ETC HA17339/ASERIES

HA17339/A Series
Quadruple Comparators
ADE-204-065A (Z)
Rev. 1
Mar. 2001
Description
The HA17339A and HA17339 series products are comparators designed for general purpose, especially for
power control systems.
These ICs operate from a single power-supply voltage over a wide range of voltages, and feature a reduced
power-supply current since the supply current is independent of the supply voltage.
These comparators have the merit which ground is included in the common-mode input voltage range at a
single-voltage power supply operation. These products have a wide range of applications, including limit
comparators, simple A/D converters, pulse/square-wave/time delay generators, wide range VCO circuits,
MOS clock timers, multivibrators, and high-voltage logic gates.
Features
•
•
•
•
•
•
•
•
Wide power-supply voltage range: 2 to 36 V
Very low supply current: 0.8 mA
Low input bias current: 25 nA
Low input offset current: 5 nA
Low input offset voltage: 2 mV
The common-mode input voltage range includes ground.
Low output saturation voltage: 1 mV (5 µA), 70 mV (1 mA)
Output voltages compatible with CMOS logic systems
HA17339/A Series
Features only for “A” series
• Low electro-magnetic susceptibility
Measurement Condition
Vcc
1k
1k
Vin
1V
+
−
5.0
5.1 kΩ
4.0
Vout
Vout (V)
Vcc = 5 V
HA17339A Vout vs. Vin
6.0
0.01 µF
−10 dBm
RF signal source
(for quasi-RF noise)
3.0
2.0
1.0
HA17339A (0 Hz)
HA17339A (10 MHz)
HA17339A (100 MHz)
0.0
−1.0
0.85
0.90
0.95
1.00
Vin (V)
1.05
1.10
1.15
HA17339 Vout vs. Vin
6.0
5.0
Vout (V)
4.0
3.0
2.0
1.0
HA17339 (0 Hz)
HA17339 (10 MHz)
HA17339 (100 MHz)
0.0
−1.0
0.85
0.90
0.95
1.00
Vin (V)
Ordering Information
Type No.
Application
Package
HA17339AP
Industrial use
DP-14
HA17339ARP
Commercial use
FP-14DN
HA17339AFP
HA17339
HA17339F
2
FP-14DA
Commercial use
DP-14
FP-14DA
1.05
1.10
1.15
HA17339/A Series
Pin Arrangement
Vout2
1
14 Vout3
Vout1
2
13 Vout4
VCC
3
Vin(−)1
4
11 Vin(+)4
Vin(+)1
5
10 Vin(−)4
Vin(−)2
6
Vin(+)2
7
1
4
− +
−
+
− +
+
2
3−
12 GND
9
Vin(+)3
8
Vin(−)3
(Top view)
Circuit Structure (1/4)
VCC
Q2
Vin(+)
Q3
Q4
Q1
Vout
Q8
Vin(−)
Q7
Q5
Q6
3
HA17339/A Series
Absolute Maximum Ratings (Ta = 25°C)
Ratings
Item
Symbol
17339AP
17339AFP
17339ARP
17339
17339F
Unit
Power supply voltage
VCC
36
36
36
36
36
V
Differential input voltage
Vin(diff)
±VCC
±VCC
±VCC
±VCC
±VCC
V
Input voltage
Vin
−0.3 to
+VCC
−0.3 to
+VCC
−0.3 to
+VCC
−0.3 to
+VCC
−0.3 to
+VCC
V
Output current
Iout * 2
20
20
20
20
20
mA
Allowable power
dissipation
PT
625 * 1
625 * 3
625 * 3
625 * 1
625 * 3
mW
Operating temperature
Topr
−40 to +85
−40 to +85
−40 to +85
−20 to +75
−20 to +75
°C
Storage temperature
Tstg
−55 to +125
−55 to +125
−55 to +125
−55 to +125
−55 to +125
°C
Output pin voltage
Vout
36
36
36
36
36
V
Notes: 1. These are the allowable values up to Ta = 50°C. Derate by 8.3 mW/°C above that temperature.
2. These products can be destroyed if the output and VCC are shorted together. The maximum
output current is the allowable value for continuous operation.
3. Tjmax = θj-a · PCmax + Ta (θj-a; Thermal resistor between junction and ambient at set board
use).
The wiring density and the material of the set board must be chosen for thermal conductance of
efficacy board.
And P C max cannot be over the value of P T.
40 mm
240
a
b
Thermal resistor θj-a (°C)
220
200
SO
180
P1
4−
160
140
120
100
no
1.5 t epoxy
co
mp
SO
ou
P1
4−
wit
nd
a. Class epoxy board of 10% wiring density
b. Class epoxy board of 30% wiring density
hc
om
po
un
d
80
0.5
1
2
5
10
Thermal conductance of efficacy board (W/m °C)
4
20
HA17339/A Series
Electrical Characteristics (VCC = 5 V, Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Input offset
voltage
VIO

2
7
mV
Output switching point:
when VO = 1.4V, RS = 0Ω
Input bias current
I IB

25
250
nA
I IN(+) or IIN(−)
Input offset
current
I IO

5
50
nA
I IN(+) − IIN(−)
Common-mode
input voltage *1
VCM
0

VCC − 1.5
V
Supply current
I CC

0.8
2
mA
RL = ∞
AV

200

V/mV
RL = 15kΩ
Response time *
tR

1.3

µs
VRL = 5V, RL = 5.1kΩ
Output sink
current
Iosink
6
16

mA
VIN(−) = 1V, VIN(+) = 0, VO ≤ 1.5V
Output saturation
voltage
VO sat

200
400
mV
VIN(−) = 1V, VIN(+) = 0,
Iosink = 3mA
Output leakage
current
I LO

0.1

nA
VIN(+) = 1V, VIN(−) = 0, VO = 5V
Voltage Gain
2
Notes: 1. Voltages more negative than −0.3 V are not allowed for the common-mode input voltage or for
either one of the input signal voltages.
2. The stipulated response time is the value for a 100 mV input step voltage that has a 5 mV
overdrive.
5
HA17339/A Series
Test Circuits
1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit
Rf 5k
VCC
SW1
RS 50
−
R 20 k
R 20 k
RS 50
Rf 5 k
VC1
RL 51k
VO
+
470µ
−
+
SW2
V
SW1
On
Off
On
Off
Vout
VO1
1
VC1 =
V
2 CC
VO2
VO3 VC2 = 1.4V
VO4
SW2
On
Off
Off
On
VC2
VIO =
| VO1 |
1 + Rf / RS
(mV)
IIO =
| VO2 − VO1 |
R(1 + Rf / RS)
(nA)
IIB =
| VO4 − VO3 |
2 ⋅ R(1 + Rf / RS)
(nA)
2. Output saturation voltage (VO sat) output sink current (Iosink), and common-mode input voltage (VCM)
test circuit
VCC
50
SW1 1
2
VC1
5k
4.87k
1.6k
SW2
1
2
−
+
50
50
SW3
Item VC1
VOsat 2V
VC2
0V
VC3

SW1
1
Iosink 2V
VCM
2V
0V
−1 to
VCC
1.5V

1
2
VC3
VC2
3. Supply current (ICC) test circuit
+
1V
6
−
A
VCC
ICC: RL = ∞
SW2
1
SW3
Unit
1 at
V
VCC = 5V
3 at
VCC = 15V
1
2
mA
Switched 3
V
between
1 and 2
HA17339/A Series
4. Voltage gain (AV) test circuit (RL = 15kΩ)
+V
VCC
20k
Vin
10k
30k
10µ
AV = 20 log
VO1 − VO2
VIN1 − VIN2
VO
−
50
20k
50
−V
RL 15k
+
+
−
(dB)
5. Response time (tR) test circuit
VCC
−
+V Vin
VO
50
24k
RL 5.1k
+
P.G
VR
5k
30k
−V
50
120k
SW
12V
tR: RL = 5.1kΩ, a 100mV input step voltage that has a 5mV overdrive
• With VIN not applied, set the switch SW to the off position and adjust VR so that VO is in the vicinity of
1.4V.
• Apply VIN and turn the switch SW on.
90%
10%
tR
7
HA17339/A Series
Characteristic Curves
Input Bias Current vs.
Ambient Temperature Characteristics
Input Bias Current vs.
Power-Supply Voltage Characteristics
90
60
VCC = 5 V
Ta = 25°C
Input Bias Current IIB (nA)
Input Bias Current IIB (nA)
80
70
60
50
40
30
20
50
40
30
20
10
10
0
−55 −35 −15
5
25
45
65
0
85 105 125
20
30
40
Ambient Temperature Ta (°C)
Power-Supply Voltage VCC (V)
Supply Current vs.
Ambient Temperature Characteristics
Supply Current vs.
Power-Supply Voltage Characteristics
1.8
1.6
VCC = 5 V
RL = ∞
Supply Current ICC (mA)
1.6
Supply Current ICC (mA)
10
1.4
1.2
1.0
0.8
0.6
0.4
Ta = 25°C
RL = ∞
1.4
1.2
1.0
0.8
0.6
0.2
0
−55 −35 −15
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
8
0
10
20
30
Power-Supply Voltage VCC (V)
40
HA17339/A Series
Output Sink Current vs.
Ambient Temperature Characteristics
Output Sink Current vs.
Power-Supply Voltage Characteristics
VCC = 5 V
Vin(−) = 1 V
Vin(+) = 0
Vout = 1.5 V
40
35
30
25
20
15
10
5
0
−55 −35 −15
5
25
45
65
30
Output Sink Current Iosink (mA)
Output Sink Current Iosink (mA)
45
20
15
10
5
0
85 105 125
0
10
20
30
40
Ambient Temperature Ta (°C)
Power-Supply Voltage VCC (V)
Voltage Gain vs.
Ambient Temperature Characteristics
Voltage Gain vs.
Power-Supply Voltage Characteristics
130
130
VCC = 5 V
RL = 15 kΩ
125
Ta = 25°C
RL = 15 kΩ
120
120
Voltage Gain AV (dB)
Voltage Gain AV (dB)
25
115
110
105
100
95
110
100
90
80
90
85
−55 −35 −15
70
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
0
10
20
30
40
Power-Supply Voltage VCC (V)
9
HA17339/A Series
HA17339/A Application Examples
The HA17339/A houses four independent comparators in a single package, and operates over a wide
voltage range at low power from a single-voltage power supply. Since the common-mode input voltage
range starts at the ground potential, the HA17339/A is particularly suited for single-voltage power supply
applications. This section presents several sample HA17339/A applications.
HA17339/A Application Notes
1. Square-Wave Oscillator
The circuit shown in figure one has the same structure as a single-voltage power supply astable
multivibrator. Figure 2 shows the waveforms generated by this circuit.
100k
75pF
C
VCC
VCC
4.3k
VCC R
−
HA17339
+
Vout
100k
100k
100k
Figure 1 Square-Wave Oscillator
(1)
Horizontal: 2 V/div, Vertical: 5 µs/div, VCC = 5 V
(2)
Horizontal: 5 V/div, Vertical: 5 µs/div, VCC = 15 V
Figure 2 Operating Waveforms
10
HA17339/A Series
2. Pulse Generator
The charge and discharge circuits in the circuit from figure 1 are separated by diodes in this circuit. (See
figure 3.) This allows the pulse width and the duty cycle to be set independently. Figure 4 shows the
waveforms generated by this circuit.
VCC
R1 1M
D1 IS2076
R2 100k D2 IS2076
C
−
80pF
VCC
VCC
HA17339
+
Vout
1M
1M
1M
Figure 3 Pulse Generator
Horizontal: 2 V/div, Vertical: 20 µs/div, VCC = 5 V
Horizontal: 5 V/div, Vertical: 20 µs/div, VCC = 15 V
Figure 4 Operating Waveforms
3. Voltage Controlled Oscillator
In the circuit in figure 5, comparator A1 operates as an integrator, A2 operates as a comparator with
hysteresis, and A3 operates as the switch that controls the oscillator frequency. If the output Vout1 is at
the low level, the A3 output will go to the low level and the A1 inverting input will become a lower
level than the A1 noninverting input. The A1 output will integrate this state and its output will increase
towards the high level. When the output of the integrator A1 exceeds the level on the comparator A2
inverting input, A2 inverts to the high level and both the output Vout1 and the A3 output go to the high
level. This causes the integrator to integrate a negative state, resulting in its output decreasing towards
the low level. Then, when the A1 output level becomes lower than the level on the A2 noninverting
input, the output Vout1 is once again inverted to the low level. This operation generates a square wave
on Vout1 and a triangular wave on Vout2.
11
HA17339/A Series
VCC
100k
−
+VC
10
0.1µ
Frequency
control
voltage
input
20k
A1
5.1k
0.01µ
+
VCC
VCC
3k
HA17339
3k
+
A2
HA17339
VCC/2
20k
Output 1
−
VCC
50k
A3
VCC = 30V
+250mV < +VC < +50V
700Hz < / < 100kHz
100k
VCC
500p
−
Output 2
VCC/2
HA17339
+
Figure 5 Voltage Controlled Oscillator
4. Basic Comparator
The circuit shown in figure 6 is a basic comparator. When the input voltage VIN exceeds the reference
voltage VREF, the output goes to the high level.
VCC
Vin
VREF
+
3kΩ
HA17339
−
Figure 6 Basic Comparator
5. Noninverting Comparator (with Hysteresis)
Assuming +VIN is 0V, when VREF is applied to the inverting input, the output will go to the low level
(approximately 0V). If the voltage applied to +VIN is gradually increased, the output will go high when
the value of the noninverting input, +VIN × R2/(R1 + R2), exceeds +VREF. Next, if +VIN is gradually
lowered, Vout will be inverted to the low level once again when the value of the noninverting input,
(Vout – V IN) × R1/(R1 + R2), becomes lower than VREF. With the circuit constants shown in figure 7,
assuming VCC = 15V and +VREF = 6V, the following formula can be derived, i.e. +VIN × 10M/(5.1M +
10M) > 6V, and Vout will invert from low to high when +VIN is > 9.06V.
(Vout − VIN) ×
R1
+ VIN < 6V
R1 + R2
(Assuming Vout = 15V)
When +VIN is lowered, the output will invert from high to low when +VIN < 1.41V. Therefore this
circuit has a hysteresis of 7.65V. Figure 8 shows the input characteristics.
12
HA17339/A Series
VCC
−
HA17339
+
+VREF
R1
+Vin
VCC
5.1M
3k
Vout
10M
R2
Figure 7 Noninverting Comparator
Output Voltage Vout (V)
20
VCC = 15 V, +VREF = 6 V
+Vin = 0 to 10 V
16
12
8
4
0
0
5
10
15
Input Voltage VIN (V)
Figure 8 Noninverting Comparator I/O Transfer Characteristics
6. Inverting Comparator (with Hysteresis)
In this circuit, the output Vout inverts from high to low when +VIN > (VCC + Vout)/3. Similarly, the
output Vout inverts from low to high when +V IN < VCC/3. With the circuit constants shown in figure 9,
assuming VCC = 15V and Vout = 15V, this circuit will have a 5V hysteresis. Figure 10 shows the I/O
characteristics for the circuit in figure 9.
VCC
−
+Vin
VCC
VCC
3k
HA17339
1M
Vout
+
1M
1M
Figure 9 Inverting Comparator
13
HA17339/A Series
Output Voltage Vout (V)
20
VCC = 15 V
16
12
8
4
0
0
5
10
15
Input Voltage VIN (V)
Figure 10 Inverting Comparator I/O Transfer Characteristics
7. Zero-Cross Detector (Single-Voltage Power Supply)
In this circuit, the noninverting input will essentially beheld at the potential determined by dividing VCC
with 100kΩ and 10kΩ resistors. When VIN is 0V or higher, the output will be low, and when VIN is
negative, Vout will invert to the high level. (See figure 11.)
VCC
Vin
5.1k
1S2076
100k
5.1k
100k VCC
−
HA17339
+
10k
20M
Figure 11 Zero-Cross Detector
14
5.1k
Vout
HA17339/A Series
Package Dimensions
Unit: mm
19.20
20.32 Max
8
6.30
7.40 Max
14
1.30
7
2.54 ± 0.25
0.48 ± 0.10
0.51 Min
2.39 Max
7.62
2.54 Min 5.06 Max
1
+ 0.10
0.25 – 0.05
0° – 15°
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
DP-14
Conforms
Conforms
0.97 g
Unit: mm
10.06
10.5 Max
8
5.5
14
1
0.10 ± 0.10
1.42 Max
1.27
*0.42 ± 0.08
0.40 ± 0.06
*0.22 ± 0.05
0.20 ± 0.04
2.20 Max
7
+ 0.20
7.80 – 0.30
1.15
0° – 8°
0.70 ± 0.20
0.15
0.12 M
*Dimension including the plating thickness
Base material dimension
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-14DA
—
Conforms
0.23 g
15
HA17339/A Series
Unit: mm
8.65
9.05 Max
8
1
7
*0.20 ± 0.05
0.635 Max
1.75 Max
3.95
14
+ 0.10
6.10 – 0.30
1.08
*0.40 ± 0.06
0.11
0.14 +– 0.04
0° – 8°
1.27
0.67
0.60 +– 0.20
0.15
0.25 M
*Pd plating
16
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-14DN
Conforms
Conforms
0.13 g
HA17339/A Series
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
Europe
Asia
Japan
:
:
:
:
http://semiconductor.hitachi.com/
http://www.hitachi-eu.com/hel/ecg
http://sicapac.hitachi-asia.com
http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585200
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan.
Colophon 3.0
17