HITACHI HA17902FPJ

HA17902 Series
Quad Operational Amplifier
Description
The HA17902 is an internal phase compensation quad operational amplifier that operates on a singlevoltage power supply and is appropriate for use in a wide range of general-purpose control equipment.
Features
• Wide usable power-supply voltage range and single-voltage supply operation
• Internal phase compensation
• Wide common-mode voltage range and operation for inputs close to the 0 level
Ordering Information
Type No.
Application
Package
HA17902PJ
Car use
DP-14
HA17902FPJ
FP-14DA
HA17902FPK
FP-14DA
HA17902P
Industrial use
HA17902FP
HA17902
DP-14
FP-14DA
Commercial use
DP-14
HA17902 Series
Pin Arrangement
Vout1
1
Vin(–)1
2
Vin(+)1
3
VCC
4
Vin(+)2
5
Vin(–)2
6
Vout2
7
14 Vout4
1
–
13 Vin(–)4
4
+
+
–
12 Vin(+)4
11 GND
–
+
+
2
–
3
10 Vin(+)3
9
Vin(–)3
8
Vout3
(Top view)
Circuit Structure (1/4)
Q5
Q2
Vin(–)
Q1
Q3
Q4
Q6
Q7
C
R1
Vin(+)
Vout
Q11
Q10
Q8
2
Q9
Q13
Q12
HA17902 Series
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
HA17902/
P
HA17902
PJ
HA17902
FP
HA17902
FPJ
HA17902
FPK
Unit
Power supply
voltage
VCC
28
28
28
28
28
V
Sink current
Io sink
50
50
1
625*
50
1
625*
50
2
625*
25
2
625*
mA
2
Allowable power
dissipation
PT
625*
mW
Common-mode
input voltage
VCM
–0.3 to
VCC
–0.3 to
VCC
–0.3 to
VCC
–0.3 to
VCC
–0.3 to
VCC
V
Differential-mode
input voltage
Vin(diff)
±VCC
±VCC
±VCC
±VCC
±VCC
V
Operating
temperature
Topr
–20 to +75
–40 to +85
–20 to +75
–40 to +85
–40 to
+125
°C
Storage
temperature
Tstg
–55 to
+125
–55 to
+125
–55 to
+125
–55 to
+125
–55 to
+150
°C
Notes: 1. These are the allowable values up to Ta = 50°C. Derate by 8.3mW/°C above that temperature.
2. See notes on SOP Package Usage in Reliability section.
3
HA17902 Series
Electrical Characteristics 1 (VCC = + 15V, Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Input offset voltage
VIO
—
3
8
mV
VCM = 7.5V, RS = 50Ω, Rf = 5kΩ
Input offset current
I IO
—
5
50
nA
I IO = | II– – I I+ |, VCM = 7.5V
Input bias current
I IB
—
30
500
nA
VCM = 7.5V
Power-supply
rejection ratio
PSRR
—
93
—
dB
f = 100Hz, RS = 1kΩ, Rf = 100kΩ
Voltage gain
AVD
75
90
—
dB
RS = 1kΩ, Rf = 100kΩ, RL = ∞
Common-mode
rejection ratio
CMR
—
80
—
dB
RS = 50Ω, Rf = 5kΩ
Common-mode input
voltage range
VCM
–0.3
—
13.5
V
RS = 1kΩ, Rf = 100kΩ, f = 100Hz
Maximum output
voltage amplitude
VOP-P
—
13.6
—
V
f = 100Hz, RS = 1kΩ, Rf = 100kΩ,
RL = 20kΩ
Output voltage
VOH1
13.2
13.6
—
V
I OH = –1mA
VOH2
12
13.3
—
V
I OH = –10mA
VOL1
—
0.8
1
V
I OL = 1mA
VOL2
—
1.1
1.8
V
I OL = 10mA
Output source current
Io source
15
—
—
mA
VOH = 10V
Output sink current
Io sink
3
9
—
mA
VOL = 1V
Supply current
I CC
—
0.8
2
mA
Vin = GND, RL = ∞
Slew rate
SR
—
0.19
—
V/µs
f = 1.5kHz, VCM = 7.5V, RL = ∞
Channel separation
CS
—
120
—
dB
f = 1kHz
Electrical Characteristics 2 (VCC = + 15V, Ta = – 40 to 125°C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Input offset voltage
VIO
—
—
8
mV
VCM = 7.5V, RS = 50Ω, Rf = 5kΩ
Input offset current
I IO
—
—
200
nA
VCM = 7.5V , IIO = | II– – I I+ |
Input bias current
I IB
—
—
500
nA
VCM = 7.5V
Common-mode input
voltage range
VCM
0
—
13.0
V
RS = 1kΩ, Rf = 100kΩ, f = 100Hz
Output voltage
VOH
13.0
—
—
V
I OH = –1mA
VOL
—
—
1.3
V
I OL = 1mA
I CC
—
—
4
mA
Vin = GND, RL = ∞
Supply current
4
HA17902 Series
Test Circuits
1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit
Rf 5k
SW1
RS 50
RS 50
R 10k
R 10k
Rf 5k
SW2
SW2
On
Off
Off
On
SW1
On
Off
On
Off
VCC
–
Vout
+
V
VO
VO1
VO2
VO3
VO4
VCM =
1
V
2 CC
VCM
VIO =
VO1
1 + Rf / RS
(mV)
IIO =
VO2 – VO1
R(1 + Rf / RS)
(nA)
IIB =
| VO4 – VO3 |
2 · R(1 + Rf / RS)
(nA)
2. Common-mode rejection ratio (CMR) test circuit
CMR = 20 log
VIN · Rf
VO · RS
(dB)
Rf 5.0k
VCC
RS 50
–
Vout
+
Vin
RS 50
Rf
5.0k
3. Supply current (ICC) test circuit
A
VCC
–
Vout
+
5
HA17902 Series
4. Voltage gain (AVD), slew rate (SR), common-mode input voltage range (VCM), and maximum output
voltage amplitude (VOP-P) test circuit.
Vin
Rf
100k
40dB
47µ
– +
R
51k
VCC
–
D.U.T
+
RS
1k
RS
1k
Vin
V2
Vout
Rf
100k
V1 +
+
– 47µ
– 47µ
SW1
Rf
20k
(1) AVD: RS = 1kΩ, Rf = 100kΩ, R L = ∞, V1 = V2 = 1/2 VCC
V
AVD = 20 log O + 40
(dB)
VIN
(2) SR: f = 1.5kHz, RL = ∞, V1 = V2 = 1/2 VCC
V
SR = V [V/µs]
T
T
(3) VCM: R S = 1kΩ, Rf = 100kΩ, f = 100Hz, V1 = 1/2 VCC, RL = ∞,
and the value of V2 just slightly prior to the point where the output waveform changes.
(4) VOP-P:RS = 1kΩ, Rf = 100kΩ, R L : 20kΩ, f = 100Hz, VOP-P = VOH ↔ VOL [VP-P]
5. Output source current (Iosource) test circuit
Io source: VOH = 10V
VCC
10k
+
VOH
–
A
6. Output sink current (Iosink) test circuit
Io sink: VOL = 1V
VCC
10k
–
VOH
+
A
6
HA17902 Series
Characteristics Curve
Input Bias Current vs.
Ambient
Temperature Characteristics
Input Bias Current vs.
Power-Supply
Voltage Characteristics
90
Ta = 25°C
Vin = 7.5 V
80
Input Bias Current IIB (nA)
Input Bias Current IIB (nA)
100
75
50
25
70
60
50
40
30
20
10
0
10
20
0
–55 –35 –15
30
Power-Supply Voltage VCC (V)
Output Sink Current vs.
Ambient Temperature Characteristics
25
45
65
85 105 125
Output Source Current vs.
Ambient Temperature Characteristics
90
VCC = 15 V
VOH = 1 V
80
70
60
50
40
30
20
10
0
–55 –35 –15
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
Output Sink Current Io source (mA)
90
Output Sink Current Io sink (mA)
5
Ambient Temperature Ta (°C)
VCC = 15 V
VOH = 10 V
80
70
60
50
40
30
20
10
0
–55 –35 –15
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
7
HA17902 Series
Voltage Gain vs.
Frequency Characteristics
Voltage Gain vs.
Power-Supply Voltage Characteristics
160
160
VCC = 15 V
Ta = 25°C
140
Voltage Gain AVD (dB)
Voltage Gain AVD (dB)
140
120
100
80
60
40
20
0
120
100
80
60
40
20
1
10
100
1k
10 k
100 k
0
1M
Frequency f (Hz)
20
30
Supply Current vs.
Power-Supply Voltage Characteristics
4
20
Ta = 25°C
Vin = GND
Supply Current ICC (mA)
Maximum Output Voltage Amplitude
VOP-P (VP-P)
10
Power-Supply Voltage VCC (V)
Maximum Output Voltage Amplitude vs.
Frequency Characteristics
15
10
5
0
1k
3
2
1
0
10 k
100 k
Frequency f (Hz)
8
Ta = 25°C
1M
10
20
Power-Supply Voltage VCC (V)
30
HA17902 Series
Common-Mode Rejection Ratio vs.
Frequency Characteristics
Slew Rate vs.
Power-Supply Voltage Characteristics
0.8
Slew Rate SR (V/µs)
0.6
0.4
0.2
0
10
20
Power-Supply Voltage VCC (V)
30
Common-Mode Rejection Ratio
CMR (dB)
120
V1 = V2 = 1/2 VCC
f = 1.5 kHz
VCC = 15 V
Ta = 25°C
RS = 50 Ω
100
80
60
40
20
0
100
1k
10 k
100 k
1M
Frequency f (Hz)
9
HA17902 Series
Common-Mode Rejection Ratio vs.
Frequency Characteristics
Slew Rate vs.
Power-Supply Voltage Characteristics
0.8
Slew Rate SR (V/ s)
0.6
0.4
0.2
0
10
20
Power-Supply Voltage VCC (V)
10
30
Common-Mode Rejection Ratio
CMR (dB)
120
V1 = V2 = 1/2 VCC
f = 1.5 kHz
VCC = 15 V
Ta = 25¡C
RS = 50 Ω
100
80
60
40
20
0
100
1k
10 k
Frequency f (Hz)
100 k
1M
HA17902 Series
HA17902 Application Examples
The HA17902 is a quad operational amplifier, and consists of four operational amplifier circuits and one
bias current circuit. It features single-voltage power supply operation, internal phase compensation, a wide
zero-cross bandwidth, a low input bias current, and a high open-loop gain. Thus the HA17902 can be used
in a wide range of applications. This section describes several applications using the HA17902.
1. Noninverting Amplifier
Figure 1 shows the circuit diagram for a noninverting amplifier. The voltage gain of this amplifier is
given by the following formula.
R2
Vout
=1+
R1
Vin
+Vin
10k
+
Vout
–
R2
1M
10k
R1
Figure 1 Noninverting Amplifier
2. Summing Amplifier
Since the circuit shown in figure 2 applies +V1 and +V2 to the noninverting input and +V3 and +V4 to
the inverting input, the total output will be Vout = V1 + V2 – V3 – V4.
+V1
+V2
+V3
+V4
R
100k
R
100k
R
100k
R
100k
VCC
Vin(+)
100k
+
HA17902
Vout
–
Vin(–)
R
100 k
Figure 2 Summing Amplifier
11
HA17902 Series
3. High Input Impedance DC Differential Amplifier
The circuit shown in figure 3 is a high input impedance DC differential amplifier. This circuit’s
common-mode rejection ratio (CMR) depends on the matching between the R1/R2 and R4/R3 resistance
ratios. This amplifier’s output is given by the following formula.
Vout = 1 +
R4
R3
(V2 – V1)
R2
R1
100kΩ
R4
100kΩ
–
100kΩ
+
V1
R3
100kΩ
–
Vout
+
V2
Figure 3 High Input Impedance DC Differential Amplifier
4. Voltage Controlled Oscillator
Figure 4 shows an oscillator circuit in which the amplifier A 1 is an integrator, the amplifier A 2 is a
comparator, and transistor Q1 operates as a switch that controls the oscillator frequency. If the output
Vout1 is at the low level, this will cut off transistor Q1 and cause the A1 inverting input to go to a higher
potential than the noninverting input. Therefore, A1 will integrate this negative input state and its output
level will decrease. When the A1 integrator output becomes lower than the A2 comparator noninverting
input level (VCC/2) the comparator output goes high. This turns on transistor Q 1 causing the integrator to
integrate a positive input state and for its output to increase. This operation generates a square wave on
Vout1 and a triangular wave on Vout2.
C 0.05µF
100k
+VC
VCC
R
100k
–
51k
R/2
50k
Q1
+
VCC
A1
HA17902
A2
VCC/2 HA17902
–
Vout1
+
51k
Vout2
10k
Figure 4 Voltage Controlled Oscillator
12
HA17902 Series
Package Dimensions
Unit: mm
19.20
20.32 Max
8
6.30
7.40 Max
14
1.30
7
2.54 ± 0.25
0.48 ± 0.10
0.51 Min
2.39 Max
7.62
2.54 Min 5.06 Max
1
+ 0.10
0.25 – 0.05
0° – 15°
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
DP-14
Conforms
Conforms
0.97 g
Unit: mm
10.06
10.5 Max
8
5.5
14
1
0.10 ± 0.10
1.42 Max
1.27
*0.42 ± 0.08
0.40 ± 0.06
*0.22 ± 0.05
0.20 ± 0.04
2.20 Max
7
+ 0.20
7.80 – 0.30
1.15
0° – 8°
0.70 ± 0.20
0.15
0.12 M
*Dimension including the plating thickness
Base material dimension
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-14DA
—
Conforms
0.23 g
13
HA17902 Series
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
14