HA17902 Series Quad Operational Amplifier Description The HA17902 is an internal phase compensation quad operational amplifier that operates on a singlevoltage power supply and is appropriate for use in a wide range of general-purpose control equipment. Features • Wide usable power-supply voltage range and single-voltage supply operation • Internal phase compensation • Wide common-mode voltage range and operation for inputs close to the 0 level Ordering Information Type No. Application Package HA17902PJ Car use DP-14 HA17902FPJ FP-14DA HA17902FPK FP-14DA HA17902P Industrial use HA17902FP HA17902 DP-14 FP-14DA Commercial use DP-14 HA17902 Series Pin Arrangement Vout1 1 Vin(–)1 2 Vin(+)1 3 VCC 4 Vin(+)2 5 Vin(–)2 6 Vout2 7 14 Vout4 1 – 13 Vin(–)4 4 + + – 12 Vin(+)4 11 GND – + + 2 – 3 10 Vin(+)3 9 Vin(–)3 8 Vout3 (Top view) Circuit Structure (1/4) Q5 Q2 Vin(–) Q1 Q3 Q4 Q6 Q7 C R1 Vin(+) Vout Q11 Q10 Q8 2 Q9 Q13 Q12 HA17902 Series Absolute Maximum Ratings (Ta = 25°C) Item Symbol HA17902/ P HA17902 PJ HA17902 FP HA17902 FPJ HA17902 FPK Unit Power supply voltage VCC 28 28 28 28 28 V Sink current Io sink 50 50 1 625* 50 1 625* 50 2 625* 25 2 625* mA 2 Allowable power dissipation PT 625* mW Common-mode input voltage VCM –0.3 to VCC –0.3 to VCC –0.3 to VCC –0.3 to VCC –0.3 to VCC V Differential-mode input voltage Vin(diff) ±VCC ±VCC ±VCC ±VCC ±VCC V Operating temperature Topr –20 to +75 –40 to +85 –20 to +75 –40 to +85 –40 to +125 °C Storage temperature Tstg –55 to +125 –55 to +125 –55 to +125 –55 to +125 –55 to +150 °C Notes: 1. These are the allowable values up to Ta = 50°C. Derate by 8.3mW/°C above that temperature. 2. See notes on SOP Package Usage in Reliability section. 3 HA17902 Series Electrical Characteristics 1 (VCC = + 15V, Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Input offset voltage VIO — 3 8 mV VCM = 7.5V, RS = 50Ω, Rf = 5kΩ Input offset current I IO — 5 50 nA I IO = | II– – I I+ |, VCM = 7.5V Input bias current I IB — 30 500 nA VCM = 7.5V Power-supply rejection ratio PSRR — 93 — dB f = 100Hz, RS = 1kΩ, Rf = 100kΩ Voltage gain AVD 75 90 — dB RS = 1kΩ, Rf = 100kΩ, RL = ∞ Common-mode rejection ratio CMR — 80 — dB RS = 50Ω, Rf = 5kΩ Common-mode input voltage range VCM –0.3 — 13.5 V RS = 1kΩ, Rf = 100kΩ, f = 100Hz Maximum output voltage amplitude VOP-P — 13.6 — V f = 100Hz, RS = 1kΩ, Rf = 100kΩ, RL = 20kΩ Output voltage VOH1 13.2 13.6 — V I OH = –1mA VOH2 12 13.3 — V I OH = –10mA VOL1 — 0.8 1 V I OL = 1mA VOL2 — 1.1 1.8 V I OL = 10mA Output source current Io source 15 — — mA VOH = 10V Output sink current Io sink 3 9 — mA VOL = 1V Supply current I CC — 0.8 2 mA Vin = GND, RL = ∞ Slew rate SR — 0.19 — V/µs f = 1.5kHz, VCM = 7.5V, RL = ∞ Channel separation CS — 120 — dB f = 1kHz Electrical Characteristics 2 (VCC = + 15V, Ta = – 40 to 125°C) Item Symbol Min Typ Max Unit Test Conditions Input offset voltage VIO — — 8 mV VCM = 7.5V, RS = 50Ω, Rf = 5kΩ Input offset current I IO — — 200 nA VCM = 7.5V , IIO = | II– – I I+ | Input bias current I IB — — 500 nA VCM = 7.5V Common-mode input voltage range VCM 0 — 13.0 V RS = 1kΩ, Rf = 100kΩ, f = 100Hz Output voltage VOH 13.0 — — V I OH = –1mA VOL — — 1.3 V I OL = 1mA I CC — — 4 mA Vin = GND, RL = ∞ Supply current 4 HA17902 Series Test Circuits 1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit Rf 5k SW1 RS 50 RS 50 R 10k R 10k Rf 5k SW2 SW2 On Off Off On SW1 On Off On Off VCC – Vout + V VO VO1 VO2 VO3 VO4 VCM = 1 V 2 CC VCM VIO = VO1 1 + Rf / RS (mV) IIO = VO2 – VO1 R(1 + Rf / RS) (nA) IIB = | VO4 – VO3 | 2 · R(1 + Rf / RS) (nA) 2. Common-mode rejection ratio (CMR) test circuit CMR = 20 log VIN · Rf VO · RS (dB) Rf 5.0k VCC RS 50 – Vout + Vin RS 50 Rf 5.0k 3. Supply current (ICC) test circuit A VCC – Vout + 5 HA17902 Series 4. Voltage gain (AVD), slew rate (SR), common-mode input voltage range (VCM), and maximum output voltage amplitude (VOP-P) test circuit. Vin Rf 100k 40dB 47µ – + R 51k VCC – D.U.T + RS 1k RS 1k Vin V2 Vout Rf 100k V1 + + – 47µ – 47µ SW1 Rf 20k (1) AVD: RS = 1kΩ, Rf = 100kΩ, R L = ∞, V1 = V2 = 1/2 VCC V AVD = 20 log O + 40 (dB) VIN (2) SR: f = 1.5kHz, RL = ∞, V1 = V2 = 1/2 VCC V SR = V [V/µs] T T (3) VCM: R S = 1kΩ, Rf = 100kΩ, f = 100Hz, V1 = 1/2 VCC, RL = ∞, and the value of V2 just slightly prior to the point where the output waveform changes. (4) VOP-P:RS = 1kΩ, Rf = 100kΩ, R L : 20kΩ, f = 100Hz, VOP-P = VOH ↔ VOL [VP-P] 5. Output source current (Iosource) test circuit Io source: VOH = 10V VCC 10k + VOH – A 6. Output sink current (Iosink) test circuit Io sink: VOL = 1V VCC 10k – VOH + A 6 HA17902 Series Characteristics Curve Input Bias Current vs. Ambient Temperature Characteristics Input Bias Current vs. Power-Supply Voltage Characteristics 90 Ta = 25°C Vin = 7.5 V 80 Input Bias Current IIB (nA) Input Bias Current IIB (nA) 100 75 50 25 70 60 50 40 30 20 10 0 10 20 0 –55 –35 –15 30 Power-Supply Voltage VCC (V) Output Sink Current vs. Ambient Temperature Characteristics 25 45 65 85 105 125 Output Source Current vs. Ambient Temperature Characteristics 90 VCC = 15 V VOH = 1 V 80 70 60 50 40 30 20 10 0 –55 –35 –15 5 25 45 65 85 105 125 Ambient Temperature Ta (°C) Output Sink Current Io source (mA) 90 Output Sink Current Io sink (mA) 5 Ambient Temperature Ta (°C) VCC = 15 V VOH = 10 V 80 70 60 50 40 30 20 10 0 –55 –35 –15 5 25 45 65 85 105 125 Ambient Temperature Ta (°C) 7 HA17902 Series Voltage Gain vs. Frequency Characteristics Voltage Gain vs. Power-Supply Voltage Characteristics 160 160 VCC = 15 V Ta = 25°C 140 Voltage Gain AVD (dB) Voltage Gain AVD (dB) 140 120 100 80 60 40 20 0 120 100 80 60 40 20 1 10 100 1k 10 k 100 k 0 1M Frequency f (Hz) 20 30 Supply Current vs. Power-Supply Voltage Characteristics 4 20 Ta = 25°C Vin = GND Supply Current ICC (mA) Maximum Output Voltage Amplitude VOP-P (VP-P) 10 Power-Supply Voltage VCC (V) Maximum Output Voltage Amplitude vs. Frequency Characteristics 15 10 5 0 1k 3 2 1 0 10 k 100 k Frequency f (Hz) 8 Ta = 25°C 1M 10 20 Power-Supply Voltage VCC (V) 30 HA17902 Series Common-Mode Rejection Ratio vs. Frequency Characteristics Slew Rate vs. Power-Supply Voltage Characteristics 0.8 Slew Rate SR (V/µs) 0.6 0.4 0.2 0 10 20 Power-Supply Voltage VCC (V) 30 Common-Mode Rejection Ratio CMR (dB) 120 V1 = V2 = 1/2 VCC f = 1.5 kHz VCC = 15 V Ta = 25°C RS = 50 Ω 100 80 60 40 20 0 100 1k 10 k 100 k 1M Frequency f (Hz) 9 HA17902 Series Common-Mode Rejection Ratio vs. Frequency Characteristics Slew Rate vs. Power-Supply Voltage Characteristics 0.8 Slew Rate SR (V/ s) 0.6 0.4 0.2 0 10 20 Power-Supply Voltage VCC (V) 10 30 Common-Mode Rejection Ratio CMR (dB) 120 V1 = V2 = 1/2 VCC f = 1.5 kHz VCC = 15 V Ta = 25¡C RS = 50 Ω 100 80 60 40 20 0 100 1k 10 k Frequency f (Hz) 100 k 1M HA17902 Series HA17902 Application Examples The HA17902 is a quad operational amplifier, and consists of four operational amplifier circuits and one bias current circuit. It features single-voltage power supply operation, internal phase compensation, a wide zero-cross bandwidth, a low input bias current, and a high open-loop gain. Thus the HA17902 can be used in a wide range of applications. This section describes several applications using the HA17902. 1. Noninverting Amplifier Figure 1 shows the circuit diagram for a noninverting amplifier. The voltage gain of this amplifier is given by the following formula. R2 Vout =1+ R1 Vin +Vin 10k + Vout – R2 1M 10k R1 Figure 1 Noninverting Amplifier 2. Summing Amplifier Since the circuit shown in figure 2 applies +V1 and +V2 to the noninverting input and +V3 and +V4 to the inverting input, the total output will be Vout = V1 + V2 – V3 – V4. +V1 +V2 +V3 +V4 R 100k R 100k R 100k R 100k VCC Vin(+) 100k + HA17902 Vout – Vin(–) R 100 k Figure 2 Summing Amplifier 11 HA17902 Series 3. High Input Impedance DC Differential Amplifier The circuit shown in figure 3 is a high input impedance DC differential amplifier. This circuit’s common-mode rejection ratio (CMR) depends on the matching between the R1/R2 and R4/R3 resistance ratios. This amplifier’s output is given by the following formula. Vout = 1 + R4 R3 (V2 – V1) R2 R1 100kΩ R4 100kΩ – 100kΩ + V1 R3 100kΩ – Vout + V2 Figure 3 High Input Impedance DC Differential Amplifier 4. Voltage Controlled Oscillator Figure 4 shows an oscillator circuit in which the amplifier A 1 is an integrator, the amplifier A 2 is a comparator, and transistor Q1 operates as a switch that controls the oscillator frequency. If the output Vout1 is at the low level, this will cut off transistor Q1 and cause the A1 inverting input to go to a higher potential than the noninverting input. Therefore, A1 will integrate this negative input state and its output level will decrease. When the A1 integrator output becomes lower than the A2 comparator noninverting input level (VCC/2) the comparator output goes high. This turns on transistor Q 1 causing the integrator to integrate a positive input state and for its output to increase. This operation generates a square wave on Vout1 and a triangular wave on Vout2. C 0.05µF 100k +VC VCC R 100k – 51k R/2 50k Q1 + VCC A1 HA17902 A2 VCC/2 HA17902 – Vout1 + 51k Vout2 10k Figure 4 Voltage Controlled Oscillator 12 HA17902 Series Package Dimensions Unit: mm 19.20 20.32 Max 8 6.30 7.40 Max 14 1.30 7 2.54 ± 0.25 0.48 ± 0.10 0.51 Min 2.39 Max 7.62 2.54 Min 5.06 Max 1 + 0.10 0.25 – 0.05 0° – 15° Hitachi Code JEDEC EIAJ Mass (reference value) DP-14 Conforms Conforms 0.97 g Unit: mm 10.06 10.5 Max 8 5.5 14 1 0.10 ± 0.10 1.42 Max 1.27 *0.42 ± 0.08 0.40 ± 0.06 *0.22 ± 0.05 0.20 ± 0.04 2.20 Max 7 + 0.20 7.80 – 0.30 1.15 0° – 8° 0.70 ± 0.20 0.15 0.12 M *Dimension including the plating thickness Base material dimension Hitachi Code JEDEC EIAJ Mass (reference value) FP-14DA — Conforms 0.23 g 13 HA17902 Series Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. 14