Specifications GAL22V10 GAL22V10 High Performance E2CMOS PLD Generic Array Logic™ Functional Block Diagram Features • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 4 ns Maximum Propagation Delay — Fmax = 250 MHz — 3.5 ns Maximum from Clock Input to Data Output — UltraMOS® Advanced CMOS Technology RESET I/CLK 8 OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q OLMC I/O/Q I 10 • ACTIVE PULL-UPS ON ALL PINS I • COMPATIBLE WITH STANDARD 22V10 DEVICES — Fully Function/Fuse-Map/Parametric Compatible with Bipolar and UVCMOS 22V10 Devices 12 • 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR — 90mA Typical Icc on Low Power Device — 45mA Typical Icc on Quarter Power Device PROGRAMMABLE AND-ARRAY (132X44) I I • E2 CELL TECHNOLOGY — Reconfigurable Logic — Reprogrammable Cells — 100% Tested/100% Yields — High Speed Electrical Erasure (<100ms) — 20 Year Data Retention I I I • TEN OUTPUT LOGIC MACROCELLS — Maximum Flexibility for Complex Logic Designs • PRELOAD AND POWER-ON RESET OF REGISTERS — 100% Functional Testability I • APPLICATIONS INCLUDE: — DMA Control — State Machine Control — High Speed Graphics Processing — Standard Logic Speed Upgrade I • ELECTRONIC SIGNATURE FOR IDENTIFICATION ESCRIPTION I 14 16 16 14 12 10 I 8 PRESET Pin Configuration Description DIP The GAL22V10, at 4ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E2) floating gate technology to provide the highest performance available of any 22V10 device on the market. CMOS circuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E2 technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently. 2 I/O/Q I/CLK 28 I/O/Q Vcc I/CLK 4 I NC I I PLCC 26 5 25 I I The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric compatible with standard bipolar and CMOS 22V10 devices. I/O/Q 7 23 9 I 11 I/O/Q I I/O/Q 19 18 16 NC 14 I I 12 GND I Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lattice Semiconductor delivers 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified. Vcc I I/O/Q I I/O/Q I/O/Q GAL 22V10 I I/O/Q 6 I/O/Q NC 21 Top View 24 I/O/Q I GAL22V10 NC I I/O/Q 1 I I/O/Q 18 I I/O/Q I/O/Q I I/O/Q I/O/Q I I/O/Q I I/O/Q I/O/Q I GND 12 13 I Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 22v10_06 1 August 2000 Specifications GAL22V10 GAL22V10 Ordering Information Commercial Grade Specifications Tpd (ns) Tsu (ns) Tco (ns) Icc (mA) 4 2.5 3.5 140 GAL22V10D-4LJ 28-Lead PLCC 5 3 4 140 GAL22V10D-5LJ 28-Lead PLCC 150 GAL22V10C-5LJ 28-Lead PLCC GAL22V10D-7LP 24-Pin Plastic DIP 7.5 10 15 25 4.5 4.5 140 Ordering # Package 5 4.5 140 GAL22V10C-7LP 24-Pin Plastic DIP 4.5 4.5 140 GAL22V10D-7LJ or GAL22V10C-7LJ 28-Lead PLCC 6.5 5 140 GAL22V10B-7LP 24-Pin Plastic DIP 7 7 10 15 8 15 140 GAL22V10B-7LJ 28-Lead PLCC 55 GAL22V10D-10QP 24-Pin Plastic DIP 55 GAL22V10D-10QJ 28-Lead PLCC 130 GAL22V10D-10LP, GAL22V10C-10LP or GAL22V10B-10LP 24-Pin Plastic DIP 130 GAL22V10D-10LJ, GAL22V10C-10LJ or GAL22V10B-10LJ 28-Lead PLCC 55 GAL22V10D-15QP or GAL22V10B-15QP 24-Pin Plastic DIP 55 GAL22V10D-15QJ or GAL22V10B-15QJ 28-Lead PLCC 130 GAL22V10D-15LP or GAL22V10B-15LP 24-Pin Plastic DIP 130 GAL22V10D-15LJ or GAL22V10B-15LJ 28-Lead PLCC 55 GAL22V10D-25QP or GAL22V10B-25QP 24-Pin Plastic DIP 55 GAL22V10D-25QJ or GAL22V10B-25QJ 28-Lead PLCC 90 GAL22V10D-25LP or GAL22V10B-25LP 24-Pin Plastic Dip 90 GAL22V10D-25LJ or GAL22V10B-25LJ 28-Pin PLCC Industrial Grade Specifications Tpd (ns) Tsu (ns) Tco (ns) Icc (mA) 7.5 5 4.5 160 Ordering # Package GAL22V10D-7LPI or GAL22V10C-7LPI 4.5 4.5 160 GAL22V10D-7LJI or GAL22V10C-7LJI 28-Lead PLCC 10 7 7 160 GAL22V10D-10LPI or GAL22V10C-10LPI 24-Pin Plastic DIP 160 GAL22V10D-10LJI or GAL22V10C-10LJI 28-Lead PLCC 15 10 8 150 GAL22V10D-15LPI or GAL22V10B-15LPI 24-Pin Plastic DIP 150 GAL22V10D-15LJI or GAL22V10B-15LJI 28-Lead PLCC 20 14 10 150 GAL22V10D-20LPI or GAL22V10B-20LPI 24-Pin Plastic DIP 150 GAL22V10D-20LJI or GAL22V10B-20LJI 28-Lead PLCC 25 15 15 150 GAL22V10D-25LPI or GAL22V10B-25LPI 24-Pin Plastic DIP 150 GAL22V10D-25LJI or GAL22V10B-25LJI 28-Lead PLCC 24-Pin Plastic DIP Part Number Description XXXXXXXX _ XX X X X GAL22V10D Device Name GAL22V10C GAL22V10B Speed (ns) Grade L = Low Power Power Q = Quarter Power Package P = Plastic DIP J = PLCC 2 Blank = Commercial I = Industrial Specifications GAL22V10 Output Logic Macrocell (OLMC) The GAL22V10 has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to eight product terms (pins 14 and 23, DIP pinout), two have ten product terms (pins 15 and 22), two have twelve product terms (pins 16 and 21), two have fourteen product terms (pins 17 and 20), and two OLMCs have sixteen product terms (pins 18 and 19). In addition to the product terms available for logic, each OLMC has an additional product-term dedicated to output enable control. The GAL22V10 has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two product terms are common to all registered OLMCs. The Asynchronous Reset sets all registers to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted. NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen. The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configured as either active high or active low. A R D 4 TO 1 MUX Q CLK Q SP 2 TO 1 MUX GAL22V10 OUTPUT LOGIC MACROCELL (OLMC) Output Logic Macrocell Configurations NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as registered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins. Each of the Macrocells of the GAL22V10 has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the following page. COMBINATORIAL I/O In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either “on” (dedicated output), “off” (dedicated input), or “product-term driven” (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array. REGISTERED In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC’s D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an individual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop’s /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array. 3 Specifications GAL22V10 Registered Mode AR AR Q D CLK Q D Q CLK SP Q SP ACTIVE LOW ACTIVE HIGH S0 = 0 S1 = 0 S0 = 1 S1 = 0 Combinatorial Mode ACTIVE LOW ACTIVE HIGH S0 = 0 S1 = 1 S0 = 1 S1 = 1 4 Specifications GAL22V10 GAL22V10 Logic Diagram / JEDEC Fuse Map DIP (PLCC) Package Pinouts 1 (2) 0 4 8 12 16 20 24 28 32 36 40 ASYNCHRONOUS RESET (TO ALL REGISTERS) 0000 0044 . . . 0396 8 OLMC S0 5808 S1 5809 0440 . . . . 0880 10 OLMC S0 5810 S1 5811 2 (3) 0924 . . . . . 1452 12 OLMC 23 (27) 22 (26) 21 (25) S0 5812 S1 5813 3 (4) 1496 . . . . . . 2112 14 OLMC 20 (24) S0 5814 S1 5815 4 (5) 2156 . . . . . . . 2860 16 OLMC 19 (23) S0 5816 S1 5817 5 (6) 2904 . . . . . . . 3608 16 OLMC 18 (21) S0 5818 S1 5819 6 (7) 3652 . . . . . . 4268 14 OLMC 17 (20) S0 5820 S1 5821 7 (9) 4312 . . . . . 4840 12 OLMC 16 (19) S0 5822 S1 5823 8 (10) 4884 . . . . 5324 10 OLMC S0 5824 S1 5825 9 (11) 5368 . . . 5720 8 OLMC S0 5826 S1 5827 10 (12) SYNCHRONOUS PRESET (TO ALL REGISTERS) 5764 11 (13) 5828, 5829 ... Electronic Signature ... 5890, 5891 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 M S B L S B 5 15 (18) 14 (17) 13 (16) Specifications SpecificationsGAL22V10D GAL22V10 Absolute Maximum Ratings1 Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75°C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied........... -2.5 to VCC +1.0V Storage Temperature.................................. -65 to 150°C Ambient Temperature with Power Applied ......................................... -55 to 125°C Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85°C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2 MIN. TYP.3 MAX. UNITS Input Low Voltage Vss – 0.5 — 0.8 V Input High Voltage 2.0 — Vcc+1 V PARAMETER CONDITION Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.4 V Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V Low Level Output Current — — 16 mA High Level Output Current — — –3.2 mA –30 — –130 mA Output Short Circuit Current COMMERCIAL ICC Operating Power Supply Current INDUSTRIAL ICC Operating Power Supply Current VCC = 5V VOUT = 0.5V TA = 25°C VIL = 0.5V VIH = 3.0V L-4/-5/-7 — 90 140 mA ftoggle = 15MHz Outputs Open L-10 — 90 130 mA L-15/-25 — 75 90 mA Q-10/-15/-25 — 45 55 mA VIL = 0.5V VIH = 3.0V L-7/-10 — 90 160 mA ftoggle = 15MHz Outputs Open L-15/-20/-25 — 75 130 mA 1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C 6 Specifications GAL22V10D Specifications GAL22V10 AC Switching Characteristics Over Recommended Operating Conditions PARAM TEST COND.1 tpd tco tcf2 tsu th COM COM COM/IND -4 -5 -7 DESCRIPTION UNITS MIN. MAX. MIN. MAX. MIN. MAX. A Input or I/O to Combinatorial Output 1 4 1 5 1 7.5 ns A Clock to Output Delay 1 3.5 1 4 1 4.5 ns — Clock to Feedback Delay — 2.5 — 3 — 3 ns — Setup Time, Input or Fdbk before Clk↑ 2.5 — 3 — 4.5 — ns — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — ns A Maximum Clock Frequency with External Feedback, 1/(tsu + tco) 167 — 142.8 — 111 — MHz A Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) 200 — 166 — 133 — MHz A Maximum Clock Frequency with No Feedback 250 — 200 — 166 — MHz twh twl ten — Clock Pulse Duration, High 2 — 2.5 — 3 — ns — Clock Pulse Duration, Low 2 — 2.5 — 3 — ns B Input or I/O to Output Enabled 1 5 1 6 1 7.5 ns tdis tar C Input or I/O to Output Disabled 1 5 1 5.5 1 7.5 ns A Input or I/O to Asynch. Reset of Reg. 1 4.5 1 5.5 1 9 ns tarw tarr tspr — Asynch. Reset Pulse Duration 4.5 — 4.5 — 7 — ns — Asynch. Reset to Clk↑ Recovery Time 3 — 4 — 5 — ns — Synch. Preset to Clk↑ Recovery Time 3 — 4 — 5 — ns fmax3 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these parameters. Capacitance (TA = 25°C, f = 1.0 MHz) SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. 7 Specifications SpecificationsGAL22V10D GAL22V10 AC Switching Characteristics Over Recommended Operating Conditions PARAM. TEST COND.1 tpd tco tcf2 tsu th fmax3 COM / IND COM / IND IND COM / IND -10 -15 -20 -25 DESCRIPTION MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. UNITS A Input or I/O to Comb. Output 1 10 3 15 3 20 3 25 ns A Clock to Output Delay 1 7 2 8 2 10 2 15 ns — Clock to Feedback Delay — 2.5 — 2.5 — 8 — 13 ns — Setup Time, Input or Fdbk before Clk↑ 6 — 10 — 12 — 15 — ns — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — ns A Maximum Clock Frequency with External Feedback, 1/(tsu + tco) 83.3 — 55.5 — 41.6 — 33.3 — MHz A Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) 110 — 80 — 45.4 — 35.7 — MHz A Maximum Clock Frequency with No Feedback 125 — 83.3 — 50 — 38.5 — MHz — Clock Pulse Duration, High 4 — 6 — 10 — 13 — ns — Clock Pulse Duration, Low 4 — 6 — 10 — 13 — ns B Input or I/O to Output Enabled 1 10 3 15 3 20 3 25 ns C Input or I/O to Output Disabled 1 9 3 15 3 20 3 25 ns A Input or I/O to Asynch. Reset of Reg. 1 13 3 20 3 25 3 25 ns twh twl ten tdis tar tarw tarr — Asynch. Reset Pulse Duration 8 — 15 — 20 — 25 — ns — Asynch. Reset to Clk↑ Recovery Time 8 — 10 — 20 — 25 — ns tspr — Synch. Preset to Clk↑ Recovery Time 8 — 10 — 14 — 15 — ns 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Capacitance (TA = 25°C, f = 1.0 MHz) SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. 8 Specifications SpecificationsGAL22V10C GAL22V10 Absolute Maximum Ratings1 Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75°C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied .......... -2.5 to VCC +1.0V Storage Temperature ................................. -65 to 150°C Ambient Temperature with Power Applied ......................................... -55 to 125°C Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85°C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2 MIN. TYP.3 MAX. UNITS Input Low Voltage Vss – 0.5 — 0.8 V Input High Voltage 2.0 — Vcc+1 V PARAMETER CONDITION Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V Low Level Output Current — — 16 mA High Level Output Current — — –3.2 mA –30 — –130 mA Output Short Circuit Current COMMERCIAL ICC Operating Power Supply Current INDUSTRIAL ICC Operating Power Supply Current VCC = 5V VOUT = 0.5V TA = 25°C VIL = 0.5V VIH = 3.0V L-5 — 90 150 mA ftoggle = 15MHz Outputs Open L-7 — 90 140 mA L-10 — 90 130 mA L-7/-10 — 90 160 mA VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open 1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C 9 Specifications SpecificationsGAL22V10C GAL22V10 AC Switching Characteristics Over Recommended Operating Conditions PARAM TEST COND.1 tpd tco tcf2 tsu th fmax3 twh twl ten tdis tar tarw tarr tspr COM COM/IND COM/IND COM IND -5 -7 (PLCC) -7 (PDIP) -10 -10 DESCRIPTION MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. UNITS A Input or I/O to Combinatorial Output 1 5 1 7.5 1 7.5 3 10 1 10 ns A Clock to Output Delay 1 4 1 4.5 1 4.5 2 7 1 7 ns — Clock to Feedback Delay — 3 — 3 — 3 — 2.5 — 2.5 ns — Setup Time, Input or Fdbk before Clk↑ 3 — 4.5 — 5 — 7 — 7 — ns — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns A Maximum Clock Frequency with External Feedback, 1/(tsu + tco) 142.8 — 111 — 105 — 71.4 — 71.4 — MHz A Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) 166 — 133 — 125 — 105 — 105 — MHz A Maximum Clock Frequency with No Feedback 200 — 166 — 142.8 — 105 — 105 — MHz — Clock Pulse Duration, High 2.5 — 3 — 3.5 — 4 — 4 — ns — Clock Pulse Duration, Low 2.5 — 3 — 3.5 — 4 — 4 — ns B Input or I/O to Output Enabled 1 6 1 7.5 1 7.5 3 10 1 10 ns C Input or I/O to Output Disabled 1 6 1 7.5 1 7.5 3 9 1 9 ns A Input or I/O to Asynch. Reset of Reg. 1 5.5 1 9 1 9 3 13 1 13 ns — Asynch. Reset Pulse Duration 5.5 — 7 — 7 — 8 — 8 — ns — Asynch. Reset to Clk↑ Recovery Time 4 — 5 — 5 — 8 — 8 — ns — Synch. Preset to Clk↑ Recovery Time 4 — 5 — 5 — 10 — 10 — ns 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these parameters. Capacitance (TA = 25°C, f = 1.0 MHz) SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. 10 Specifications SpecificationsGAL22V10B GAL22V10 Absolute Maximum Ratings1 Recommended Operating Conditions Commercial Devices: Ambient Temperature (TA) ............................. 0 to +75°C Supply voltage (VCC) with Respect to Ground ..................... +4.75 to +5.25V Supply voltage VCC ....................................... -0.5 to +7V Input voltage applied ........................... -2.5 to VCC +1.0V Off-state output voltage applied .......... -2.5 to VCC +1.0V Storage Temperature ................................. -65 to 150°C Ambient Temperature with Power Applied ......................................... -55 to 125°C Industrial Devices: Ambient Temperature (TA) ............................ -40 to 85°C Supply voltage (VCC) with Respect to Ground ..................... +4.50 to +5.50V 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise Specified) SYMBOL VIL VIH IIL1 IIH VOL VOH IOL IOH IOS2 MIN. TYP.3 MAX. UNITS Input Low Voltage Vss – 0.5 — 0.8 V Input High Voltage 2.0 — Vcc+1 V PARAMETER CONDITION Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (MAX.) — — –100 µA Input or I/O High Leakage Current 3.5V ≤ VIN ≤ VCC — — 10 µA Output Low Voltage IOL = MAX. Vin = VIL or VIH — — 0.5 V Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 — — V Low Level Output Current — — 16 mA High Level Output Current — — –3.2 mA –30 — –130 mA Output Short Circuit Current COMMERCIAL ICC Operating Power Supply Current INDUSTRIAL ICC Operating Power Supply Current VCC = 5V VOUT = 0.5V TA = 25°C VIL = 0.5V VIH = 3.0V L-7 — 90 140 mA ftoggle = 15MHz Outputs Open L-10/-15 — 90 130 mA L-25 — 75 90 mA Q-15/-25 — 45 55 mA L-15/-20/-25 — 90 150 mA VIL = 0.5V VIH = 3.0V ftoggle = 15MHz Outputs Open 1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information. 2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested. 3) Typical values are at Vcc = 5V and TA = 25 °C 11 Specifications SpecificationsGAL22V10B GAL22V10 AC Characteristics ACSwitching SWITCHING CHARACTERISTICS Over Recommended Operating Conditions PARAM. TEST COND.1 tpd tco tcf2 tsu1 tsu2 th fmax3 twh twl ten tdis tar tarw tarr tspr COM COM COM / IND IND COM / IND -7 -10 -15 -20 -25 DESCRIPTION MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. UNITS A Input or I/O to Comb. Output 3 7.5 3 10 3 15 3 20 3 25 ns A Clock to Output Delay 2 5 2 7 2 8 2 10 2 15 ns — Clock to Feedback Delay — 2.5 — 2.5 — 2.5 — 8 — 13 ns — Setup Time, Input or Fdbk before Clk↑ 6.5 — 7 — 10 — 14 — 15 — ns — Setup Time, SP before Clock↑ 10 — 10 — 10 — 14 — 15 — ns — Hold Time, Input or Fdbk after Clk↑ 0 — 0 — 0 — 0 — 0 — ns A Maximum Clock Frequency with External Feedback, 1/(tsu + tco) 87 — 71.4 — 55.5 — 41.6 — 33.3 — MHz A Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf) 111 — 105 — 80 — 45.4 — 35.7 — MHz A Maximum Clock Frequency with No Feedback 111 — 105 — 83.3 — 50 — 38.5 — MHz — Clock Pulse Duration, High 4 — 4 — 6 — 10 — 13 — ns — Clock Pulse Duration, Low 4 — 4 — 6 — 10 — 13 — ns B Input or I/O to Output Enabled 3 8 3 10 3 15 3 20 3 25 ns C Input or I/O to Output Disabled 3 8 3 9 3 15 3 20 3 25 ns A Input or I/O to Asynch. Reset of Reg. 3 13 3 13 3 20 3 25 3 25 ns — Asynch. Reset Pulse Duration 8 — 8 — 15 — 20 — 25 — ns — Asynch. Reset to Clk↑ Recovery Time 8 — 8 — 10 — 20 — 25 — ns — Synch. Preset to Clk↑ Recovery Time 10 — 10 — 10 — 14 — 15 — ns 1) Refer to Switching Test Conditions section. 2) Calculated from fmax with internal feedback. Refer to fmax Description section. 3) Refer to fmax Description section. Capacitance (TA = 25°C, f = 1.0 MHz) SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS CI Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V CI/O I/O Capacitance 8 pF VCC = 5.0V, VI/O = 2.0V *Characterized but not 100% tested. 12 Specifications GAL22V10 Switching Waveforms INPUT or I/O FEEDBACK INPUT or I/O FEEDBACK VALID INPUT VALID INPUT tsu th t pd CLK COMBINATORIAL OUTPUT tco REGISTERED OUTPUT Combinatorial Output 1/ fmax (external fdbk) Registered Output INPUT or I/O FEEDBACK t dis t en OUTPUT CLK 1/ f max (internal fdbk) Input or I/O to Output Enable/Disable tsu t cf REGISTERED FEEDBACK fmax with Feedback tw l tw h CLK 1 / fm a x (w/o fdbk) Clock Width INPUT or I/O FEEDBACK DRIVING SP INPUT or I/O FEEDB ACK DRIVI NG AR tsu t spr th tarw CLK CLK tarr tco R E G I S T ER E D OUTPUT REGISTERED OUTPUT tar Synchronous Preset Asynchronous Reset 13 Specifications GAL22V10 fmax Descriptions CL K LOGIC ARR AY CLK LOGIC ARRAY R EG I S T E R REGISTER ts u tc o fmax with External Feedback 1/(tsu+tco) t cf t pd Note: fmax with external feedback is calculated from measured tsu and tco. fmax with Internal Feedback 1/(tsu+tcf) CLK LOGIC ARRAY Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd. REGISTER tsu + th fmax with No Feedback Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%. 14 Specifications GAL22V10 Switching Test Conditions Input Pulse Levels GAL22V10D-4 Output Load Conditions (see figure below) GND to 3.0V Input Rise and D-4/-5/-7, C-5 1.5ns 10% – 90% Fall Times D-10/-15/-20/-25 2.0ns 10% – 90% Test Condition A B & C-7/-10 B B-15/-20/-25 3ns 10% – 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load C R1 CL 50Ω 50pF Z to Active High at 1.9V 50Ω 50pF Z to Active Low at 1.0V 50Ω 50pF Active High to Z at 1.9V 50Ω 50pF Active Low to Z at 1.0V 50Ω 50pF See Figure 3-state levels are measured 0.5V from steady-state active level. +1.45V Output Load Conditions (except D-4) (see figure below) R1 R2 CL 300Ω 390Ω 50pF Active High ∞ 390Ω 50pF Active Low 300Ω 390Ω 50pF Active High ∞ 390Ω 5pF Active Low 300Ω 390Ω 5pF Test Condition A B C TEST POINT R1 FROM OUTPUT (O/Q) UNDER TEST +5V R1 FROM OUTPUT (O/Q) UNDER TEST TEST POINT R2 C L* *C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE 15 Z0 = 50Ω, CL* Specifications GAL22V10 Electronic Signature Output Register Preload An electronic signature (ES) is provided in every GAL22V10 device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the security cell. When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state conditions. The electronic signature is an additional feature not present in other manufacturers' 22V10 devices. To use the extra feature of the user-programmable electronic signature it is necessary to choose a Lattice Semiconductor 22V10 device type when compiling a set of logic equations. In addition, many device programmers have two separate selections for the device, typically a GAL22V10 and a GAL22V10-UES (UES = User Electronic Signature) or GAL22V10-ES. This allows users to maintain compatibility with existing 22V10 designs, while still having the option to use the GAL device's extra feature. The GAL22V10 device includes circuitry that allows each registered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically. Input Buffers The JEDEC map for the GAL22V10 contains the 64 extra fuses for the electronic signature, for a total of 5892 fuses. However, the GAL22V10 device can still be programmed with a standard 22V10 JEDEC map (5828 fuses) with any qualified device programmer. GAL22V10 devices are designed with TTL level compatible input buffers. These buffers have a characteristically high impedance, and present a much lighter load to the driving logic than bipolar TTL devices. Security Cell The input and I/O pins also have built-in active pull-ups. As a result, floating inputs will float to a TTL high (logic 1). However, Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce Icc for the device. (See equivalent input and I/O schematics on the following page.) A security cell is provided in every GAL22V10 device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always available to the user, regardless of the state of this control cell. Typical Input Current I n p u t C u r r e n t (u A ) Latch-Up Protection GAL22V10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any possibility of SCR induced latching. 0 -20 -40 -60 0 1.0 2.0 3.0 In p u t V o lt ag e ( V o lt s) Device Programming GAL devices are programmed using a Lattice Semiconductorapproved Logic Programmer, available from a number of manufacturers (see the the GAL Development Tools section). Complete programming of the device takes only a few seconds. Erasing of the device is transparent to the user, and is done automatically as part of the programming cycle. 16 4.0 5.0 Specifications GAL22V10 Power-Up Reset Vcc (min.) Vcc t su t wl CLK t pr INTERNAL REGISTER Q - OUTPUT Internal Register Reset to Logic "0" ACTIVE LOW OUTPUT REGISTER Device Pin Reset to Logic "1" ACTIVE HIGH OUTPUT REGISTER Device Pin Reset to Logic "0" Circuitry within the GAL22V10 provides a reset signal to all registers during power-up. All internal registers will have their Q outputs set low after a specified time (tpr, 1µs MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asyn- chronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL22V10. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in normal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements. Input/Output Equivalent Schematics PIN PIN Feedback Vcc Active Pull-up Circuit Active Pull-up Circuit (Vref Typical = 3.2V) Vcc Vref Tri-State Control Vcc ESD Protection Circuit PIN Vcc (Vref Typical = 3.2V) Vref Data Output PIN ESD Protection Circuit Feedback (To Input Buffer) Typical Input Typical Output 17 Specifications GAL22V10 GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc RISE FALL 1 0.95 RISE FALL 1.05 1 0.95 0.9 4.75 5 5.25 1 0.95 0.9 4.5 5.5 4.75 Supply Voltage (V) 5 5.25 5.5 4.5 4.75 Supply Voltage (V) Normalized Tpd vs Temp 1.2 Normalized T 1 5.5 Normalized Tsu vs Temp RISE FALL Normalized Tco 1.1 5.25 1.3 1.2 RISE FALL 5 Supply Voltage (V) Normalized Tco vs Temp 1.3 1.2 RISE FALL 1.05 0.9 4.5 1.1 1 RISE FALL 1.1 1 0.9 0.9 0.9 -55 0.8 25 50 75 100 0.8 -25 0 25 50 Temperature (deg. C) 100 125 -55 -25 0 Temperature (deg. C) Delta Tpd vs # of Outputs Switching 0 75 RISE FALL -0.2 -0.3 -0.1 -0.2 RISE FALL -0.3 -0.4 2 3 4 5 6 7 8 9 10 1 Number of Outputs Switching 2 3 4 5 6 7 8 9 10 Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 12 12 RISE FALL 8 4 0 -4 RISE FALL 8 4 0 -4 0 50 50 75 100 Temperature (deg. C) Delta Tco vs # of Outputs Switching 0 -0.1 1 25 125 Delta Tco (ns) 0 Delta Tco (ns) -25 Delta Tpd (ns) -55 Delta Tpd (ns) Normalized Tpd 1.1 Normalized Tsu Normalized Tco Normalized Tpd 1.05 Normalized Tsu vs Vcc Normalized Tco vs Vcc 1.1 1.1 100 150 200 250 0 300 Output Loading (pF) 50 100 150 200 250 Output Loading (pF) 18 300 125 Specifications GAL22V10 GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams Vol vs Iol Voh vs Ioh Voh vs Ioh 3.95 4 0.6 3.85 3.75 Vol (V) Voh (V) 0.4 Voh (V) 3 2 0.2 3.65 3.55 3.45 3.35 1 3.25 3.15 0.00 0 0 0 5 10 15 20 25 30 35 0 40 5 10 1 5 2 0 2 5 3 0 3 5 4 0 4 5 50 55 60 Normalized Icc vs Vcc Normalized Icc vs Temp 0.9 5 5.25 1 0.9 0.7 -55 5.5 Supply Voltage (V) 0 25 50 88 100 125 5 20 4 40 3 2 60 80 1 100 0 0 0.5 1 1.5 2 2.5 3 Vin (V) 3.5 4 4.5 5 -3 1.05 1 -2.5 -2 -1.5 Vik (V) 19 -1 -0.5 1 15 25 50 Frequency (MHz) Input Clamp (Vik) 0 Iik (mA) Delta Icc (mA) Delta Icc vs Vin (1 input) 1.1 0.95 -25 Temperature (deg. C) 6 5.00 1.15 1.1 0.8 4.75 4.00 Normalized Icc vs Freq Normalized Icc Normalized Icc Normalized Icc 1 3.00 1.2 1.2 1.1 2.00 Ioh(mA) 1.3 1.2 0.8 4.5 1.00 Ioh(mA) Iol (mA) 1 75 1 00 Specifications GAL22V10 GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc 1.2 1 0.95 RISE FALL Normalized Tsu Normalized Tco 1.05 1 4.75 5 5.25 4.5 5.5 4.75 Normalized Tpd vs Temp 0.9 5 5.25 4.5 5.5 4.75 Normalized Tco 1.1 1 5.25 5.5 Normalized Tsu vs Temp 1.2 RISE FALL 5 Supply Voltage (V) Normalized Tco vs Temp 1.3 1.3 RISE FALL 1.2 RISE FALL 1.1 1 0.9 0.9 1.1 1 0.9 25 50 75 100 0.8 -55 125 -25 0 25 50 75 100 0.8 -55 125 -25 Temperature (deg. C) Temperature (deg. C) Delta Tpd vs # of Outputs Switching 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.5 -0.6 -0.7 RISE FALL -0.8 -0.9 0 -0.4 -0.5 -0.6 -0.7 RISE FALL -0.8 -0.9 -1 -1 -1.1 -1.1 1 2 3 4 5 6 7 8 9 10 1 Number of Outputs Switching 2 3 4 5 6 7 8 9 10 Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 12 12 Delta Tco (ns) RISE FALL 8 4 0 -4 RISE FALL 8 4 0 -4 0 50 100 150 200 250 300 Output Loading (pF) 0 50 100 150 200 250 Output Loading (pF) 20 25 50 75 100 Temperature (deg. C) Delta Tco vs # of Outputs Switching 0 Delta Tco (ns) 0 Delta Tpd (ns) -25 Delta Tpd (ns) 0.8 -55 1 Supply Voltage (V) Supply Voltage (V) 1.2 RISE FALL 1.1 0.8 0.95 4.5 Normalized Tsu Normalized Tpd RISE FALL 1.05 0.9 Normalized Tpd Normalized Tsu vs Vcc Normalized Tco vs Vcc 1.1 1.1 300 125 Specifications GAL22V10 GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams Vol vs Iol Voh vs Ioh Voh vs Ioh 3.8 4 0.5 3.7 3.6 0.4 3 0.2 Voh (V) Voh (V) Vol (V) 3.5 0.3 2 3.4 3.3 3.2 3.1 1 0.1 3 2.9 0 0 0 5 10 15 20 25 0 30 5 10 15 30 35 1.1 1.2 Normalized Icc 1.3 1.05 1 0.95 0.9 0.85 5 5.25 1 0.9 0 9 10 8 20 7 30 Iik (mA) 6 5 4 25 100 50 60 70 2 80 1 90 0 0 0.5 1 1.5 2 2.5 3 Vin (V) 3.5 4 4.5 5 100 -2.5 1.05 -2 -1.5 -1 Vik (V) 21 -0.5 1 15 25 50 Frequency (MHz) 40 3 1.1 0.95 0 Input Clamp (Vik) Delta Isb vs Vin (1 input) 5.00 1 Temperature (deg. C) 10 4.00 Normalized Icc vs Freq 1.1 Supply Voltage (V) 3.00 1.15 0.7 -55 5.5 2.00 1.2 0.8 4.75 1.00 Ioh (mA) Normalized Icc vs Temp 1.15 4.5 2.8 0.00 40 Normalized Icc Normalized Icc vs Vcc Normalized Icc 25 Ioh (mA) Iol (mA) Delta Icc (mA) 20 0 75 100 Specifications GAL22V10 GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc 1 0.95 0.9 4.5 4.75 5 5.25 RISE FALL 1.1 1.05 1 0.95 0.9 4.5 5.5 4.75 Supply Voltage (V) 5 5.25 1 0.9 0.8 4.5 5.5 4.75 1 0.9 5.5 1.45 1.35 RISE FALL 1.2 Normalized Tsu Normalized Tco 1.1 5.25 Normalized Tsu vs Temp 1.3 RISE FALL 5 Supply Voltage (V) Normalized Tco vs Temp Normalized Tpd vs Temp 1.2 RISE FALL 1.1 Supply Voltage (V) 1.3 1.1 1 0.9 RISE FALL 1.25 1.15 1.05 0.95 0.85 25 50 75 100 125 0.8 -55 Temperature (deg. C) 0 25 50 75 100 0.75 -55 1 25 -25 Temperature (deg. C) Delta Tpd vs # of Outputs Switching 0 Delta Tpd (ns) -25 -0.4 RISE FALL -0.8 -1.2 1 2 3 4 5 6 7 8 9 0 -0.4 RISE FALL -0.8 -1.2 10 1 2 Number of Outputs Switching 3 4 5 6 7 8 9 10 Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 20 20 16 16 RISE FALL 12 8 4 0 RISE FALL 12 8 4 0 -4 -4 -8 0 50 100 150 200 250 0 3 00 50 100 150 200 250 Output Loading (pF) Output Loading (pF) 22 25 50 75 Temperature (deg. C) Delta Tco vs # of Outputs Switching 0 Delta Tco (ns) 0 Delta Tco (ns) -25 Delta Tpd (ns) Normalized Tpd Normalized Tsu RISE FALL Normalized Tco Normalized Tpd 1.2 1.15 1.05 0.8 -55 Normalized Tsu vs Vcc Normalized Tco vs Vcc 1.1 3 00 100 1 25 Specifications GAL22V10 GAL22V10DQ-10 and Slower (L & Q): Typical AC and DC Characteristic Diagrams Vol vs Iol Voh vs Ioh Voh vs Ioh 4.5 0.6 4.5 4 3.5 4 Voh (V) Vol (V) Voh (V) 3 0.4 2.5 2 3.5 1.5 0.2 3 1 0.5 0 0 0 5 10 15 20 25 30 35 0 40 20 Normalized Icc vs Vcc 1 0.9 1.4 1.25 1.3 1.15 1.05 0.95 0.85 5 5.25 5.5 0.75 -55 Supply Voltage (V) 0 25 50 88 100 1 25 0 10 6 30 Iik (mA) Delta Icc (mA) 20 5 4 3 40 50 60 2 70 1 80 0 0 0.5 1 1.5 2 2.5 3 Vin (V) 3.5 4 4.5 5 90 -2.5 4.00 5.00 1.2 1.1 1 -2 -1.5 -1 Vik (V) 23 -0.5 1 15 25 50 Frequency (MHz) Input Clamp (Vik) Delta Icc vs Vin (1 input) 3.00 0.9 -25 Temperature (deg. C) 7 2.00 Normalized Icc vs Freq 1.35 Normalized Icc Normalized Icc 1.1 4.75 1.00 Ioh (mA) Normalized Icc vs Temp 1.2 0.8 4.5 2.5 0.00 60 Ioh (mA) Iol (mA) Normalized Icc 40 0 75 1 00 Specifications GAL22V10 GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc 1.2 1.2 1.1 PT L->H 1 0.9 0.8 RISE 1.1 Normalized Tsu PT H->L Normalized Tco FALL 1 0.9 4.75 5.00 5.25 5.50 4.50 PT L->H 1 0.9 4.75 5.00 5.25 4.50 5.50 4.75 5.00 5.25 5.50 Supply Voltage (V) Supply Voltage (V) Supply Voltage (V) Normalized Tpd vs Temp Normalized Tco vs Temp Normalized Tsu vs Temp 1.4 1.3 1.2 Normalized Tco PT H->L PT L->H 1.1 1 0.9 0.8 RISE 1.2 Normalized Tsu 1.3 FALL 1.1 1 0.9 0.8 0.7 0.7 -25 0 25 50 75 100 -25 0 25 50 75 PT H->L 1.2 PT L->H 1.1 1 0.9 0.8 100 125 -55 -25 Temperature (deg. C) Delta Tpd vs # of Outputs Switching 0 0 -0.25 -0.5 -0.75 -1 RISE -1.25 FALL -0.25 -0.5 RISE -0.75 FALL -1.5 -1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Number of Outputs Switching Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 12 10 RISE 8 FALL Delta Tco (ns) 12 6 4 2 10 RISE 8 FALL 6 4 2 0 0 -2 -2 0 50 100 150 200 250 0 300 50 100 150 200 250 Output Loading (pF) Output Loading (pF) 24 25 50 75 100 Temperature (deg. C) Delta Tco vs # of Outputs Switching 0 Delta Tpd (ns) 1.3 0.7 -55 125 Temperature (deg. C) Delta Tpd (ns) -55 PT H->L 1.1 0.8 0.8 4.50 Delta Tco (ns) Normalized Tpd 1.2 Normalized Tpd Normalized Tsu vs Vcc Normalized Tco vs Vcc 300 125 Specifications GAL22V10 GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams Vol vs Iol Voh vs Ioh 3 5 2.5 1.5 1 3.75 Voh (V) Voh (V) Vol (V) 4 4 2 3 2 0 0 0.00 20.00 40.00 60.00 80.00 100.00 3 0.00 10.00 20.00 Iol (mA) 30.00 40.00 50.00 60.00 1.00 0.90 0.80 1.1 1 0.9 0.8 5.00 5.25 5.50 Supply Voltage (V) -25 0 25 50 75 100 125 Temperature (deg. C) 0 10 8 Iik (mA) 20 4 30 40 50 2 60 0 70 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Vin (V) 1.20 1.10 1.00 -2.50 -2.00 -1.50 -1.00 Vik (V) 25 -0.50 0 25 50 75 Frequency (MHz) Input Clamp (Vik) Delta Icc vs Vin (1 input) 6 4.00 0.90 -55 10 3.00 1.30 Normalized Icc Normalized Icc 1.10 2.00 Normalized Icc vs Freq. 1.2 4.75 1.00 Ioh(mA) Normalized Icc vs Temp 1.20 Delta Icc (mA) 0.00 Ioh(mA) Normalized Icc vs Vcc 4.50 3.5 3.25 1 0.5 Normalized Icc Voh vs Ioh 0.00 100 Specifications GAL22V10 GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc 1.2 1.2 PT L->H 1 0.9 0.8 1.1 FALL 1 0.9 4.75 5.00 5.25 5.50 4.50 0.9 4.75 5.00 5.25 4.50 5.50 4.75 5.00 5.25 5.50 Supply Voltage (V) Supply Voltage (V) Supply Voltage (V) Normalized Tpd vs Temp Normalized Tco vs Temp Normalized Tsu vs Temp 1.4 1 0.9 0.8 0.7 0.8 Temperature (deg. C) Delta Tco vs # of Outputs Switching 0 Delta Tco (ns) 0 -0.5 -1 RISE -1.5 FALL -2 -0.5 -1 RISE -1.5 FALL -2 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Number of Outputs Switching Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 12 10 RISE 8 FALL Delta Tco (ns) 12 6 4 2 10 RISE 8 FALL 6 4 2 0 0 -2 -2 0 50 100 150 200 250 0 300 50 100 150 200 250 Output Loading (pF) Output Loading (pF) 26 100 -55 125 100 75 50 0 25 -25 Delta Tpd vs # of Outputs Switching Delta Tpd (ns) 1 0.9 Temperature (deg. C) Temperature (deg. C) Delta Tpd (ns) PT L->H 1.1 0.7 -55 125 100 75 50 25 0 -25 0.7 PT H->L 1.2 75 0.8 FALL 50 1 0.9 1.1 1.3 25 PT L->H RISE 0 1.1 1.2 -25 PT H->L Normalized Tco 1.2 Normalized Tsu 1.3 1.3 -55 PT L->H 1 0.8 0.8 4.50 PT H->L 1.1 300 125 1.1 RISE Normalized Tsu PT H->L Normalized Tco Normalized Tpd 1.2 Normalized Tpd Normalized Tsu vs Vcc Normalized Tco vs Vcc Specifications GAL22V10 GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams Vol vs Iol Voh vs Ioh 3 5 2.5 1.5 1 4.25 Voh (V) Voh (V) Vol (V) 4.5 4 2 3 2 0 0 0.00 20.00 40.00 60.00 80.00 100.00 3.5 0.00 10.00 20.00 Iol (mA) 30.00 40.00 50.00 60.00 1.00 0.90 0.80 1.1 1 0.9 0.8 5.00 5.25 5.50 Supply Voltage (V) -25 0 25 50 75 100 125 Temperature (deg. C) 0 10 20 6 30 40 Iik (mA) 8 50 60 70 2 80 0 90 100 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Vin (V) 1.10 1.00 0.90 -2.00 -1.50 -1.00 Vik (V) 27 -0.50 0 25 50 75 Frequency (MHz) Input Clamp (Vik) Delta Icc vs Vin (1 input) 4 4.00 0.80 -55 10 3.00 1.20 Normalized Icc Normalized Icc 1.10 2.00 Normalized Icc vs Freq. 1.2 4.75 1.00 Ioh(mA) Normalized Icc vs Temp 1.20 Delta Icc (mA) 0.00 Ioh(mA) Normalized Icc vs Vcc 4.50 4 3.75 1 0.5 Normalized Icc Voh vs Ioh 0.00 100 Specifications GAL22V10 GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams Normalized Tpd vs Vcc 1.2 0.8 0.8 5.25 5.50 4.50 4.75 Supply Voltage (V) Normalized Tpd vs Temp 1.2 1.2 1.1 1 0.9 0.8 4.50 5.50 1.4 1 0.9 0.8 1.1 1 0.9 0.8 -55 125 75 50 25 0 -25 -55 100 Temperature (deg. C) 0 Delta Tco (ns) Delta Tpd (ns) 1.2 Delta Tco vs # of Outputs Switching 0 -0.25 -0.5 -0.75 -1 -0.5 -1 -1.5 -2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Number of Outputs Switching Number of Outputs Switching Delta Tpd vs Output Loading Delta Tco vs Output Loading 12 14 10 RISE 8 FALL 12 Delta Tco (ns) Delta Tpd (ns) 1.3 0.7 Delta Tpd vs # of Outputs Switching 3 6 4 2 6 4 2 0 -2 100 150 200 250 FALL 8 -2 50 RISE 10 0 0 5.50 Normalized Tsu vs Temp Temperature (deg. C) 2 5.25 Normalized Tco vs Temp Temperature (deg. C) 1 5.00 Supply Voltage (V) 1.1 125 100 75 50 0 25 -25 4.75 Supply Voltage (V) 0.7 -55 0.7 5.25 Normalized Tsu 1.3 Normalized Tco 1.3 5.00 0 300 50 100 150 200 250 Output Loading (pF) Output Loading (pF) 28 300 125 5.00 100 4.75 75 4.50 0.9 50 0.8 0.9 1 0 0.9 1 1.1 25 1 1.1 -25 1.1 Normalized Tsu 1.2 Normalized Tco Normalized Tpd 1.2 Normalized Tpd Normalized Tsu vs Vcc Normalized Tco vs Vcc Specifications GAL22V10 GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams Voh vs Ioh 5 0.8 4 0.6 0.4 4 3.75 3 2 1 0 3 0 0.00 20.00 40.00 1.00 0.90 0.80 1.3 2.00 1.2 1.80 1.1 1 0.9 0.8 0.7 5.00 5.25 Supply Voltage (V) -25 0 25 75 100 125 Temperature (deg. C) 0 10 8 Iik (mA) 20 6 4 30 40 50 60 70 2 80 0 90 0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70 Vin (V) 1.60 1.40 1.20 1.00 -2.00 -1.50 -1.00 Vik (V) 29 -0.50 0 25 50 75 Frequency (MHz) Input Clamp (Vik) Delta Icc vs Vin (1 input) 10 4.00 0.80 -55 5.50 3.00 Normalized Icc vs Freq. Normalized Icc Normalized Icc 1.10 2.00 Ioh(mA) Normalized Icc vs Temp 1.20 4.75 1.00 Ioh(mA) Normalized Icc vs Vcc 4.50 0.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 Iol (mA) Delta Icc (mA) 3.5 3.25 0.2 Normalized Icc Voh vs Ioh Voh (V) 1 Voh (V) Vol (V) Vol vs Iol 0.00 100