FAIRCHILD MM74HC02

Revised January 2005
MM74HC02
Quad 2-Input NOR Gate
General Description
Features
The MM74HC02 NOR gates utilize advanced silicon-gate
CMOS technology to achieve operating speeds similar to
LS-TTL gates with the low power consumption of standard
CMOS integrated circuits. All gates have buffered outputs,
providing high noise immunity and the ability to drive 10
LS-TTL loads. The 74HC logic family is functionally as well
as pin-out compatible with the standard 74LS logic family.
All inputs are protected from damage due to static discharge by internal diode clamps to VCC and ground.
■ Typical propagation delay: 8 ns
■ Wide power supply range: 2–6V
■ Low quiescent supply current: 20 µA maximum
(74HC Series)
■ Low input current: 1 µA maximum
■ High output current: 4 mA minimum
Ordering Code:
Order Number
Package
Package Description
Number
MM74HC02M
M14A
14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC02SJ
M14D
Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC02MTC
MTC14
14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC02MTCX_NL
MTC14
Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm
Wide
MM74HC02N
N14A
14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code. (Tape and Reel not available in N14A.)
Pb-Free package per JEDEC J-STD-020B.
Connection Diagram
Pin Assignment for DIP, SOIC, SOP and TSSOP
Top View
Logic Diagram
© 2005 Fairchild Semiconductor Corporation
DS005294
www.fairchildsemi.com
MM74HC02 Quad 2-Input NOR Gate
September 1983
MM74HC02
Absolute Maximum Ratings(Note 1)
Recommended Operating
Conditions
(Note 2)
−0.5 to +7.0V
Supply Voltage (VCC )
DC Input Voltage (VIN)
−1.5 to VCC +1.5V
DC Output Voltage (VOUT)
−0.5 to VCC +0.5V
Clamp Diode Current (IIK, IOK)
±20 mA
DC Output Current, per pin (IOUT)
±25 mA
Min
Max
Supply Voltage (VCC)
2
6
V
DC Input or Output Voltage
0
VCC
V
−40
+125
°C
(tr, tf) VCC = 2.0V
1000
ns
VCC = 4.5V
500
ns
VCC = 6.0V
400
ns
(VIN, VOUT)
Operating Temperature Range (TA)
DC VCC or GND Current, per pin
Input Rise or Fall Times
±50 mA
(ICC)
−65°C to +150 °C
Storage Temperature Range (TSTG)
Power Dissipation (PD)
(Note 3)
600 mW
S.O. Package only
500 mW
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Lead Temperature (TL)
DC Electrical Characteristics
VIH
VIL
VOH
Parameter
Note 3: Power Dissipation temperature derating — plastic “N” package: −
12 mW/°C from 65°C to 85°C.
260 °C
(Soldering 10 seconds)
Symbol
Units
Conditions
(Note 4)
TA = 25°C
VCC
Typ
TA = −40 to 85°C TA = −40 to 125°C
Guaranteed Limits
Units
Minimum HIGH Level
2.0V
1.5
1.5
1.5
V
Input Voltage
4.5V
3.15
3.15
3.15
V
6.0V
4.2
4.2
4.2
V
Maximum LOW Level
2.0V
0.5
0.5
0.5
V
Input Voltage
4.5V
1.35
1.35
1.35
V
6.0V
1.8
1.8
1.8
V
Minimum HIGH Level
VIN = VIL
Output Voltage
|IOUT| ≤ 20 µA
2.0V
2.0
1.9
1.9
1.9
V
4.5V
4.5
4.4
4.4
4.4
V
6.0V
6.0
5.9
5.9
5.9
V
|IOUT| ≤ 4.0 mA
4.5V
4.2
3.98
3.84
3.7
V
|IOUT| ≤ 5.2 mA
6.0V
5.7
5.48
5.34
5.2
V
VIN = VIL
VOL
Maximum LOW Level
VIN = VIH or VIL
Output Voltage
|IOUT| ≤ 20 µA
2.0V
0
0.1
0.1
0.1
V
4.5V
0
0.1
0.1
0.1
V
6.0V
0
0.1
0.1
0.1
V
|IOUT| ≤ 4.0 mA
4.5V
0.2
0.26
0.33
0.4
V
|IOUT| ≤ 5.2 mA
6.0V
0.2
0.26
0.33
0.4
V
VIN = VCC or GND
6.0V
±0.1
±1.0
±1.0
µA
Maximum Quiescent
VIN = VCC or GND
6.0V
2.0
20
40
µA
Supply Current
IOUT = 0 µA
VIN = VIH or VIL
IIN
Maximum Input
Current
ICC
Note 4: For a power supply of 5V ±10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when
designing with this supply. Worst case VIH and VIL occur at VCC=5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current
(IIN, ICC, and IOZ) occur for CMOS at the higher voltage and so the 6.0V values should be used.
www.fairchildsemi.com
2
VCC = 5V, TA = 25°C, CL = 15 pF, tr = tf = 6 ns
Symbol
tPHL, tPLH
Parameter
Conditions
Maximum Propagation
Delay
Typ
Guaranteed
Limit
Units
8
15
ns
AC Electrical Characteristics
VCC = 2.0V to 6.0V, CL = 50 pF, tr = tf = 6 ns (unless otherwise specified)
Symbol
tPHL, tPLH
tTLH, tTHL
CPD
Parameter
Conditions
VCC
TA = 25°C
Typ
TA = −40 to 85°C TA = −55 to 125°C
Guaranteed Limits
Units
Maximum Propagation
2.0V
45
90
113
134
ns
Delay
4.5V
9
18
23
27
ns
6.0V
8
15
19
23
ns
Maximum Output Rise
2.0V
30
75
95
110
ns
and Fall Time
4.5V
8
15
19
22
ns
6.0V
7
13
16
19
ns
Power Dissipation
(per gate)
20
pF
Capacitance (Note 5)
CIN
Maximum Input
5
10
10
10
pF
Capacitance
Note 5: CPD determines the no load dynamic power consumption, PD = CPD VCC2 f + ICC VCC, and the no load dynamic current consumption,
IS = CPD VCC f + ICC.
3
www.fairchildsemi.com
MM74HC02
AC Electrical Characteristics
MM74HC02
Physical Dimensions inches (millimeters) unless otherwise noted
14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M14A
www.fairchildsemi.com
4
MM74HC02
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D
5
www.fairchildsemi.com
MM74HC02
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC14
www.fairchildsemi.com
6
MM74HC02 Quad 2-Input NOR Gate
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
2. A critical component in any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
www.fairchildsemi.com
7
www.fairchildsemi.com