/T637/P637/W637/PV630 ■ DESCRIPTION The MB89630 series has been developed as a general-purpose version of the F2MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface, an A/D converter, an external interrupt, and a watch prescaler. *: F2MC stands for FUJITSU Flexible Microcontroller. ■ FEATURES • High-speed operating capability at low voltage • Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V • F2MC-8L family CPU core Instruction set optimized for controllers Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc. • Five types of timers 8-bit PWM timer: 2 channels (Also usable as a reload timer) 8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.) 16-bit timer/counter 21-bit time-base timer • UART CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits) • Serial interface Switchable transfer direction to allows communication with various equipment. • 10-bit A/D converter Activation by an external input capable (Continued) MB89630 Series (Continued) • External interrupt: 4 channels Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function). • Low-power consumption modes Stop mode (Oscillation stops to minimize the current consumption.) Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.) Subclock mode Watch mode • Bus interface function With hold and ready function ■ PACKAGE 2 64-pin Plastic SH-DIP 64-pin Plastic QFP 64-pin Plastic QFP (DIP-64P-M01) (FPT-64P-M06) (FPT-64P-M09) 64-pin Ceramic SH-DIP 64-pin Ceramic MDIP 64-pin Ceramic MQFP (DIP-64C-A06) (MDP-64C-P02) (MQP-64C-P01) MB89630 Series ■ PRODUCT LINEUP Part number Parameter MB89635 MB89636 MB89637 MB89T635 MB89T637 MB89P637 MB89W637 MB89PV630 Classification Mass production products (mask ROM products) ROM size RAM size CPU functions Ports 16 K × 8 bits 24 K × 8 bits 32 K × 8 bits (internal mask ROM) (internal mask ROM) (internal mask ROM) 512 × 8 bits 768 × 8 bits 1024 × 8 bits External ROM products Fixed to external ROM 512 × 8 bits One-time PROM product EPROM product 32 K × 8 bits (Internal PROM, programming with general-purpose EPROM programmer) Piggyback/ evaluation product (for evaluation and development) 32 K × 8 bits (external ROM) 1024 × 8 bits Number of instructionns: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 to 6.4 µs/10 MHz, 61 µs/32.768 kHz 3.6 to 57.6 µs/10 MHz, 562.5 µs/32.768 kHz Input ports: Output ports (N-ch open-drain): I/O ports (N-ch open-drain): Output ports (CMOS): I/O ports (CMOS): Total: 5 (All also serve as peripherals.) 8 (All also serve as peripherals.) 4 (All also serve as peripherals.) 8 (All also serve as bus control.) 28 (27 ports also serve as bus pins and peripherals.) 53 Clock timer 21 bits × 1 (in main clock)/15 bits × 1 (at 32.768 kHz) 8-bit PWM timer 8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 µs to 3.3 ms) × 2 channels 7/8-bit resolution PWM operation (conversion cycle: 51.2 µs to 839 ms) × 2 channels 8-bit pulse width count timer 8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to 12.8 µs) 8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to 12.8 µs) 8-bit pulse width measurement operation (continuous measurement capable, measurement of “H” pulse width/ “L” pulse width/ from ↑ to ↑/from ↓ to ↓ capable) 16-bit timer/ counter 16-bit timer operation (operating clock cycle: 0.4 µs) 16-bit event counter operation (rising edge/falling edge/both edge selectability) 8-bit serial I/O UART 10-bit A/D converter 8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs) Switching two I/O systems by software capable Transfer data length (6, 7, and 8 bits) Transfer rate (300 to 62500 bps. at 10 MHz osciliation) 10-bit resolution × 8 channels A/D conversion mode (conversion time: 13.2 µs) Sense mode (conversion time: 7.2 µs) Continuous activation by an external activation or an internal timer capable (Continued) 3 MB89630 Series (Continued) Part number MB89635 Parameter MB89636 MB89637 MB89T635 MB89T637 MB89P637 MB89W637 MB89PV630 External interrupt input 4 independent channels (edge selection, interrupt vector, source flag). Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.) Standby mode Sleep mode, stop mode, watch mode, and subclock mode Process CMOS Operating voltage*1 2.2 V to 6.0 V 2.7 V to 6.0 V EPROM for use MBM27C256A-20 *1: Varies with conditions such as the operating frequency. (See section “■ Electrical Characteristics.”) In the case of the MB89PV630, the voltage varies with the restrictions of the EPROM for use. ■ PACKAGE AND CORRESPONDING PRODUCTS MB89635 MB89T635 Package MB89636 MB89637 MB89T637 MB89P637 DIP-64P-M01 DIP-64C-A06 × × MB89PV630 × × × × × × ×* ×* ×* FPT-64P-M06 FPT-64P-M09 MB89W637 MDP-64C-P02 × × × × MQP-64C-P01 × × × × : Available ×: Not available * : To convert pin pitches, an adapter socket (manufacturer: Sun Hayato Co., Ltd.) is available. 64SD-64QF2-8L: For conversion from (DIP-64P-M01, DIP-64C-A06, or MDP-64C-P02) to FPT-64P-M09 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: For more information about each package, see section “■ Package Dimensions.” 4 MB89630 Series ■ DIFFERENCES AMONG PRODUCTS 1. Memory Size Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points: On the MB89P637/W637, the program area starts from address 8007H but on the MB89PV630 and MB89637 starts from 8000H. (On the MB89P637/W637, addresses 8000H to 8006H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV630/MB89637, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P637/ W637.) • The stack area, etc., is set at the upper limit of the RAM. • The external area is used. 2. Current Consumption • In the case of the MB89PV630, add the current consumed by the EPROM which connected to the top socket. • When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is the same. (For more information, see sections “■ Electrical Characteristics” and “■ Example Characteristics.”) 3. Mask Options Functions that can be selected as options and how to designate these options vary by the product. Before using options check section “■ Mask Options.” Take particular care on the following points: • A pull-up resistor cannot be set for P50 to P53 on the MB89P637 and MB89W637. • Options are fixed on the MB89PV630, MB89T635, and MB89T637. ■ CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES • The MB89630R series is the reduction version of the MB89630 series. For their differences, refer to the MB89630R series data sheet. • The the MB89630 and MB89630R series consist of the following products: MB89630 series MB89635 MB89T635 MB89636 MB89637 MB89630R series MB89635R MB89T635R MB89636R MB89T637R MB89P637 MB89W637 MB89PV630 5 MB89630 Series ■ PIN ASSIGNMENT (Top view) P31/UO1 P30/UCK1 P43/PTO1 P42/UI2 P41/UO2 P40/UCK2 P53/PTO2 P52 P51/BZ P50/ADST P60/AN0 P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 P66/AN6 P67/AN7 AVCC AVR AVSS P74/EC P73/INT3 P72/INT2 P71/INT1/X0A* P70/INT0/X1A* RST MOD0 MOD1 X0 X1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VPP A12 A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS 65 66 67 68 69 70 71 72 73 74 75 76 77 78 64 63 62 92 61 91 60 90 59 89 58 88 57 87 56 86 55 85 54 84 53 83 52 82 51 81 50 80 49 79 48 47 46 45 44 Each pin inside 43 the dashed line is 42 for MB89PV630 only. 41 40 39 38 37 36 35 34 33 (DIP-64P-M01) (DIP-64C-A06) (MDP-64C-P02) VCC A14 A13 A8 A9 A11 OE A10 CE O8 O7 O6 O5 O4 VCC P32/UI1 P33/SCK1 P34/SO1 P35/SI1 P36/PWC P37/WTO VSS P00/AD0 P01/AD1 P02/AD2 P03/AD3 P04/AD4 P05/AD5 P06/AD6 P07/AD7 P10/A08 P11/A09 P12/A10 P13/A11 P14/A12 P15/A13 P16/A14 P17/A15 P20/BUFC P21/HAK P22/HRQ P23/RDY P24/CLK P25/WR P26/RD P27/ALE *: When the dual-clock system is selected. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 P52 P53/PTO2 P40/UCK2 P41/UO2 P42/UI2 P43/PTO1 P30/UCK1 P31/UO1 VCC P32/UI1 P33/SCK1 P34/SO1 P35/SI1 P36/PWC P37/WTO VSS (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P00/AD0 P01/AD1 P02/AD2 P03/AD3 P04/AD4 P05/AD5 P06/AD6 P07/AD7 P10/A08 P11/A09 P12/A10 P13/A11 P14/A12 P15/A13 P16/A14 P17/A15 P71/INT1/X0A* P70/INT0/X1A* RST MOD0 MOD1 X0 X1 VSS P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P51/BZ P50/ADST P60/AN0 P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 P66/AN6 P67/AN7 AVCC AVR AVSS P74/EC P73/INT3 P72/INT2 (FPT-64P-M09) 6 *: When the dual-clock system is selected. MB89630 Series 64 63 62 61 60 59 58 57 56 55 54 53 52 P53/PTO2 P40/UCK2 P41/UO2 P42/UI2 P43/PTO1 P30/UCK1 P31/UO1 VCC P32/UI1 P33/SCK1 P34/SO1 P35/SI1 P36/PWC (Top view) 1 2 3 4 5 6 85 77 7 86 76 8 87 75 9 88 74 10 89 73 11 90 72 12 91 71 13 92 70 14 93 69 15 16 17 18 19 Each pin inside the dashed line is for MB89PV630 only. 94 95 96 65 66 67 68 84 83 82 81 80 79 78 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P37/WTO VSS P00/AD0 P01/AD1 P02/AD2 P03/AD3 P04/AD4 P05/AD5 P06/AD6 P07/AD7 P10/A08 P11/A09 P12/A10 P13/A11 P14/A12 P15/A13 P16/A14 P17/A15 P20/BUFC RST MOD0 MOD1 X0 X1 VSS P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK 20 21 22 23 24 25 26 27 28 29 30 31 32 P52 P51/BZ P50/ADST P60/AN0 P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 P66/AN6 P67/AN7 AVCC AVR AVSS P74/EC P73/INT3 P72/INT2 P71/INT1/X0A* P70/INT0/X1A* (FPT-64P-M06) (MQP-64C-P01) *: When the dual-clock system is selected. • Pin assignment on package top (MB89PV630 only) Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name 65 N.C. 73 A2 81 N.C. 89 OE 66 VPP 74 A1 82 O4 90 N.C. 67 A12 75 A0 83 O5 91 A11 68 A7 76 N.C. 84 O6 92 A9 69 A6 77 O1 85 O7 93 A8 70 A5 78 O2 86 O8 94 A13 71 A4 79 O3 87 CE 95 A14 72 A3 80 VSS 88 A10 96 VCC N.C.: Internally connected. Do not use. 7 MB89630 Series ■ PIN DESCRIPTION Pin no. QFP2*3 QFP1*4 MQFP*5 30 22 23 X0 31 23 24 X1 28 20 21 MOD0 29 21 22 MOD1 27 19 20 RST 56 to 49 48 to 41 48 to 41 40 to 33 40 32 33 39 31 38 Circuit type Function A Main clock crystal oscillator pins D Operating mode selection pins Connect directly to VCC or VSS C Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. “L” is output from this pin by an internal reset source. The internal circuit is initialized by the input of “L”. 49 to 42 P00/AD0 to P07/AD7 F General-purpose I/O ports When an external bus is used, these ports function as the multiplex pins of the lower address output and the data I/O. 41 to 34 P10/A08 to P17/A157 F General-purpose I/O ports When an external bus is used, these ports function as an upper address output. P20/BUFC H General-purpose output-only port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR. 32 P21/HAK H General-purpose output-only port When an external bus is used, this port can also be used as a hold acknowledge by setting the BCTR. 30 31 P22/HRQ F General-purpose output-only port When an external bus is used, this port can also be used as a hold request input by setting the BCTR. 37 29 30 P23/RDY F General-purpose output-only port When an external bus is used, this port functions as a ready input. 36 28 29 P24/CLK H General-purpose output-only port When an external bus is used, this port functions as a clock output. 35 27 28 P25/WR H General-purpose output-only port When an external bus is used, this port functions as a write signal output. 34 26 27 P26/RD H General-purpose output-only port When an external bus is used, this port functions as a read signal output. *1: DIP-64P-M01, DIP-64C-A06 *2: MDP-64C-P02 *3: FPT-64P-M09 8 Pin name SH-DIP*1 MDIP*2 *4: FPT-64P-M06 *5: MQP-M64C-P01 (Continued) MB89630 Series (Continued) Pin no. SH-DIP MDIP*2 *1 QFP2*3 QFP1*4 MQFP*5 Pin name Circuit type Function 33 25 26 P27/ALE H General-purpose output-only port When an external bus is used, this port functions as an address latch signal output. 2 58 59 P30/UCK1 G General-purpose I/O port Also serves as the clock I/O 1 for the UART. This port is a hysteresis input type. 1 57 58 P31/UO1 F General-purpose I/O port Also serves as the data output 1 for the UART. 63 55 56 P32/UI1 G General-purpose I/O port Also serves as the data input 1 for the UART. This port is a hysteresis input type. 62 54 55 P33/SCK1 G General-purpose I/O port Also serves as the data input for the 8-bit serial I/O. This port is a hysteresis input type. 61 53 54 P34/SO1 F General-purpose I/O port Also serves as the data output for the 8-bit serial I/O. 60 52 53 P35/SI1 G General-purpose I/O port Also serves as the data input for the 8-bit serial I/O. This port is a hysteresis input type. 59 51 52 P36/PWC G General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width counter. This port is a hysteresis input type. 58 50 51 P37/WTO F General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width counter. 6 62 63 P40/UCK2 G General-purpose I/O port Also serves as the clock I/O 2 for the UART. This port is a hysteresis input type. 5 61 62 P41/UO2 F General-purpose I/O port Also serves as the data output 2 for the UART. 4 60 61 P42/UI2 G General-purpose I/O port Also serves as the data input 2 for the UART. This port is a hysteresis input type. 3 59 60 P43/PTO1 F General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. 10 2 3 P50/ADST K General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type. 9 1 2 P51/BZ J General-purpose I/O port Also serves as a buzzer output. *1: DIP-64P-M01, DIP-64C-A06 *2: MDP-64C-P02 *3: FPT-64P-M09 *4: FPT-64P-M06 *5: MQP-M64C-P01 (Continued) 9 MB89630 Series (Continued) Pin no. Function 8 64 1 P52 J General-purpose I/O port 7 63 64 P53/PTO2 J General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. 11 to 18 3 to 10 4 to 11 P60/AN0 to P67/AN7 I N-ch open-drain output-only ports Also serve as an A/D converter analog input. 26, 25 18, 17 19, 18 P70/INT0/X1A, P71/INT1/X0A 24, 23 16, 15 17, 16 P72/INT2, P73/INT3 E Input-only ports Also serve as an external interrupt input. These ports are a hysteresis input type. 22 14 15 P74/EC E General-purpose input port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type. 64 56 57 VCC — Power supply pin 32, 57 24,49 25, 50 VSS — Power supply (GND) pin 19 11 12 AVCC — A/D converter power supply pin 20 12 13 AVR — A/D converter reference voltage input pin 21 13 14 AVSS — A/D converter power supply pin Use this pin at the same voltage as VSS. *1: DIP-64P-M01, DIP-64C-A06 *2: MDP-64C-P02 *3: FPT-64P-M09 10 Circuit type QFP2 *3 QFP1*4 MQFP*5 Pin name SH-DIP*1 MDIP*2 B/E *4: FPT-64P-M06 *5: MQP-M64C-P01 Input-only ports These ports are a hysteresis input type. Also serve as an external interrupt input (at singleclock operation). Subclock crystal oscillator pins (at dual-clock operation) MB89630 Series • External EPROM pins (MB89PV630 only) Pin no. Pin name I/O Function MDIP MQFP 65 66 VPP O “H” level output pin 66 67 68 69 70 71 72 73 74 67 68 69 70 71 72 73 74 75 A12 A7 A6 A5 A4 A3 A2 A1 A0 O Address output pins 75 76 77 77 78 79 O1 O2 O3 I Data input pins 78 80 VSS O Power supply (GND) pin 79 80 81 82 83 82 83 84 85 86 O4 O5 O6 O7 O8 I Data input pins 84 87 CE O ROM chip enable pin Outputs “H” during standby. 85 88 A10 O Address output pin 86 89 OE O ROM output enable pin Outputs “L” at all times. 87 88 89 91 92 93 A11 A9 A8 O Address output pins 90 94 A13 O 91 95 A14 O 92 96 VCC O EPROM power supply pin — 65 76 81 90 N.C. — Internally connected pins Be sure to leave them open. 11 MB89630 Series ■ I/O CIRCUIT TYPE Type A Circuit Remarks • Crystal or ceramic oscillation type (main clock) External clock input selection versions of MB89PV630, MB89P637, MB89W637, MB89635, MB89T635, MB89636, MB89637, and MB89T637 At an oscillation feedback resistor of approximately 1 MΩ/5 V X1 X0 Standby control signal • Crystal or ceramic oscillation type (main clock) Oscillation selection versions of MB89PV630, MB89P637, MB89W637, MB89635, MB89T635, MB89636, MB89637, and MB89T637 At an oscillation feedback resistor of approximately 1 MΩ/5 V X1 X0 Standby control signal B • Crystal or ceramic oscillation type (subclock) MB89PV630, MB89P637, MB89W637, MB89635, MB89636, and MB89637 with dual-clock system At an oscillation feedback resistor of approximately 4.5 MΩ/5 V X1A X0A Standby control signal C • At an output pull-up resistor (P-ch) of approximately 50 kΩ/5 V • Hysteresis input R P-ch N-ch D E • Hysteresis input R • Pull-up resistor optional (except P70 and P71) F • CMOS output • CMOS input R P-ch P-ch N-ch • Pull-up resistor optional (except P22 and P23) (Continued) 12 MB89630 Series (Continued) Type Circuit Remarks G • CMOS output • Hysteresis input R P-ch P-ch N-ch • Pull-up resistor optional H • CMOS output P-ch N-ch I • Analog input N-ch Analog input J • CMOS input R P-ch N-ch • Pull-up resistor optional K • Hysteresis input R P-ch N-ch • Pull-up resistor optional 13 MB89630 Series ■ HANDLING DEVICES 1. Preventing Latchup Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off. 2. Treatment of Unused Input Pins Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor. 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use. 4. Treatment of N.C. Pins Be sure to leave (internally connected) N.C. pins open. 5. Power Supply Voltage Fluctuations Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched. 6. Precautions when Using an External Clock Even when an external clock is used, oscillation stabilization time is required for power-on reset (option selection) and wake-up from stop mode. 14 MB89630 Series ■ PROGRAMMING TO THE EPROM ON THE MB89P637 The MB89P637 is an OTPROM version of the MB89630 series. 1. Features • 32-Kbytes PROM on chip • Options can be set using the EPROM programmer. • Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer) 2. Memory Space Memory space in each mode is illustrated below. EPROM mode (Corresponding addresses on the EPROM programmer) Normal operating mode 0000H I/O 0080H 0100H Register RAM 0200H 0480H External area 0000H 8000H Option setting area Option setting area 0007H 8007H Program area (EPROM) 32 KB PROM 32 KB FFFFH 7FFFH 3. Programming to the EPPROM In EPROM mode, the MB89P637 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. However, the electronic signature mode cannot be used. When the operating ROM area for a single chip is 32 Kbytes (8007H to FFFFH) the EPROM can be programmed as follows: 15 MB89630 Series • Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0007H to 7FFFH. (Note that addresses 8000H to FFFFH in the operating mode assign to 0000H to 7FFFH in EPROM mode). (3) Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see “8. OTPROM Option Bit Map.”). (4) Program with the EPROM programmer. 4. Recommended Screening Conditions High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program. Program, verify Aging +150°C, 48 Hrs Data verification Assembly 5. Programming Yield All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times. 6. Erasure In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure. It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance. 16 MB89630 Series 7. EPROM Programmer Socket Adapter Package Compatible socket adapter DIP-64C-M01 ROM-64SD-28DP-8L FPT-64P-M06 ROM-64QF-28DP-8L FPT-64P-M09 ROM-64QF2-28DP-8L Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 8. OTPROM Option Bit Map Bit 7 0000H 0001H 0002H 0003H 0004H 0005H 0006H Bit 6 Bit 5 Bit 4 Vacancy Vacancy Vacancy Single/dualclock system Readable Readable Readable 1: Dual clock and writable and writable and writable 0: Single clock Bit 3 Reset pin output 1: Yes 0: No P03 Pull-up 1: No 0: Yes P13 Pull-up 1: No 0: Yes P33 Pull-up 1: No 0: Yes P43 Vacancy Pull-up Readable and 1: No Readable Readable Readable 0: Yes and writable and writable and writable writable Bit 2 Power-on reset 1: Yes 0: No P02 Pull-up 1: No 0: Yes P12 Pull-up 1: No 0: Yes P32 Pull-up 1: No 0: Yes P42 Pull-up 1: No 0: Yes Bit 1 Oscillation stabilization (F/CH) 11:218 10:214 P01 Pull-up 1: No 0: Yes P11 Pull-up 1: No 0: Yes P31 Pull-up 1: No 0: Yes P41 Pull-up 1: No 0: Yes 01:217 00:24 P00 Pull-up 1: No 0: Yes P10 Pull-up 1: No 0: Yes P30 Pull-up 1: No 0: Yes P40 Pull-up 1: No 0: Yes Vacancy Vacancy Readable and writable Reserved bit Readable and writable P07 Pull-up 1: No 0: Yes P17 Pull-up 1: No 0: Yes P37 Pull-up 1: No 0: Yes Vacancy P06 Pull-up 1: No 0: Yes P16 Pull-up 1: No 0: Yes P36 Pull-up 1: No 0: Yes Vacancy P05 Pull-up 1: No 0: Yes P15 Pull-up 1: No 0: Yes P35 Pull-up 1: No 0: Yes Vacancy P04 Pull-up 1: No 0: Yes P14 Pull-up 1: No 0: Yes P34 Pull-up 1: No 0: Yes Vacancy Vacancy Vacancy Readable and writable Vacancy Readable and writable Vacancy Readable and writable Vacancy P74 Pull-up 1: No 0: Yes P73 Pull-up 1: No 0: Yes P72 Pull-up 1: No 0: Yes Vacancy Vacancy Vacancy Readable and writable Vacancy Readable and writable Readable and writable Readable and writable Readable and writable Readable and writable Readable and Readable and writable writable Bit 0 Notes: • Set each bit to 1 to erase. • Do not write 0 to the blank bit. The read value of the vacant bit is 1, unless 0 is written to it. • Always write 1 to the reserved bit. 17 MB89630 Series ■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE 1. EPROM for Use MBM27C256A-20TV, MBM27C256A-20CZ 2. Programming Socket Adapter To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package Adapter socket part number LCC-32 (Rectangle) ROM-32LC-28DP-YG LCC-32(Square) ROM-32LC-28DP-S Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 3. Memory Space Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below. Address Single chip Corresponding addresses on the EPROM programmer 0000H I/O 0080H RAM 0480H Not available 8000H 0000H Not available Not available 8006H 0006H PROM 32 KB FFFFH EPROM 32 KB 7FFFH 4. Programming to the EPROM (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0006H to 7FFFH. (3) Program to 0000H to 7FFFH with the EPROM programmer. 18 MB89630 Series ■ BLOCK DIAGRAM X0A X1A Subclock oscillator (32.768 kHz) 21-bit time-base timer Clock controller CMOS I/O port Reset circuit (Watchdog timer) 8-bit PWC timer Watch prescaler 8-bit serial I/O R ST 8 P32/UI1 P31/UO1 P30/UCK1 UART P40/UCK2 P41/UO2 P42/UI2 MOD0 MOD1 External bus interface UART baud rate generator CMOS I/O port Port 2 P27 /ALE P26 /RD P25 /W R P24 /CLK P23 /RDY P22 /HRQ P21 /HAK P20 /BUFC P 3 3 / S C K1 Port 4 P1 0/A0 8 to P17 /A15 CMOS I/O port P35/SI1 P34/SO1 P43/PTO1 N-ch open-drain I/O port CMOS output port 8-bit PWM timer P53/PTO2 P52 Port 5 8 Port0 and port1 P0 0/AD0 to P0 7/AD 7 P 3 7 / WT O P 3 6 / P WC Port 3 Main clock oscillator Internal bus X0 X1 Buzzer output P51/BZ RAM 3 10-bit A/D converter F 2 M C- 8L CPU N-ch open-drain output port 8 Port 6 8 P 5 0 / A D ST A V CC, A V SS , AVR P60/AN0 t o P 6 7 / A N7 RO M External interrupt Other pins VCC × 2, VSS × 2 16-bit timer/counter 4 Port 7 Input port P70/INT0 P71/INT1 P72/INT2 P73/INT3 P74/EC 19 MB89630 Series ■ CPU CORE 1. Memory Space The microcontrollers of the MB89630 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89630 series is structured as illustrated below. Memory Space 0000H MB89PV630 0000H 0080H 0200H 0080H RAM 1 KB RAM 768 B 0100H 0100H Register 0200H 0000H I/O 0080H 0100H Register MB89636 I/O RAM 512 B RAM 1 KB 0100H 0000H I/O I/O 0080H MB89635 MB89T635 MB89637 MB89T637 MB89P637 MB89W637 Register Register 0200H 0200H 0280H 0380H 0480H 0480H External area External area 8000H External area *2 External area 8007H 8000H 8007H *2 A000H C000H External ROM 32 KB FFFFH ROM*1 32 KB 1 ROM* 24 KB ROM*1 16 KB FFFFH FFFFH FFFFH *1: The ROM area is an external area depending on the mode. The internal ROM cannot be used on the MB89T635 and MB89T637. *2: Addresses 8000H to 8006H for the MB89P637 and MB89W637 comprise an option area, do not use this area for the MB89PV630 and MB89637. 20 MB89630 Series 2. Registers The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided: Program counter (PC): A 16-bit register for indicating instruction storage positions Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. Temporary accumulator (T): A16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. Index register (IX): A16-bit register for index modification Extra pointer (EP): A16-bit pointer for indicating a memory address Stack pointer (SP): A16-bit register for indicating a stack area Program status (PS): A16-bit register for storing a register pointer, a condition code Initial value 16 bits FFFDH : Program counter PC A : Accumulator Undefined T : Temporary accumulator Undefined IX : Index register Undefined EP : Extra pointer Undefined SP : Stack pointer Undefined PS : Program status I-flag = 0, IL1, 0 = 11 Other bits are undefined. The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.) Structure of the Program Status Register 15 PS 14 13 12 RP 11 10 9 8 Vacancy Vacancy Vacancy RP 7 6 H I 5 4 IL1, 0 3 2 1 0 N Z V C CCR 21 MB89630 Series The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. Rule for Conversion of Actual Addresses of the General-purpose Register Area RP Lower OP codes “0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ b1 b0 ↓ ↓ Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions. I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset. IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit. IL1 IL0 Interrupt level 0 0 0 1 1 0 2 1 1 3 1 High-low High Low = no interrupt N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0. Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise. V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur. C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction. 22 MB89630 Series The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89653A (RAM 512 × 8 bits). The bank currently in use is indicated by the register bank pointer (RP). Register Bank Configuraiton This address = 0100H + 8 × (RP) R0 R1 R2 R3 R4 R5 R6 R7 32 banks Memory area 23 MB89630 Series ■ I/O MAP Address Read/ write Register name 00H (R/W) PDR0 Port 0 data register 01H (W) DDR0 Port 0 data direction register DD07 DD06 DD05 DD04 DD03 DD02 DD01 DD00 02H (R/W) PDR1 Port 1 data register 03H (W) DDR1 Port 1 data direction register DD17 DD16 DD15 DD14 DD13 DD12 DD11 DD10 04H (R/W) PDR2 Port 2 data register 05H (W) BCTR External bus pin control register Register description 06H Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PD07 PD06 PD05 PD04 PD03 PD02 PD01 PD00 PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD27 PD26 PD25 PD24 PD23 PD22 PD21 PD20 — — — — — — HLD BUF Vacancy 07H (R/W) SYCC System clock control register SMC — — WT1 WT0 SCS CS1 CS0 08H (R/W) STBC STP SLP SPL RST TMD — — — 09H (R/W) WDTE Watchdog timer control register CS — — — 0AH (R/W) TBCR — — — TBC1 TBC0 TBR 0BH (R/W) WPCR Watch prescaler control register WIF — — — WS1 WS0 WCLR 0CH (R/W) CHG3 Port 3 switching register — — — 0DH (R/W) PDR3 Port 3 data register 0EH (W) DDR3 Port 3 data direction register DD37 DD36 DD35 DD34 DD33 DD32 DD31 DD30 0FH (R/W) PDR4 Port 4 data register — — — — PD43 PD42 PD41 PD40 10H (W) DDR4 Port 4 data direction register — — — — DD43 DD42 DD41 DD40 11H (R/W) BUZR Buzzer register — — — — 12H (R/W) PDR5 Port 5 data register — — — — 13H (R/W) PDR6 Port 6 data register 14H (R) PDR7 Port 7 data register 15H (R/W) PCR1 PWC pulse width control register 1 EN TOE IE — 16H (R/W) PCR2 PWC pulse width control register 2 FC RM TO — 17H (R/W) RLBR PWC reload buffer register RLB7 RLB6 RLB5 RLB4 RLB3 RLB2 RLB1 RLB0 18H (R/W) TMCR 16-bit timer control register 19H (R/W) TCHR 16-bit timer count register (H) TC15 TC14 TC13 TC12 TC11 TC10 TC09 TC08 1AH (R/W)) TCLR TC07 TC06 TC05 TC04 TC03 TC02 TC01 TC00 System clock control register Time-base timer control register — WIE — CG35 CG34 CG33 PD37 PD36 PD35 PD34 PD33 PD32 PD31 PD30 — — BUZ1 BUZ0 PD53 PD52 PD51 PD50 PD67 PD66 PD65 PD64 PD63 PD62 PD61 PD60 — 16-bit timer count register (L) 1BH TBOF TBIE WTE3 WTE2 WTE1 WTE0 — — — — TCR PD74 PD73 PD72 PD71 PD70 — C1 UF IR BF C0 W1 W0 TCS1 TCS0 TCEF TCIE TCS Vacancy 1CH (R/W) SMR1 Serial mode register SIOF SIOE SCKE SOE 1DH (R/W) SDR1 SD07 SD06 SD05 SD04 SD03 SD02 SD01 SD00 Serial data register 1EH Vacancy 1FH Vacancy CKS1 CKS0 BDS SST (Continued) 24 MB89630 Series (Continued) Address Read/ write Register name 20H (R/W) ADC1 A/D converter control register 1 ANS3 ANS2 ANS1 ANS0 ADI 21H (R/W) ADC2 A/D converter control register 2 — 22H (R/W) ADDH A/D converter data register (H) — 23H (R/W) ADDL A/D converter data register (L) ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0 24H (R/W) EIC1 External interrupt control register 1 EIR1 25H (R/W) EIC2 External interrupt control register 2 EIR3 Register description Bit 7 26H Vacancy 27H Vacancy Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ADMV SIFM AD TIM1 TIM0 ADCK ADIE ADMD EXT — — — — — Bit 0 — TEST ADD9 ADD8 SEL1 EIE1 EIR0 INTE SEL0 EIE0 SEL3 EIE3 EIR2 — SEL2 EIE2 28H (R/W) CNTR1 PWM timer control register 1 PTX1 PTX2 P7M1 P7M2 SC11 SC10 SC21 SC20 29H (R/W) CNTR2 PWM timer control register 2 TPE1 TPE2 CK12 2AH (R/W) CNTR3 PWM timer control register 3 2BH (W) COMR1 PWM timer compare register 1 CM17 CM16 CM15 CM14 CM13 CM12 CM11 CM10 2CH (W) COMR2 PWM timer compare register 2 CM27 CM26 CM25 CM24 CM23 CM22 CM21 CM20 2DH (R/W) SMC UART serial mode control register 2EH (R/W) SRC UART serial rate control register 2FH (R/W) SSD UART serial status and data register RDRF ORFE TDRE TIE 30H (R) (W) SIDR UART serial input data register SODR UART serial output data register 31H to 7BH — OE2 PEN SBL — — OE3 — TIR1 TIR2 TIE1 TIE2 CH12 — — — — — MC1 MC0 CR SCS1 SCS0 RC2 SMDE RIE PSEL UCKE UOE RC1 RC0 TD8/ TP RD8/ RP SID7 SID6 SID5 SID4 SID3 SID2 SID1 SID0 SOD7 SOD6 SOD5 SOD4 SOD3 SOD2 SOD1 SOD0 Vacancy 7CH (W) ILR1 Interrupt level setting register 1 L31 L30 L21 L20 L11 L10 L01 L00 7DH (W) ILR2 Interrupt level settingregister 2 L71 L70 L61 L60 L51 L50 L41 L40 7EH (W) ILR3 Interrupt level setting register 3 LB1 LB0 LA1 LA0 L91 L90 L81 L80 7FH Vacancy Notes: • Do not use vacancies. • — represents a vacant bit. 25 MB89630 Series ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings (AVSS = VSS = 0.0 V) Parameter Symbol Value Unit Remarks Min. Max. VCC VSS – 0.3 VSS + 7.0 V * AVCC VSS – 0.3 VSS + 7.0 V * AVR VSS – 0.3 VSS + 7.0 V AVR must not exceed AVCC + 0.3. VI VSS – 0.3 VCC + 0.3 V Except P50 to P53 VI2 VSS – 0.3 VSS + 7.0 V P50 to P53 VO VSS – 0.3 VCC + 0.3 V Except P50 to P53 VO2 VSS – 0.3 VSS + 7.0 V P50 to P53 “L” level maximum output current IOL 20 mA “L” level average output current IOLAV 4 mA “L” level total maximum output current ∑IOL 100 mA “L” level total average output current ∑IOLAV 40 mA “H” level maximum output current IOH –20 mA “H” level average output current IOHAV –4 mA “H” level total maximum output current ∑IOH –50 mA “H” level total average output current ∑IOHAV –20 mA Power consumption PD 500 mW Operating temperature TA –40 +85 °C Storage temperature Tstg –55 +150 °C Power supply voltage A/D converter reference input voltage Input voltage Output voltage Average value (operating current × operating rate) Average value (operating current × operating rate) Average value (operating current × operating rate) Average value (operating current × operating rate) * : Use AVCC and VCC set at the same voltage. Take care so that AVCC does not exceed VCC, such as when power is turned on. Precautions:Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 26 MB89630 Series 2. Recommended Operating Conditions (AVSS = VSS = 0.0 V) Value Symbol Parameter Min. Max 2.2* 6.0* Unit Remarks V Normal operation assurance range* MB89635/637 VCC 2.7* 6.0* V Normal operation assurance range* MB89PV630/P637/ W637/T635/T637 AVCC 1.5 6.0 V Retains the RAM state in stop mode A/D converter reference input voltage AVR 3.0 AVCC V Operating temperature TA –40 +85 °C Power supply voltage * : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and “5. A/D Converter Electrical Characteristics.” 6 Operating voltage (V) 5 Analog accuracy assured in the AVCC = 3.5 V to 6.0 V range Operation assurance range 4 3 2 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz) 4.0 2.0 0.8 Minimum execution time (instruction cycle) (µs) 0.4 Note: The shaded area is assured only for the MB89635/636/637. Figure 1 Operating Voltage vs. Main Clock Operating Frequency Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear. 27 MB89630 Series 3. DC Characteristics (AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Condition Value Unit Remarks Min. Typ. Max. VIH1 P00 to P07, P10 to P17, P22, P23, P31, P34, P37, P41, P43, P51 to P53 0.7 VCC VCC + 0.3 V P51 to P53 with pull-up resistor VIH2 P51 to P53 0.7 VCC VSS + 6.0 V Without pull-up resistor VIHS RST, MOD0, MOD1, P30, P32, P33, P35, P36, P40, P42,P50, P72 to P74 0.8 VCC VCC + 0.3 V P50 with pull-up resistor VIHS2 P50, P70, P71 0.8 VCC VSS + 6.0 V Without pull-up resistor VIL P00 to P07, P10 to P17, P22, P23, P31, P34, P37, P41, P43 VSS − 0.3 0.3 VCC V VILS P30, P32, P33, P35, P36, P40, P42, P50 to P53, P70 to P74, RST, MOD0, MOD1 VSS − 0.3 0.2 VCC V VD P50 to P53 VSS − 0.3 VSS + 6.0 V “H” level input voltage “L” level input voltage Open-drain output pin application voltage Pin “H” level output VOH voltage P00 to P07, P10 to P17, P20 to P27, P30 to P37, IOH = –2.0 mA P40 to P43 4.0 V “L” level output VOL voltage P00 to P07, P10 to P17, P20 to P27 P30 to P37, IOL = 4.0 mA P40 to P43, P50 to P53, P60 to P67, RST 0.4 V Input leakage current (Hi-z output leakage current) ILI P00 to P07, P10 to P17, P20 to P23, P30 to P37, P40 to P43, P50 to P53, 0.0 V < VI < VCC P70 to P74, MOD0, MOD1 ±5 µA Without pull-up resistor Pull-up resistance RPULL P00 to P07, P10 to P17, P30 to P37, P40 to P43, VI = 0.0 V P50 to P53, P72 to P74 25 50 100 kΩ With pull-up resistor (Continued) 28 MB89630 Series (Continued) (AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Pin Symbol Condition ICC1 FCH = 10 MHz VCC = 5.0 V tinst*2 = 0.4 µs ICC2 FCH = 10 MHz VCC = 3.0 V tinst*2 = 6.4 µs Value Unit Remarks Min. Typ. Max. — 12 20 mA — 1.0 2 mA 636/637/T637/ MB89635/T635/ ICCS2 MB89P637/ W637 — 1.5 2.5 mA FCH = 10 MHz VCC = 5.0 V tinst*2 = 0.4 µs — 3 7 mA FCH = 10 MHz VCC = 3.0 V tinst*2 = 6.4 µs — 0.5 1.5 mA FCL = 32.768 kHz, — 50 100 µA 636/637/T637/ Sleep mode ICCS1 PV630 MB89635/T635/ Power supply current*1 ICCL VCC VCC = 3.0 V Subclock mode PV630 — 500 700 µA — 25 50 µA — 3 15 µA — — 1 µA MB89P637/ W637 FCL = 32.768 kHz, ICCLS VCC = 3.0 V Subclock sleep mode FCL = 32.768 kHz, ICCT VCC = 3.0 V • Watch mode • Main clock stop mode at dualclock system TA = +25°C ICCH • Subclock stop mode • Main clock stop mode at singleclock system (Continued) 29 MB89630 Series (Continued) (AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Pin Symbol IA Power supply current*1 AVCC IAH Input capacitance CIN Value Condition Other than AVCC, AVSS, VCC, and VSS Unit Min. Typ. Max. FCH = 10 MHz, when A/D conversion is activated — 6 — mA FCH = 10 MHz, TA = +25°C, when A/D conversion is stopped — — 1 µA f = 1 MHz — 10 pF Remarks *1: The power supply current is measured at the external clock. In the case of the MB89PV630, the current consumed by the connected EPROM and ICE is not included. *2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.” 4. AC Characteristics (1) Reset Timing (VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter RST “L” pulse width Symbol Condition tZLZH — Value Min. Max. 48 tHCYL — tZLZH RST 0.2 VCC 30 0.2 VCC Unit ns Remarks MB89630 Series (2) Power-on Reset (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter Power supply rising time tR Power supply cut-off time tOFF Condition — Value Unit Remarks Min. Max. — 50 ms Power-on reset function only 1 — ms Due to repeated operations Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended. tOFF tR 2.0 V 0.2 V 0.2 V VCC 0.2 V (3) Clock Timing (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Clock frequency Clock cycle time Input clock pulse width Input clock rising/falling time Symbol Pin Condition Value Min. Typ. Max. Unit Remarks FCH X0, X1 1 — 10 MHz FCL X0A, X1A — 32.768 — kHz tHCYL X0, X1 100 — 1000 ns tLCYL X0A, X1A — 30.5 — µs PWH PWL X0 20 — — ns External clock PWLH PWLL X0A — 15.2 — µs External clock tCR tCF X0 — — 10 ns External clock — 31 MB89630 Series X0 and X1 Timing and Conditions tHCYL PWH PWL tCR tCF 0.8 VCC 0.8 VCC X0 0.2 VCC 0.2 VCC 0.2 VCC Main Clock Conditions When a crystal or ceramic reasonator is used X0 When an external clock is used X1 X0 X1 Open X0A and X1A Timing and Conditions tLCYL PWLH PWLL tCR tCF 0.8 VCC 0.8 VCC X0A 0.2 VCC 0.2 VCC 0.2 VCC Subclock Conditions When a crystal or ceramic reasonator is used X0A X1A When an external clock is used X0A X1A Open 32 MB89630 Series (4) Instruction Cycle Symbol Parameter Instruction cycle (minimum execution time) Value (typical) Unit Remarks 4/FCH, 8/FCH, 16/FCH, 64/FCH µs (4/FCH) tinst = 0.4 µs when operating at FCH = 10 MHz 2/FCL µs tinst = 61.036 µs when operating at FCL = 32.768 kHz tinst Note: When operating at 10 MHz, the cycle varies with the set execution time. (5) Clock Output Timing (VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Clock time tCYC CLK CLK ↑ → CLK ↓ tCHCL CLK Condition — Value Unit Min. Max. 1/2 tinst* — µs 1/4 tinst* – 70 ns 1/4 tinst* µs Remarks * : For information on tinst, see “(4) Instruction Cycle.” tCYC tCHCL 2.4 V 2.4 V CLK 0.8 V 33 MB89630 Series (6) Bus Read Timing (VCC = +5.0 V±10%, 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Valid address → RD ↓ time tAVRL RD pulse width tRLRH Pin Condition Value Unit Max. RD, A15 to 08, AD7 to 0 1/4 tinst*– 64 ns — µs RD 1/2 tinst*– 20 ns — µs 1/2 tinst* 200 µs No wait No wait Valid address → data read tAVDV time AD7 to 0, A15 to 08 RD ↓ → data read time tRLDV RD, AD7 to 0 1/2 tinst*– 80 ns 120 µs RD ↑ → data hold time tRHDX AD7 to 0, RD 0 — µs RD ↑ → ALE ↑ time tRHLH RD, ALE 1/4 tinst*– 40 ns — µs RD ↑ → address loss time tRHAX RD, A15 to 08 1/4 tinst*– 40 ns — µs RD ↓ → CLK ↑ time tRLCH 1/4 tinst*– 40 ns — µs CLK ↓ → RD ↑ time tCLRH 0 — ns RD ↓ → BUFC ↓ time tRLBL RD, BUFC –5 — ns BUFC ↑ → valid address time tBHAV A15 to 08, AD7 to 0, BUFC 5 — ns — RD, CLK * : For information on tinst, see “(4) Instruction Cycle.” 2.4 V CLK 0.8 V tRHLH ALE 0.8 V 2.4 V 0.7 VCC 0.7 VCC 2.4 V 0.8 V 0.3 VCC 0.3 VCC 0.8 V AD tRHDX tAVDV A 2.4 V tRLCH 0.8 V tAVRL 2.4V tCLRH 2.4 V 0.8V 0.8 V tRHAX tRLDV tRLRH RD 2.4 V 0.8 V tRLBL tBHAV 2.4 V BUFC 34 Remarks Min. 0.8 V MB89630 Series (7) Bus Write Timing (VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Condition Value Min. Max. Unit Remarks Valid address → ALE ↓ time tAVLL AD7 to 0, ALE A15 to 08 1/4 tinst*1 – 64 ns — µs ALE ↓ time → address loss time AD7 to 0, ALE A15 to 08 5 — ns tLLAX Valid address → WR ↓ time tAVWL WR, ALE 1/4 tinst*1 – 60 ns — µs WR pulse width tWLWH WR 1/2 tinst*1 – 20 ns — µs Write data → WR ↑ time tDVWH AD7 to 0, WR 1/2 tinst*1 – 60 ns — µs WR ↑ → address loss time tWHAX WR, A15 to 08 1/4 tinst*1 – 40 ns — µs WR ↑ → data hold time tWHDX AD7 to 0, WR 1/4 tinst*1 – 40 ns — µs WR ↑ → ALE ↑ time tWHLH WR, ALE 1 1/4 tinst* – 40 ns — µs WR ↓ → CLK ↑ time tWLCH 1 1/4 tinst* – 40 ns — µs CLK ↓ → WR ↑ time tCLWH 0 — ns ALE pulse width tLHLL ALE 1/4 tinst*1 – 35 ns — µs ALE ↓ → CLK ↑ time tLLCH ALE,CLK 1/4 tinst* – 30 ns — µs — WR, CLK 1 *1: For information on tinst, see “(4) Instruction Cycle.” *2: This characteristics are also applicable to the bus read timing. 2.4 V CLK 0.8 V tLHLL ALE tWHLH 2.4 V 0.8 V 0.8 V tAVLL AD tLLCH tLLAX 2.4 V 2.4 V 2.4 V 0.8 V 0.8 V 0.8 V 2.4 V 0.8 V tDVWH A 2.4 V tWHDX 2.4 V tCLWH tWLCH 0.8 V 0.8 V tAVWL tWHAX tWLWH WR 2.4 V 0.8V 35 MB89630 Series (8) Ready Input Timing (VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Symbol Parameter RDY valid → CLK ↑ time tYVCH CLK ↑ → RDY loss time tCHYX Pin Condition RDY, CLK — Value 60 — ns * 0 — ns * 2.4 V 2.4 V ALE AD Address Data A WR tYVCH tCHYX RDY tYVCH Note: The bus cycle is also extended in the read cycle in the same manner. 36 Remarks Max. * : This characteristics are also applicable to the read cycle. CLK Unit Min. tCHYX MB89630 Series (9) Serial I/O Timing (VCC = +5.0 V±10%, FCH = 10 MHz, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Condition Value Unit Remarks Min. Max. 2 tinst* — µs –200 200 ns 1/2 tinst* — µs 1/2 tinst* — µs Serial clock cycle time tSCYC SCK1, UCK1, UCK2 SCK1 ↓ → SO1 time UCK1 ↓ → UO1 time UCK2 ↓ → UO2 time tSLOV SCK1, SO1 UCK1, UO1 UCK2, UO2 Valid SI1 → SCK1 ↑ Valid UI1 → UCK1 ↑ Valid UI2 → UCK2 ↑ tIVSH SI1, SCK1 UI1, UCK1 UI2, UCK2 SCK1 ↑ → valid SI1 hold time UCK1 ↑ → valid UI1 hold time tSHIX UCK2 ↑ → valid UI2 hold time SCK1, SI1 UCK1, UI1 UCK2, UI2 Serial clock “H” pulse width tSHSL SCK1, UCK1, UCK2 1 tinst* — µs Serial clock “L” pulse width tSLSH SCK1, UCK1, UCK2 1 tinst* — µs SCK1 ↓ → SO1 time UCK1 ↓ → UO1 time UCK2 ↓ → UO2 time tSLOV SCK1, SO1 UCK1, UO1 UCK2, UO2 0 200 ns Valid SI1 → SCK1 ↑ Valid UI1 → UCK1 ↑ Valid UI2 → UCK2 ↑ tIVSH SI1, SCK1 UI1, UCK1 UI2, UCK2 1/2 tinst* — µs SCK1 ↓ → valid SI1 hold time UCK1 ↓ → valid UI1 hold time tSHIX UCK2 ↓ → valid UI2 hold time SCK1, SI1 UCK1, UI1 UCK2, UI2 1/2 tinst* — µs Internal shift clock mode External shift clock mode * : For information on tinst, see “(4) Instruction Cycle.” 37 MB89630 Series Internal Shift Clock Mode tSCYC SCK1 UCK1 UCK2 2.4 V 0.8 V 0.8 V tSLOV 2.4 V SO1 UO1 UO2 0.8 V tIVSH SI1 UI1 UI tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC External Shift Clock Mode tSHSL tSLSH SCK1 UCK1 UCK2 0.8 VCC 0.2 VCC 0.8 VCC 0.2 VCC tSLOV SO1 UO1 UO2 2.4 V 0.8 V tIVSH SI1 UI1 UI 38 tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC MB89630 Series (10) Peripheral Input Timing (VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Peripheral input “H” pulse width 1 tILIH1 Peripheral input “L” pulse width 1 tIHIL1 Peripheral input “H” pulse width 2 tILIH2 Peripheral input “L” pulse width 2 tIHIL2 Peripheral input “H” pulse width 3 tILIH3 Peripheral input “L” pulse width 3 tIHIL3 Value Pin PWC, INT0 to INT3,EC ADST ADST Unit Remarks Min. Max. 2 tinst* — µs 2 tinst* — µs 8 inst 2 t * — µs A/D mode 28 tinst* — µs A/D mode 28 tinst* — µs Sense mode 8 inst — µs Sense mode 2 t * * : For information on tinst, see “(4) Instruction Cycle.” tIHIL1 PWC, EC, INT0 to INT3 tILIH1 0.8 VCC 0.2 VCC 0.8 VCC 0.2 VCC tIHIL2 (tIHIL3) tILIH2 (tILIH3) ADST 0.8 VCC 0.2 VCC 0.8 VCC 0.2 VCC 39 MB89630 Series 5. A/D Converter Electrical Characteristics (AVCC = VCC = 3.5 V to 6.0 V, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Value Pin Resolution Linearity error — Differential linearity error — Total error Zero transition voltage VOT Full-scale transition voltage VFST AN0 to AN7 A/D mode conversion time Analog port input current IAIN Analog input voltage Reference voltage supply current — AN0 to AN7 AVR IR Max. — — 10 bit — — ±2.0 LSB — — ±1.5 LSB — — ±3.0 LSB Remarks At AVCC = VCC AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB mV — Reference voltage Typ. AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB mV Interchannel disparity — Unit Min. — — 4 LSB — 13.2 — µs — — 10 µA 0.0 — AVR V 0.0 — AVCC V — 200 At 10 MHz oscillation µA AVR = 5.0 V Precautions: • The smaller the | AVR–AVSS |, the greater the error would become relatively. • The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 kΩ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 µs at 10MHz oscillation.) Analog Input Circuit Model Analog input C0 Converter RON1 RON1: RON2: C0: C1: Approx. Approx. Approx. Approx. 1.5 Ω 1.5 Ω 60 pF 4 pF RON2 C1 Note: The values mentioned here should be used as a guideline. 40 MB89630 Series 6. A/D Converter Glossary • Resolution Analog changes that are identifiable with the A/D converter. • Linearity error The deviation of the straight line connecting the zero transition point (“00 0000 0000” ↔ “00 0000 0001”) with the full-scale transition point (“11 1111 1110” ↔ “11 1111 1111”) from actual conversion characteristics • Differential linearity error The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value • Total error (unit: LSB) The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise Total error Theoretical I/O characteristics 3FF 3FF VFST 3FE 3FE 3FD 1.5 LSB Digital output Digital output 3FD 004 003 Actual conversion value {1 LSB × N + 0.5 LSB} 004 VNT 003 VOT 002 Actual conversion value 002 1 LSB Theoretical value 001 001 0.5 LSB AVR AVSS 1 LSB = VFST – VOT 1022 AVR AVSS Analog input Analog input (V) Digital output N total error = VNT – {1 LSB × N + 0.5 LSB} 1 LSB (Continued) 41 MB89630 Series (Continued) Zero transition error Full-scale transition error 004 Theoretical value Actual conversion value 3FF Actual conversion value Digital output Digital output 003 002 3FE VFST (Actual measurement) 3FD Actual conversion value 001 Actual conversion value 3FC VOT (Actual measurement) AVR AVSS Analog input Analog input Differential linearity error Linearity error 3FF Theoretical value Actual conversion value 3FE N+1 {1 LSB × N + VOT} Actual conversion value VNT VFST (Actual measurement) 004 Digital output Digital output 3FD V(N + 1)T N N–1 003 VNT Actual conversion value Actual conversion value 002 Theoretical value 001 N–2 VOT (Actual measurement) AVR AVSS Analog input Digital output N linearity error = 42 VNT – {1 LSB × N + VOT} 1 LSB AVR AVSS Analog input Digital output N differential linearity error = V(N + 1)T – VNT 1 LSB –1 MB89630 Series ■ EXAMPLE CHARACTERISTICS (2) “H” Level Output Voltage (1) “L” Level Output Voltage VOL vs. IOL VOL (V) VCC = 2.5 V TA = +25°C 0.5 VCC = 3.0 V 0.4 VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) (3) “H” Level Input Voltage/“L” Level Input Voltage (CMOS Input) VIN vs. VCC VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 TA = +25°C 1 2 3 4 5 6 7 VCC (V) VCC – VOH (V) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 –0.5 VCC – VOH vs. IOH TA = +25°C VCC = 2.5 V VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V –1.0 –1.5 –2.0 –2.5 –3.0 IOH (mA) (4) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input) VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 VIN vs. VCC TA = +25°C VIHS VILS 1 2 3 4 5 6 7 VCC (V) VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level 43 MB89630 Series (5) Power Supply Current (External Clock) ICC1 vs. VCC, ICC2 vs. VCC ICC (mA) 16 ICCS (mA) 5.0 Divide by 4 (ICC1) FcH = 10 MHz TA = +25°C 14 ICCS1 vs. VCC, I CCS2 vs. VCC FCH = 10 MHz TA = +25°C 4.5 4.0 12 Divide by 4 (ICCS2) 3.5 10 Divide by 8 8 3.0 2.5 Divide by 8 2.0 6 Divide by 16 4 Divide by 16 1.5 Divide by 64 (ICCS2) 1.0 Divide by 64 (ICC2) 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0 2.0 6.5 VCC (V) ICCL vs. VCC ICCL (µA) 200 0.5 TA = +25°C 40 140 35 120 30 100 25 80 20 60 15 40 10 20 5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VCC (V) 3.5 4.0 4.5 5.0 0 2.0 5.5 6.0 6.5 VCC (V) ICCLS vs. VCC TA = +25°C 45 160 2.5 3.0 ICCLS (µA) 50 180 0 2.0 2.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VCC (V) (Continued) 44 MB89630 Series (Continued) ICCT vs. VCC ICCT (µA) 20 TA = +25°C 18 1.6 14 1.4 12 1.2 10 1.0 8 0.8 6 0.6 4 0.4 2 0.2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 TA = +25°C 1.8 16 0 2.0 ICCH vs. VCC ICCH (µA) 2.0 0 2.0 6.5 VCC (V) 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VCC (V) (6) Pull-up Resistance RPULL vs. VCC RPULL (kΩ) 1000 TA = +25°C 100 10 1 2 3 4 5 6 VCC (V) 45 MB89630 Series ■ INSTRUCTIONS (136 INSTRUCTIONS) Execution instructions can be divided into the following four groups: • Transfer • Arithmetic operation • Branch • Others Table 1 lists symbols used for notation of instructions. Table 1 Symbol dir off ext #vct #d8 #d16 dir: b rel @ A AH AL T TH TL IX EP PC SP PS dr CCR RP Ri × (×) (( × )) Instruction Symbols Meaning Direct address (8 bits) Offset (8 bits) Extended address (16 bits) Vector table number (3 bits) Immediate data (8 bits) Immediate data (16 bits) Bit direct address (8:3 bits) Branch relative address (8 bits) Register indirect (Example: @A, @IX, @EP) Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of accumulator A (8 bits) Lower 8 bits of accumulator A (8 bits) Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of temporary accumulator T (8 bits) Lower 8 bits of temporary accumulator T (8 bits) Index register IX (16 bits) Extra pointer EP (16 bits) Program counter PC (16 bits) Stack pointer SP (16 bits) Program status PS (16 bits) Accumulator A or index register IX (16 bits) Condition code register CCR (8 bits) Register bank pointer RP (5 bits) General-purpose register Ri (8 bits, i = 0 to 7) Indicates that the very × is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Indicates that the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) The address indicated by the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Columns indicate the following: Mnemonic: Assembler notation of an instruction ~: The number of instructions #: The number of bytes Operation: Operation of an instruction TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: • “–” indicates no change. • dH is the 8 upper bits of operation description data. • AL and AH must become the contents of AL and AH prior to the instruction executed. • 00 becomes 00. N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule: Example: 48 to 4F ← This indicates 48, 49, ... 4F. 46 MB89630 Series Table 2 Mnemonic Transfer Instructions (48 instructions) ~ # Operation TL TH AH NZVC OP code MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 – – – – – AL AL AL AL AL AL AL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 MOVW ext,A MOVW @EP,A MOVW EP,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off 5 4 2 3 4 5 3 1 1 3 2 2 – – – AL AL AL – – – AH AH AH – – – dH dH dH –––– –––– –––– ++–– ++–– ++–– D4 D7 E3 E4 C5 C6 MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP,#d16 MOVW IX,A MOVW A,IX MOVW SP,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 (dir) ← (A) ( (IX) +off ) ← (A) (ext) ← (A) ( (EP) ) ← (A) (Ri) ← (A) (A) ← d8 (A) ← (dir) (A) ← ( (IX) +off) (A) ← (ext) (A) ← ( (A) ) (A) ← ( (EP) ) (A) ← (Ri) (dir) ← d8 ( (IX) +off ) ← d8 ( (EP) ) ← d8 (Ri) ← d8 (dir) ← (AH),(dir + 1) ← (AL) ( (IX) +off) ← (AH), ( (IX) +off + 1) ← (AL) (ext) ← (AH), (ext + 1) ← (AL) ( (EP) ) ← (AH),( (EP) + 1) ← (AL) (EP) ← (A) (A) ← d16 (AH) ← (dir), (AL) ← (dir + 1) (AH) ← ( (IX) +off), (AL) ← ( (IX) +off + 1) (AH) ← (ext), (AL) ← (ext + 1) (AH) ← ( (A) ), (AL) ← ( (A) ) + 1) (AH) ← ( (EP) ), (AL) ← ( (EP) + 1) (A) ← (EP) (EP) ← d16 (IX) ← (A) (A) ← (IX) (SP) ← (A) (A) ← (SP) ( (A) ) ← (T) ( (A) ) ← (TH),( (A) + 1) ← (TL) (IX) ← d16 (A) ← (PS) (PS) ← (A) (SP) ← d16 (AH) ↔ (AL) (dir): b ← 1 (dir): b ← 0 (AL) ↔ (TL) (A) ↔ (T) (A) ↔ (EP) (A) ↔ (IX) (A) ↔ (SP) (A) ← (PC) AL AL AL – – – – – – – – – – – – – – – AL AL – – – – AH AH AH – – – – – – – – – – – – – – – – AH – – – – dH dH dH dH – – dH – dH – – – dH – – AL – – – dH dH dH dH dH ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++++ –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0 Note: During byte transfer to A, T ← A is restricted to low bytes. Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family) 47 MB89630 Series Table 3 Mnemonic ~ # ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ROLC A 2 1 CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – dL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 00 – – – – – – – – – – – dH – – – – – – dH – – – – dH – – – dH dH 00 dH dH dH – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++– –––– –––– ++–– +++– –––– –––– ++–– –––– –––– ++R– ++R– ++R– ++++ ++++ ++–+ 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 C ← A← – – – ++–+ 02 (A) − d8 (A) − (dir) (A) − ( (EP) ) (A) − ( (IX) +off) (A) − (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) ← (AL) ∀ (TL) (A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir) (A) ← (AL) ∀ ( (EP) ) (A) ← (AL) ∀ ( (IX) +off) (A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL) (A) ← (AL) ∧ d8 (A) ← (AL) ∧ (dir) – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65 (A) ← (A) + (Ri) + C (A) ← (A) + d8 + C (A) ← (A) + (dir) + C (A) ← (A) + ( (IX) +off) + C (A) ← (A) + ( (EP) ) + C (A) ← (A) + (T) + C (AL) ← (AL) + (TL) + C (A) ← (A) − (Ri) − C (A) ← (A) − d8 − C (A) ← (A) − (dir) − C (A) ← (A) − ( (IX) +off) − C (A) ← (A) − ( (EP) ) − C (A) ← (T) − (A) − C (AL) ← (TL) − (AL) − C (Ri) ← (Ri) + 1 (EP) ← (EP) + 1 (IX) ← (IX) + 1 (A) ← (A) + 1 (Ri) ← (Ri) − 1 (EP) ← (EP) − 1 (IX) ← (IX) − 1 (A) ← (A) − 1 (A) ← (AL) × (TL) (A) ← (T) / (AL),MOD → (T) (A) ← (A) ∧ (T) (A) ← (A) ∨ (T) (A) ← (A) ∀ (T) (TL) − (AL) (T) − (A) → C→A (Continued) 48 MB89630 Series (Continued) Mnemonic AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP ~ # Operation 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 (A) ← (AL) ∧ ( (EP) ) (A) ← (AL) ∧ ( (IX) +off) (A) ← (AL) ∧ (Ri) (A) ← (AL) ∨ (TL) (A) ← (AL) ∨ d8 (A) ← (AL) ∨ (dir) (A) ← (AL) ∨ ( (EP) ) (A) ← (AL) ∨ ( (IX) +off) (A) ← (AL) ∨ (Ri) (dir) – d8 ( (EP) ) – d8 ( (IX) + off) – d8 (Ri) – d8 (SP) ← (SP) + 1 (SP) ← (SP) – 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ # 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI ~ # 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++++ ++++ ++++ ++++ –––– –––– 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1 Branch Instructions (17 instructions) Operation If Z = 1 then PC ← PC + rel If Z = 0 then PC ← PC + rel If C = 1 then PC ← PC + rel If C = 0 then PC ← PC + rel If N = 1 then PC ← PC + rel If N = 0 then PC ← PC + rel If V ∀ N = 1 then PC ← PC + rel If V ∀ N = 0 then PC ← PC + reI If (dir: b) = 0 then PC ← PC + rel If (dir: b) = 1 then PC ← PC + rel (PC) ← (A) (PC) ← ext Vector call Subroutine call (PC) ← (A),(A) ← (PC) + 1 Return from subrountine Return form interrupt Table 5 TL TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – dH – – –––– –––– –––– –––– –––– –––– –––– –––– –+–– –+–– –––– –––– –––– –––– –––– –––– Restore FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30 Other Instructions (9 instructions) Operation TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – dH – – – – – – – –––– –––– –––– –––– –––– –––R –––S –––– –––– 40 50 41 51 00 81 91 80 90 49 L 50 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel 9 A B C D E F A SUBC A XCH A, T XOR A AND A OR A MOV MOV CLRB BBC INCW DECW MOVW MOVW @A,T A,@A dir: 2 dir: 2,rel IX IX IX,A A,IX XOR AND OR DAA A,#d8 A,#d8 A,#d8 DAS R7 R6 R5 R4 R3 R2 R1 R0 DEC DEC DEC DEC DEC DEC DEC DEC R7 R6 R5 R4 R3 R2 R1 R0 rel rel rel rel CALLV BLT #7 rel CALLV BGE #6 rel CALLV BZ #5 CALLV BNZ #4 rel CALLV BN #3 CALLV BP #2 CALLV BC #1 CALLV BNC #0 rel CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC ADDCW SUBCW XCHW XORW ANDW ORW MOVW MOVW CLRB BBC INCW DECW MOVW MOVW A A A, T A A A @A,T A,@A dir: 3 dir: 3,rel EP EP EP,A A,EP ADDC CLRB BBC INCW DECW MOVW MOVW dir: 1 dir: 1,rel SP SP SP,A A,SP 8 A A SETC MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8 dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16 A,EP CMPW CMP JMP CALL PUSHW POPW MOV MOVW CLRC addr16 addr16 IX IX ext,A PS,A 7 F MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A,@IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8 dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16 A,IX E 6 D MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel A,dir dir,A SP,#d16 A,SP C 5 B CLRB BBC INCW DECW JMP MOVW dir: 0 dir: 0,rel A A @A A,PC A MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 A A DIVU SETI 9 4 8 RORC 7 3 6 ROLC A 5 PUSHW POPW MOV MOVW CLRI A A A,ext A,PS 4 2 A RETI 3 MULU RET 2 1 SWAP 1 NOP 0 0 H MB89630 Series ■ INSTRUCTION MAP MB89630 Series ■ MASK OPTIONS Part number MB89635 MB89636 MB89637 MB89P637 MB89W637 MB89PV630 MB89T635 MB89T637 Specifying procedure Specify when ordering masking Set with EPROM programmer Setting not possible No. 1 Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74 2 Power-on reset selection With power-on reset Without power-on reset Selectable Setting possible Fixed to with power-on reset 3 Selection of the main clock oscillation stabilization time (at 10 MHz) Approx. 218/FCH (Approx. 26.2 ms) Approx. 217/FCH (Approx. 13.1 ms) Approx. 214/FCH (Approx. 1.6 ms) Approx. 24/FCH (Approx. 0 ms) FCH : Main clock frequency Selectable Setting possible Fixed to 218/FCH (Approx. 26.2 ms) 4 Reset pin output Reset output provided No reset output Selectable Setting possible Fixed to with reset output Selectable by Can be set per pin* Fixed to without pull-up resistor pin Single/dual-clock system Single clock Dual clock 5 Selectable Setting possible MB89PV630-101Single-clock system MB89T635-101 Single-clock system MB89T637-101 Single-clock system MB89PV630-102Dual-clock systems MB89T635-102 Dual-clock systems MB89T637-101 Dual-clock systems * : Pull-up resistors cannot be set for P50 to P53. 51 MB89630 Series ■ ORDERING INFORMATION Part number MB89635P-SH MB89T635P-SH MB89636P-SH MB89637P-SH MB89P637-SH MB89T637P-SH 52 Package 64-pin Plastic SH-DIP (DIP-64P-M01) MB89635PF MB89T635PF MB89636PF MB89637PF MB89P637PF MB89T637PF 64-pin Plastic QFP (FPT-64P-M06) MB89635PFM MB89T635PFM MB89636PFM MB89637PFM MB89T637PFM 64-pin Plastic QFP (FPT-64P-M09) MB89W637C-SH 64-pin Ceramic SH-DIP (DIP-64C-A06) MB89PV630C-SH 64-pin Ceramic MDIP (MDP-64C-P02) MB89PV630CF 64-pin Ceramic MQFP (MQP-64C-P01) Remarks MB89630 Series ■ PACKAGE DIMENSIONS 64-pin Plastic SH-DIP (DIP-64P-M01) +0.22 58.00 –0.55 +.008 2.283 –.022 INDEX-1 17.00±0.25 (.669±.010) INDEX-2 5.65(.222)MAX 0.25±0.05 (.010±.002) 3.00(.118)MIN +0.50 1.00 –0 +.020 .039 –0 0.51(.020)MIN 0.45±0.10 (.018±.004) 15°MAX 19.05(.750) TYP 1.778±0.18 (.070±.007) 55.118(2.170)REF 1.778(.070) MAX C 1994 FUJITSU LIMITED D64001S-3C-4 64-pin Plastic QFP (FPT-64P-M06) Dimensions in mm (inches) 24.70±0.40(.972±.016) 3.35(.132)MAX 20.00±0.20(.787±.008) 51 0.05(.002)MIN (STAND OFF) 33 52 32 14.00±0.20 (.551±.008) 18.70±0.40 (.736±.016) 12.00(.472) REF 16.30±0.40 (.642±.016) INDEX 64 20 "A" LEAD No. 1 19 1.00(.0394) TYP 0.40±0.10 (.016±.004) 0.15±0.05(.006±.002) 0.20(.008) M Details of "A" part 0.25(.010) Details of "B" part "B" 0.10(.004) 18.00(.709)REF 22.30±0.40(.878±.016) C 1994 FUJITSU LIMITED F64013S-3C-2 0.30(.012) 0.18(.007)MAX 0.63(.025)MAX 0 10° 1.20±0.20 (.047±.008) Dimensions in mm (inches) 53 MB89630 Series 64-pin Plastic QFP (FPT-64P-M09) 48 14.00±0.20(.551±.008)SQ 33 12.00±0.10(.472±.004)SQ 49 +0.20 1.50 –0.10 +.008 .059 –.004 32 9.75 (.384) REF 13.00 (.512) NOM 1 PIN INDEX 64 LEAD No. 17 1 0.65(.0256)TYP Details of "A" part 16 0.30±0.10 (.012±.004) "A" 0.13(.005) M +0.05 0.127 –0.02 +.002 .005 –.001 0.10±0.10 (STAND OFF) (.004±.004) 0.10(.004) 0 C 10° 0.50±0.20 (.020±.008) Dimensions in mm (inches) 1994 FUJITSU LIMITED F64018S-1C-2 64-pin Ceramic SH-DIP (DIP-64C-A06) 56.90±0.56 (2.240±.022) 8.89(.350) DIA TYP R1.27(.050) REF 18.75±0.25 (.738±.010) INDEX AREA 1.27±0.25 (.050±.010) 5.84(.230)MAX 0.25±0.05 (.010±.004) 3.40±0.36 (.134±.014) 1.45(.057) MAX C 54 1994 FUJITSU LIMITED D64006SC-1-2 1.778±0.180 (.070±.007) 0.90±0.10 (.0355±.0040) +0.13 0.46 –0.08 +.005 .018 –.003 19.05±0.25 (.750±.010) 0°~9° 55.118(2.170)REF Dimensions in mm (inches) MB89630 Series 64-pin Ceramic MDIP (MDP-64C-P02) 0°~9° 56.90±0.64 (2.240±.025) 15.24(.600) TYP 18.75±0.30 (.738±.012) INDEX AREA 2.54±0.25 (.100±.010) 33.02(1.300)REF 0.25±0.05 (.010±.002) 1.27±0.25 (.050±.010) 10.16(.400)MAX 1.778±0.25 (.070±.010) C 19.05±0.30 (.750±.012) +0.13 0.46 –0.08 +.005 .018 –.003 55.12(2.170)REF 3.43±0.38 (.135±.015) 0.90±0.13 (.035±.005) Dimensions in mm (inches) 1994 FUJITSU LIMITED M64002SC-1-4 64-pin Ceramic MQFP (MQP-64C-P01) INDEX AREA 18.70(.736)TYP 16.30±0.33 (.642±.013) 15.58±0.20 (.613±.008) 12.00(.472)TYP +0.40 1.20 –0.20 +.016 .047 –.008 1.00±0.25 (.039±.010) 1.00±0.25 (.039±.010) 1.27±0.13 (.050±.005) 22.30±0.33 (.878±.013) 24.70(.972) TYP 0.30(.012) TYP 1.27±0.13 (.050±.005) 18.12±0.20 12.02(.473) (.713±.008) TYP 10.16(.400) 14.22(.560) TYP TYP 0.30(.012)TYP 7.62(.300)TYP 0.40±0.10 (.016±.004) 18.00(.709) TYP 0.40±0.10 (.016±.004) +0.40 1.20 –0.20 +.016 .047 –.008 9.48(.373)TYP 11.68(.460)TYP 0.50(.020)TYP C 1994 FUJITSU LIMITED M64004SC-1-3 10.82(.426) 0.15±0.05 MAX (.006±.002) Dimensions in mm (inches) 55 MB89630 Series FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ F9602 FUJITSU LIMITED Printed in Japan All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.