ETC WED9LC6416V1610BC

WED9LC6416V
128Kx32 SSRAM/4Mx32 SDRAM
Advanced*
External Memory Solution for Texas Instruments TMS320C6000 DSP
FEATURES
DESCRIPTION
■ Clock speeds:
• SSRAM: 200, 166,150, and 133 MHz
• SDRAMs: 125 and 100 MHz
The WED9LC6416VxxBC is a 3.3V, 128K x 32 Synchronous
Pipeline SRAM and a 4Mx32 Synchronous DRAM array constructed with one 128K x 32 SBSRAM and two 4Mx16 SDRAM die
mounted on a multilayer laminate substrate. The device is
packaged in a 153 lead, 14mm by 22mm, BGA.
■ DSP Memory Solution
• Texas Instruments TMS320C6201
The WED9LC6416VxxBC provides a total memory solution for the
Texas Instruments TMS320C6201 and the TMS320C6701 DSPs
• Texas Instruments TMS320C6701
■ Packaging:
The Synchronous Pipeline SRAM is available with clock speeds
of 200, 166,150, and 133 MHz, allowing the user to develop a fast
external memory for the SSRAM interface port .
• 153 pin BGA, JEDEC MO-163
■ 3.3V Operating supply voltage
The SDRAM is available in clock speeds of 125 and 100 MHz,
allowing the user to develop a fast external memory for the
SDRAM interface port .
■ Direct control interface to both the SSRAM and SDRAM ports
on the “C6x”
■ Common address and databus
The WED9LC6416V is available in both commercial and industrial
temperature ranges.
■ 65% space savings vs. monolithic solution
■ Reduced system inductance and capacitance
FIG. 1
* This data sheet describes a product that may or may not be under development and
is subject to change or cancellation without notice.
PIN CONFIGURATION
TOP VIEW
PIN DESCRIPTION
1
2
3
4
5
6
7
8
9
A
DQ19
DQ23
VCC
VSS
VSS
VSS
VCC
DQ24
DQ28
A
B
DQ18
DQ22
VCC
VSS
SDCE
VSS
VCC
DQ25
DQ29
B
C
VCCQ
VCCQ
VCC
NC
VCC
VCCQ
VCCQ
C
D
DQ17
DQ21
VCC
VSS
VSS
VSS
VCC
DQ26
DQ30
D
E
DQ16
DQ20
VCC
VSS
SDCLK
VSS
VCC
DQ27
DQ31
E
F
VCCQ
VCCQ
VCC
G
NC
NC
NC
SDWE SDA10
A0-16
VSS
VSS
SDRAS SDCAS
VSS
VCC
VCCQ
VCCQ
F
VSS
A2
A4
A5
G
Address Bus
DQ0-31
Data Bus
SSCLK
SSRAM Clock
SSADC
SSRAM Address Status Control
SSWE
SSRAM Write Enable
SSOE
SSRAM Output Enable
SDCLK
SDRAM Clock
SDRAM Row Address Strobe
SDRAM Column Address Strobe
H
NC
NC
A8
VSS
VSS
NC
A1
A3
A10
H
SDRAS
J
A6
A7
A9
VSS
VSS
NC
A0
A11
A12
J
SDCAS
K
SDWE
SDRAM Write Enable
SDRAM Address 10/auto precharge
SSRAM Byte Write Enables
SDRAM SDQM 0 - 3
K NC / A17 NC / A18 NC / A19
VSS
VSS
NC
NC
A13
A14
L
NC
NC
NC
BWE2
BWE3
NC
NC
A15
A16
L
SDA10
M
VCCQ
VCCQ
VCC
BWE0
BWE1
NC
VCC
VCCQ
VCCQ
M
BWE0-3
N
DQ12
DQ11
VCC
VSS
VSS
VSS
VCC
DQ4
DQ0
N
P
DQ13
DQ10
VCC
VSS
SSCLK
VSS
VCC
DQ5
DQ1
P
R
VCCQ
VCCQ
VCC
T
DQ14
DQ9
VCC
U
VSS
VSS
SSADC SSWE
Chip Enable SSRAM Device
Chip Enable SDRAM Device
VSS
VCC
VCCQ
VCCQ
R
NC
VCC
DQ6
DQ2
T
VCC
Power Supply pins, 3.3V
U
VCCQ
Data Bus Power Supply pins,
3.3V (2.5V future)
DQ15
DQ8
VCC
SSOE
SSCE
NC
VCC
DQ7
DQ3
1
2
3
4
5
6
7
8
9
January 20001
SSCE
SDCE
1
VSS
Ground
NC
No Connect
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 2
BLOCK DIAGRAM
A0-16
A0
A1
SSWE
BWE0
BWE1
BWE2
BWE3
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
DQ9-16
DQ17-24
DQ25-32
DQ0-7
DQ8-15
DQ16-23
DQ24-31
BWE
BW1
BW2
BW3
BW4
SSCE
SSOE
SSADC
CE2
OE
ADSC
SSCLK
CLK
SDA10
DQ1-8
A12
A13
SDCE
SDRAS
SDCAS
SDWE
SDCLK
A12
A13
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
DQ0-31
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A11
A10/AP
BA0
BA1
LDQM
UDQM
CS
RAS
CAS
WE
CLK
DQ0-7
DQ8-15
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A11
A10/AP
BA0
BA1
LDQM
UDQM
CS
RAS
CAS
WE
CLK
DQ0-7
DQ8-15
2
DQ0-7
DQ8-15
DQ16-23
DQ24-31
January 2001
WED9LC6416V
OUTPUT FUNCTIONAL DESCRIPTIONS
Symbol
Type
Signal
SSCLK
Input
Pulse
SSADS
SSOE
SSWE
Input
Pulse
Polarity
Function
Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.
Active Low
When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define the operation
to be executed by the SSRAM.
Active Low
SSCE disable or enable SSRAM device operation.
SSCE
Input
Pulse
SDCLK
Input
Pulse
SDCE
Input
Pulse
Active Low
SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3.
SDRAS
SDCAS
SDWE
Input
Pulse
Active Low
When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define the operation
to be executed by the SDRAM.
Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.
Address bus for SSRAM and SDRAM
A0 and A1 are the burst address inputs for the SSRAM
During a Bank Active command cycle, A0-11, SDA10 defines the row address (RA0-10) when sampled at the
rising clock edge.
A0-16,
SDA10
Input
Level
—
During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when sampled at the
rising clock edge. In addition to the row address, SDA10 is used to invoke Autoprecharge operation at the
end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and A12 and A13 define
the bank to be precharged. If SDA10 is low, autoprecharge is disabled.
During a Precharge command cycle, SDA10 is used in conjunction with A12 and A13 to control which bank(s)
to precharge. If SDA10 is high, all banks will be precharged regardless of the state of A12 and A13. If
SDA10 is low, then A12 and A13 are used to define which bank to precharge.
DQ0-31
Input
Output
Level
BWE0-3
Input
Pulse
—
Data Input/Output are multiplexed on the same pins.
BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the SDRAM. BWE0
is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3 with DQ24-31.
Vcc, Vss
Supply
Power and ground for the input buffers and the core logic.
VCCQ
Supply
Data base power supply pins, 3.3V (2.5V future).
January 20001
3
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
ABSOLUTE MAXIMUM RATINGS
Voltage on Vcc Relative to Vss
RECOMMENDED DC OPERATING CONDITIONS
(VCC = 3.3V -5% / +10% unless otherwise noted;
0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial)
-0.5V to +4.6V
Vin (DQx)
-0.5V to Vcc +0.5V
Storage Temperature (BGA)
Parameter
Supply Voltage (1)
Input High Voltage (1,2)
Input Low Voltage (1,2)
Input Leakage Current
0 ≤ VIN ≤ Vcc
Output Leakage (Output Disabled)
0 ≤ VIN ≤ Vcc
Output High (IOH = -4mA) (1)
Output Low (IOL = 8mA) (1)
-55°C to +125°C
Junction Temperature
+175°C
Short Circuit Output Current
100 mA
*Stress greater than those listed under "Absolute Maximum Ratings" may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions greater than those indicated in operational
sections of this specifications is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
Symbol
VCC
VIH
VIL
ILI
Min
3.135
2.0
-0.3
-10
Max
3.6
VCC +0.3
0.8
10
Units
V
V
V
µA
ILo
-10
10
µA
VOH
VOL
2.4
—
—
0.4
V
V
NOTES:
1. All voltages referenced to Vss (GND).
2. Overshoot: VIH ≤ +6.0V for t ≤ t KC/2
Underershoot: VIL ≥ -2.0V for t ≤ t KC/2
DC ELECTRICAL CHARACTERISTICS
(VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial)
Description
Conditions
Symbol
Power Supply Current:
Operating (1,2,3)
SSRAM Active / DRAM Auto Refresh
Icc1
Power Supply Current
Operating (1,2,3)
SSRAM Active / DRAM Idle
Icc2
Power Supply Current
Operating (1,2,3)
SDRAM Active / SSRAM Idle
Icc3
CMOS Standby
TTL Standby
SSCE and SDCE ≤ Vcc -0.2V,
All other inputs at Vss +0.2 ≤ VIN or
VIN ≤ VCC -0.2V, Clk frequency = 0
SSCE and SDCE ≤ VIH min
All other inputs at VIL max ≤ VIN or
VIN ≤ VCC -0.2V, Clk frequency = 0
Auto Refresh
Frequency
133MHz
150MHz
166MHz
200MHz
133MHz
150MHz
166MHz
200MHz
83MHz
100MHz
125MHz
Typ
400
450
500
550
300
350
400
450
220
235
255
Max
550
580
625
700
450
480
525
585
240
250
280
Units
ISB1
20.0
40.0
mA
ISB2
30.0
55.0
mA
Icc5
190
250
mA
mA
mA
mA
NOTES:
1. I CC (operating) is specified with no output current. I CC (operating) increases with faster cycle times and greater output loading.
2. "Device idle" means device is deselected (CE ≥ VIH) Clock is running at max frequency and Addresses are switching each cycle.
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is specified at specified frequency.
BGA CAPACITANCE
Description
Conditions
Symbol
Typ
Max
Address Input Capacitance (1)
T A = 25°C; f = 1MHz
CI
5
8
pF
Input/Output Capacitance (DQ) (1)
T A = 25°C; f = 1MHz
CO
8
10
pF
Control Input Capacitance (1)
T A = 25°C; f = 1MHz
CA
5
8
pF
T A = 25°C; f = 1MHz
CCK
4
6
pF
Clock Input Capacitance (1)
NOTE:
1. This parameter is sampled.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
4
Units
January 2001
WED9LC6416V
SSRAM AC CHARACTERISTICS
(VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial)
Symbol
Parameter
Clock Cycle Time
Clock HIGH Time
Clock LOW Time
Clock to output valid
Clock to output invalid
Clock to output on Low-Z
Clock to output in High-Z
Output Enable to output valid
Output Enable to output in Low-Z
Output Enable to output in High-Z
Address, Control, Data-in Setup Time to Clock
Address, Control, Data-in Hold Time to Clock
January 20001
t KHKH
t KLKH
t KHKL
t KHQV
t KHQX
t KQLZ
t KQHZ
t OELQV
t OELZ
t OEHZ
tS
tH
200MHz
Min
Max
5
1.6
1.6
2.5
1.5
0
1.5
3
2.5
0
3.0
1.5
0.5
5
166MHz
Min
Max
6
2.4
2.4
3.5
1.5
0
1.5
3.5
3.5
0
3.5
1.5
0.5
150MHz
Min
Max
7
2.6
2.6
3.8
1.5
0
1.5
3.8
3.8
0
3.5
1.5
0.5
133MHz
Min
Max
8
2.8
2.8
4.0
1.5
0
1.5
4.0
4.0
0
3.8
1.5
0.5
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
SSRAM OPERATION TRUTH TABLE
Operation
Deselected Cycle, Power Down
WRITE Cycle, Begin Burst
READ Cycle, Begin Burst
READ Cycle, Begin Burst
READ Cycle, Suspend Burst
READ Cycle, Suspend Burst
READ Cycle, Suspend Burst
READ Cycle, Suspend Burst
WRITE Cycle, Suspend Burst
WRITE Cycle, Suspend Burst
Address Used
None
External
External
External
Current
Current
Current
Current
Current
Current
SSCE
H
L
L
L
X
X
H
H
X
H
SSADS
L
L
L
L
H
H
H
H
H
H
SSWE
X
L
H
H
H
H
H
H
L
L
SSOE
X
X
L
H
L
H
L
H
X
X
DQ
High-Z
D
Q
High-Z
Q
High-Z
Q
High-Z
D
D
NOTE:
1. X means “don’t care”, H means logic HIGH. L means logic LOW.
2. All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLK.
3. Suspending burst generates wait cycle
4. For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and staying HIGH
though out the input data hold time.
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
SSRAM PARTIAL TRUTH TABLE
Function
SSWE
BWE0
READ
H
X
BWE1 BWE2
X
X
X
WRITE one Byte (DQ0-7)
L
L
H
H
H
WRITE all Bytes
L
L
L
L
L
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
BWE3
6
January 2001
WED9LC6416V
FIG. 3
SSRAM READ TIMING
tKHKL
t KHKH
tKLKH
SSCLK
tH
tS
SSADS
tS
SSCE
tH
tS
ADDR
A1
A2
A3
A4
A5
tH
SSOE
t OEHQZ
t OELQV
SSWE
t KHQX
t KQLZ
DQ
FIG. 4
Q(A1)
t KHQV
Q(A2)
Q(A3)
Q(A4)
Q(A5)
SSRAM WRITE TIMING
t KHKH
tKHKL
tKLKH
SSCLK
tH
tS
SSADS
tH
SSCE
tH
tS
A2
A1
ADDR
A3
A4
A5
tH
SSOE
tS
KHG WX
tH
SSWE
tS
DQ
January 20001
D(A1)
tH
D(A2)
D(A3)
7
D (A4)
D(A5)
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
SDRAM AC CHARACTERISTICS
(VCC = 3.3V -5% / +10% unless otherwise noted; 0°C ≤ TA ≤ 70°C, Commercial; -40°C ≤ TA ≤ 85°C, Industrial)
Symbol
Parameter
Clock Cycle Time (1)
CL = 3
CL = 2
Clock to valid Output delay (1,2)
Output Data Hold Time (2)
Clock HIGH Pulse Width (3)
Clock LOW Pulse Width (3)
Input Setup Time (3)
Input Hold Time (3)
CLK to Output Low-Z (2)
CLK to Output High-Z
Row Active to Row Active Delay (4)
RAS\ to CAS\ Delay (4)
Row Precharge Time (4)
Row Active Time (4)
Row Cycle Time - Operation (4)
Row Cycle Time - Auto Refresh (4,8)
Last Data in to New Column Address Delay (5)
Last Data in to Row Precharge (5)
Last Data in to Burst Stop (5)
Column Address to Column Address Delay (6)
Number of Valid Output Data (7)
t CC
t CC
t SAC
t OH
t CH
t CL
t SS
t SH
t SLZ
t SHZ
t RRD
tRCD
t RP
t RAS
t RC
t RFC
t CDL
t RDL
t BDL
t CCD
125MHz
Min
8
10
100MHz
Max
1000
1000
6
3
3
3
2
1
2
Min
10
12
83MHz
Max
1000
1000
7
3
3
3
2
1
2
7
20
20
20
50
70
70
1
1
1
1.5
2
1
10,000
Min
12
15
3
3
3
2
1
2
7
20
20
20
50
80
80
1
1
1
1.5
2
2
Max
1000
1000
8
10,000
8
24
24
24
60
90
90
1
1
1
1.5
2
1
10,000
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
CLK
CLK
CLK
CLK
ea
NOTES:
1. Parameters depend on programmed CAS latency.
2. If clock rise time is longer than 1ns (trise/2 -0.5)ns should be added to the parameter.
3. Assumed input rise and fall time = 1ns. If trise of t fall are longer than 1ns. [(trise = tfall )/2] - 1ns should be added to the parameter.
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the
next higher integer.
5. Minimum delay is required to complete write.
6. All devices allow every cycle column address changes.
7. In case of row precharge interrupt, auto precharge and read burst stop.
8. A new command may be given tRFC after self-refresh exit.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
8
January 2001
WED9LC6416V
CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHz SDRAM
(Unit = number of clock)
Frequency
CAS
Latency
tRC
tRAS
tRP
tRRD
tRCD
tCCD
tCDL
tRDL
70ns
50ns
20ns
20ns
20ns
10ns
10ns
10ns
125MHz (8.0ns)
3
9
6
3
2
3
1
1
1
100MHz (10.0ns)
3
7
5
2
2
2
1
1
1
83MHz (12.0ns)
2
6
4
2
2
2
1
1
1
CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHz SDRAM
(Unit = number of clock)
Frequency
CAS
Latency
tRC
tRAS
tRP
tRRD
tRCD
tCCD
tCDL
tRDL
70ns
50ns
20ns
20ns
20ns
10ns
10ns
10ns
100MHz (12.0ns)
3
7
5
2
2
2
1
1
1
83MHz (12.0ns)
2
6
5
2
2
2
1
1
1
REFRESH CYCLE PARAMETERS
-10
Parameter
Refresh Period (1,2)
-12
Symbol
Min
Max
Min
Max
Units
t REF
—
64
—
64
ms
NOTES:
1. 4096 cycles
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.
SDRAM COMMAND TRUTH TABLE
SDCE
SDRAS
Mode Register Set
L
L
Auto Refresh (CBR)
L
L
Single Bank
L
Precharge all Banks
L
Function
Precharge
SDCAS
SDWE
BWE
A12, A13
SDA10
A11-0
L
L
X
L
H
X
X
L
H
L
X
BA
L
L
H
L
X
X
H
Notes
OP CODE
X
2
Bank Activate
L
L
H
H
X
BA
Row Address
Write
L
H
L
L
X
BA
L
2
2
Write with Auto Precharge
L
H
L
L
X
BA
H
2
Read
L
H
L
L
X
BA
L
2
Read with Auto Precharge
L
H
L
H
X
BA
H
2
Burst Termination
L
H
H
L
X
X
X
3
No Operation
L
H
H
H
X
X
X
Device Deselect
H
X
X
X
X
X
X
Data Write/Output Disable
X
X
X
X
L
X
X
4
Data Mask/Output Disable
X
X
X
X
H
X
X
4
NOTES:
1. All of the SDRAM operations are defined by states of SDCE\, SDWE\, SDRAS\, SDCAS\, and BWE0-3 at the positive rising edge of the clock.
2. Bank Select (BA), if A12 (BA 0) and A 13 (BA 1 ) select between different banks.
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.
4. The BWE has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE goes high at a clock timing the data outputs are disabled
and become high impedance after a two clock delay. BWE also provides a data mask function for Write cycles. When it activates, the Write operation at the clock is
prohibited (zero clock latency).
January 20001
9
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
MODE REGISTER SET TABLE
A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
11
10
9
8
7
6
5
4
Reserved* WB Op Mode CAS Latency
3
2
1
0
Address Bus
Mode Register (Mx)
BT Burst Length
Burst Length
*Should program
M11, M10 = "0, 0"
to ensure compatibility
with future devices.
M2 M1 M0
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
M3 = 0
1
2
4
8
Reserved
Reserved
Reserved
Full Page
M3
Burst Type
0
Sequential
1
Interleaved
M2 M1 M0
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
M3 = 1
1
2
4
8
Reserved
Reserved
Reserved
Reserved
CAS Latency
Reserved
Reserved
2
3
Reserved
Reserved
Reserved
Reserved
M8
M7
M6-M0
Operating Mode
0
0
Defined
Standard Operation
---
---
---
All other states reserved
M9
Write Burst Mode
0
Programmed Burst Length
1
Single Location Access
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
10
January 2001
WED9LC6416V
SDRAM CURRENT STATE TRUTH TABLE
Current State
Idle
Row Active
Read
Write
Read with
Auto Precharge
January 20001
Command
A12 & A13
(BA)
SDWE
A11-A0
Action
Notes
SDCE
SDRAS
SDCAS
L
L
L
L
Mode Register Set
Set the Mode Register
1
L
L
L
H
X
X
Auto or Self Refresh
Start Auto
1
L
L
H
L
X
X
Precharge
No Operation
L
L
H
H
BA
Row Address
Bank Activate
Activate the specified bank and row
L
H
L
L
BA
Column
Write w/o Precharge
ILLEGAL
2
L
H
L
H
BA
Column
Read w/o Precharge
ILLEGAL
1
L
H
H
L
X
X
Burst Termination
No Operation
1
L
H
H
H
X
X
No Operation
No Operation
H
X
X
X
X
Device Deselect
No Operation
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
Precharge
3
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
1
L
H
L
L
BA
Column
Write
Start Write; Determine if Auto Precharge
4,5
L
H
L
H
BA
Column
Read
Start Read; Determine if Auto Precharge
4,5
L
H
H
L
X
X
Burst Termination
No Operation
L
H
H
H
X
X
No Operation
No Operation
H
X
X
X
X
Device Deselect
No Operation
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
Terminate Burst; Start the Precharge
OP Code
X
OP Code
X
OP Code
Description
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
Terminate Burst; Start the Write cycle
5,6
L
H
L
H
BA
Column
Read
Terminate Burst; Start a new Read cycle
5,6
L
H
H
L
X
X
Burst Termination
Terminate the Burst
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
Terminate Burst; Start the Precharge
OP Code
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
Terminate Burst; Start a new Write cycle
5,6
L
H
L
H
BA
Column
Read
Terminate Burst; Start the Read cycle
5,6
L
H
H
L
X
X
Burst Termination
Terminate the Burst
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
OP Code
11
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
SDRAM CURRENT STATE TRUTH TABLE (cont.)
Current State
Write with
Auto Precharge
Precharging
Row Activating
Write Recovering
Write Recovering
with Auto
Precharge
Command
A12 & A13
(BA)
SDWE
A11-A0
Action
Notes
SDCE
SDRAS
SDCAS
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
ILLEGAL
OP Code
Description
L
H
L
L
BA
Column
Write
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
L
H
H
H
X
X
No Operation
Continue the Burst
H
X
X
X
X
X
Device Deselect
Continue the Burst
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
No Operation; Bank(s) idle after tRP
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
L
H
L
L
BA
Column
Write w/o Precharge
ILLEGAL
2
L
H
L
H
BA
Column
Read w/o Precharge
ILLEGAL
20
L
H
H
L
X
X
Burst Termination
No Operation; Bank(s) idle after tRP
L
H
H
H
X
X
No Operation
No Operation; Bank(s) idle after tRP
H
X
X
X
X
L
L
L
L
L
L
L
H
X
L
L
H
L
L
L
H
L
H
L
H
L
OP Code
X
X
2
Device Deselect
No Operation; Bank(s) idle after tRP
Mode Register Set
ILLEGAL
X
Auto or Self Refresh
ILLEGAL
X
X
Precharge
ILLEGAL
2
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
L
BA
Column
Write
ILLEGAL
2
L
H
BA
Column
Read
ILLEGAL
2
H
H
L
X
X
Burst Termination
No Operation; Row active after tRCD
OP Code
L
H
H
H
X
X
No Operation
No Operation; Row active after tRCD
H
X
X
X
X
X
Device Deselect
No Operation; Row active after tRCD
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto orSelf Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
Start Write; Determine if Auto Precharge
6
L
H
L
H
BA
Column
Read
Start Read; Determine if Auto Precharge
6
L
H
H
L
X
X
Burst Termination
No Operation; Row active after tDPL
OP Code
L
H
H
H
X
X
No Operation
No Operation; Row active after tDPL
H
X
X
X
X
X
Device Deselect
No Operation; Row active after tDPL
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto orSelf Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
2
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
2
L
H
L
L
BA
Column
Write
ILLEGAL
2,6
L
H
L
H
BA
Column
Read
ILLEGAL
2,6
L
H
H
L
X
X
Burst Termination
No Operation; Precharge after tDPL
L
H
H
H
X
X
No Operation
No Operation; Precharge after tDPL
H
X
X
X
X
X
Device Deselect
No Operation; Precharge after tDPL
OP Code
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
12
January 2001
WED9LC6416V
SDRAM CURRENT STATE TRUTH TABLE (cont.)
Current State
Refreshing
Mode Register
Accessing
SDCE
SDRAS
SDCAS
L
L
L
Command
A12 & A13
A11-A0
(BA)
L
OP Code
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
L
H
L
L
BA
Column
Write
ILLEGAL
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
No Operation; Idle after tRC
SDWE
Description
Action
L
H
H
H
X
X
No Operation
No Operation; Idle after tRC
H
X
X
X
X
X
Device Deselect
No Operation; Idle after tRC
L
L
L
L
Mode Register Set
ILLEGAL
L
L
L
H
X
X
Auto or Self Refresh
ILLEGAL
L
L
H
L
X
X
Precharge
ILLEGAL
L
L
H
H
BA
Row Address
Bank Activate
ILLEGAL
ILLEGAL
OP Code
L
H
L
L
BA
Column
Write
L
H
L
H
BA
Column
Read
ILLEGAL
L
H
H
L
X
X
Burst Termination
ILLEGAL
L
H
H
H
X
X
No Operation
No Operation; Idle after two clock cycles
H
X
X
X
X
X
Device Deselect
No Operation; Idle after two clock cycles
Notes
NOTES:
1. Both Banks must be idle otherwise it is an illegal action.
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the Current
State then the action may be legal depending on the state of that bank.
3. The minimum and maximum Active time (t RAS) must be satisfied.
4. The RAS to CAS Delay (t RCD) must occur before the command is given.
5. Address SDA 10 is used to determine if the Auto Precharge function is activated.
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.
The command is illegal if the minimum bank to bank delay time (t RRD) is not satisfied.
January 20001
13
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 5
SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @ CAS LATENCY = 3,
BURST LENGTH = 1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
t CH
t CC
t CL
t RCD
t RAS
SDCE
t SS
t RCD
t SS
t SH
t RP
t SH
SDRAS
t SS
t CCD
t SH
SDCAS
t SS
t SS
t SH
ADDR
Ra
BA
BS
SDA10
Ra
t SH
Ca
Cb
Note 2, 3
Note 2, 3
BS
BS
BS
BS
BS
Note 3
Note 3
Note 3
Note 4
Rb
t RAC
t SS
t SAC
Qa
DQ
t SLZ
t OH
Cc
Rb
Note 2, 3 Note 4
Note 2
t SH
Db
Qc
t SS
t SH
t SS
t SH
SDWE
BWE
Row Active
Read
Write
Read
Precharge
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
14
Row Active
DON’T CARE
January 2001
WED9LC6416V
FIG. 6
SDRAM POWER UP SEQUENCE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
t RFC
t RP
t RFC
SDRAS
SDCAS
ADDR
Key
RAa
BA
RAa
SDA10
HIGH-Z
DQ
SDWE
BWE
High level is necessary
Precharge
(All Banks)
Auto Refresh
Auto Refresh
Mode Register Set
Row Active
(A-Bank)
DON’T CARE
January 20001
15
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 7
SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
Note 1
t RC
SDCE
t RCD
SDRAS
SDCAS
ADDR
Ra
Ca0
Rb
Cb0
BA
SDA10
Ra
Rb
t SHZ
t RAC
Note 3
Qa0
CL = 2
Qa1
t RAC
DQ
Note 3
Qa2
t RDL
Qa3
t SHZ
t OH
t SAC
Qa0
CL = 3
Note 4
t OH
t SAC
Qa1
Qa2
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
Note 4
Qa3
t RDL
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
Row Active
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. Minimum row cycle times are required to complete internal DRAM operation.
2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will be Hi-Z (tSHZ )
after the clock.
3. Access time from Row active command. t CC *(t RCD + CAS Latency - 1) + tSAC .
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
16
January 2001
WED9LC6416V
FIG. 8
SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
t RCD
SDRAS
Note 2
SDCAS
ADDR
Ra
Ca0
Cb0
Cc0
Cd0
BA
SDA10
Ra
t RDL
Qa0
CL = 2
Qa1
Qb0
Qb1
Qb2
Dc0
DQ
Dc1
Dd0
Dd1
t CDL
Qa0
CL = 3
Qa1
Qb0
Qb1
Dc0
Dc1
Dd0
Dd1
SDWE
Note 1
Note 3
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Read
(A-Bank)
Write
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. To write data before burst read ends. BWE should be asserted three cycle prior to write command to avoid bus contention.
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.
3. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked
internally.
January 20001
17
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 9
SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
Note 1
SDCE
SDRAS
Note 2
SDCAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
BA
SDA10
RAa
RBb
QAa0
CL = 2
QAa1
QAa2
QAa3
QBb0
QBb1
QBb2 QBb3
QAc0
QAc1
QBd0
QBd1 QAe0
QAe1
QAa0
QAa1
QAa2
QAa3
QBb0
QBb1
QBb3
QAc0
QAc1
QBd0 QBd1
QAe0
DQ
CL = 3
QBb2
QAe1
SDWE
BWE
Row Active
(A-Bank)
Row Active
(B-Bank)
Read
(B-Bank)
Read
(A-Bank)
Read
(B-Bank)
Read
(A-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edge.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
18
January 2001
WED9LC6416V
FIG. 10
SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
Note 2
SDCAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
BA
SDA10
RAa
RBb
t CDL
DAa0
DQ
DAa1
DAa2
DAa3
DBb0
t RDL
DBb1
DBb2
DBb3
DAc0
DAc1
DBd0
DBd1
SDWE
Note 1
BWE
Row Active
(A-Bank)
Row Active
(B-Bank)
Write
(B-Bank)
Write
(A-Bank)
Write
(A-Bank)
Write
(B-Bank)
Precharge
(Both Banks)
DON’T CARE
NOTES:
1. To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input data.
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.
January 20001
19
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 11
SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
QAc0
QAc1
QAc2
QAc0
QAc1
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
RBb
CAa
CBb
RAc
CAc
BA
SDA10
RAa
RBb
RAc
t CDL
QAa0
CL = 2
QAa1
QAa2
QAa3
QAa0
QAa1
QAa2
DBb0
DBb1
DBb2
DBb3
DBb0
DBb1
DBb2
DBb3
Note 1
DQ
CL = 3
QAa3
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
Write
(B-Bank)
Row Active
(B-Bank)
Row Active
(A-Bank)
Read
(A-Bank)
DON’T CARE
NOTES:
1. tCDL should be met to complete write.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
20
January 2001
WED9LC6416V
FIG. 12
SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
BA
SDA10
Qa0
CL = 2
Qa1
Qa2
Qa3
Qa0
Qa1
Qa2
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
DQ
CL = 3
Qa3
SDWE
BWE
Row Active
(A-Bank)
Read with
Auto Precharge
(A-Bank)
Row Active
(B-Bank)
Auto Precharge
Start Point
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Auto Precharge
Start Point
(B-Bank)
DON’T CARE
NOTES:
1. tCDL should be controlled to meet minimum tRAS before internal precharge start.
(In the case of Burst Length = 1 & 2 and BRSW mode)
January 20001
21
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 13 SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST STOP @
BURST LENGTH = FULL PAGE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
QAb0
QAb1
QAb2
QAb3
QAb4
QAb5
QAb0
QAb1
QAb2
QAb3
QAb4
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
CAb
BA
SDA10
RAa
Note 2
QAa0
CL = 2
1
QAa1
QAa2
QAa3
QAa4
QAa0
QAa1
QAa2
QAa3
1
DQ
2
CL = 3
QAa4
2
QAb5
SDWE
BWE
Row Active
(A-Bank)
Read
(A-Bank)
Burst Stop
Read
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. About the valid DQs after burst stop, it is the same as the case of SDRAS interrupt. Both cases are illustrated in the above timing diagram. See the label 1, 2 on
each of them. But at burst write, burst stop and SDRAS interrupt should be compared carefully. Refer to the timing diagram of “Full page write burst stop cycle”.
3. Burst stop is valid at every burst length.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
22
January 2001
WED9LC6416V
FIG. 14
SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST STOP @
BURST LENGTH = FULL PAGE
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SDCLK
SDCE
SDRAS
SDCAS
ADDR
RAa
CAa
CAb
BA
SDA10
RAa
t BDL
t RDL
Note 2
DAa0
DQ
DAa1
DAa2
DAa3
DAa4
DAb0
DAb1
DAb2
DAb3
DAb4
DAb5
SDWE
BWE
Row Active
(A-Bank)
Write
(A-Bank)
Burst Stop
Write
(A-Bank)
Precharge
(A-Bank)
DON’T CARE
NOTES:
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by AC parameter of tRDL .
BWE at write interrupt by precharge command is needed to prevent invalid write.
BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked
internally.
3. Burst stop is valid at every burst length.
January 20001
23
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
FIG. 15
SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
QAd0
QAd1
19
SDCLK
SDCE
SDRAS
Note 2
SDCAS
ADDR
RAa
CAa
RBb
CAb
RAc
CBc
CAd
BA
SDA10
RAa
RBb
DAa0
CL = 2
RAc
QAb0
QAb1
DBc0
DQ
DAa0
CL = 3
QAb0
QAb1
DBc0
QAd0
QAd1
SDWE
BWE
Row Active
(A-Bank)
Row Active
(B-Bank)
Write
(A-Bank)
Row Active
(A-Bank)
Read with
Auto Precharge
(A-Bank)
Read
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Precharge
(Both Banks)
DON’T CARE
NOTES:
1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set).
At the BRSW Mode, the burst length at Write is fixed to “1” regardless of programmed burst length.
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle,
so in the case of BRSW write command, the next cycle starts the precharge.
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
24
January 2001
WED9LC6416V
FIG. 16
SDRAM MODE REGISTER SET CYCLE
0
1
2
3
4
5
6
SDRAM AUTO REFRESH CYCLE
0
1
2
3
4
5
6
7
8
9
10
SDCLK
HIGH
SDCE
Note 2
t RFC
SDRAS
Note 1
SDCAS
Note 3
Key
ADDR
DQ
Ra
HI-Z
HI-Z
SDWE
BWE
MRS
New
Command
Auto Refresh
New Command
DON'T CARE
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.
NOTES:
MODE REGISTER SET CYCLE
1. SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode register.
2. Minimum 2 clock cycles should be met before new SDRAS activation.
3. Please refer to Mode Register Set Table.
January 20001
25
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
WED9LC6416V
PACKAGE DESCRIPTION:
153 LEAD BGA (17 x 9 BALL ARRAY)
JEDEC MO-163
3.50 (0.138)
MAX
14.00 (0.551)
BSC
A
B
PIN 1 INDEX
C
D
E
F
G
H
22.00 (0.866)
BSC
J
K
L
M
N
P
R
T
U
1.27 (0.050) TYP
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES
ORDERING INFORMATION
COMMERCIAL (0°C ≤ TA ≤ 70°C)
INDUSTRIAL (-40°C ≤ TA ≤ 85°C)
Part Number
WED9LC6416V2012BC
SSRAM Access
200MHz
SDRAM Access
125MHz
Part Number
WED9LC6416V2012BI
SSRAM Access
200MHz
SDRAM Access
125MHz
WED9LC6416V2010BC
200MHz
100MHz
WED9LC6416V2010BI
200MHz
100MHz
WED9LC6416V1612BC
166MHz
125MHz
WED9LC6416V1612BI
166MHz
125MHz
WED9LC6416V1610BC
166MHz
100MHz
WED9LC6416V1610BI
166MHz
100MHz
WED9LC6416V1512BC
150MHz
125MHz
WED9LC6416V1512BI
150MHz
125MHz
WED9LC6416V1510BC
150MHz
100MHz
WED9LC6416V1510BI
150MHz
100MHz
WED9LC6416V1312BC
133MHz
125MHz
WED9LC6416V1312BI
133MHz
125MHz
WED9LC6416V1310BC
133MHz
100MHz
WED9LC6416V1310BI
133MHz
100MHz
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com
26
January 2001
WED9LC6416V
FIG. 17
INTERFACING THE TEXAS INSTRUMENTS TMS320C6x WITH
THE WED9LC6416V (128Kx32 SSRAM/4Mx32 SDRAM)
Address Bus
EA2-21
EA2 A0
EA3 A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
Texas Instruments
TMS320C6x
DSP
SSWE\
CE2\
SSOE\
SSADS\
SSCLK
BE0\
BE1\
BE2\
BE3\
Data Bus
ED0-31
January 20001
SDA10
CE0\
SDRAS\
SDCAS\
SDWE\
SDCLK
27
WED9LC6416V
128K x 32 SSRAM
4M x 32 SDRAM
DQ0-7
DQ8-15
DQ16-23
DQ24-31
SSWE\
SSCE\
SSOE\
SSADC\
SSCLK
SSRAM
Control
BWE0\
BWE1\
BWE2\
BWE3\
Shared
Controls
SDA10
SDCE\
SDRAS\
SDCAS\
SDWE\
SDCLK
SDRAM
Control
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com