LATTICE XPGA

ispXPGA Family
TM
March 2003
Preliminary Data Sheet
■ Non-volatile, Infinitely Reconfigurable
■ Eight sysCLOCK™ Phase Locked Loops
(PLLs) for Clock Management
• Instant-on - Powers up in microseconds via
on-chip E2CMOS® based memory
• No external configuration memory
• Excellent design security, no bit stream to intercept
• Reconfigure SRAM based logic in milliseconds
•
•
•
•
•
■ High Logic Density for System-level
Integration
•
•
•
•
True PLL technology
10MHz to 320MHz operation
Clock multiplication and division
Phase adjustment
Shift clocks in 250ps steps
■ sysIO™ for High System Performance
139K to 1.25M system gates
160 to 496 I/O
1.8V, 2.5V, and 3.3V VCC operation
Up to 414Kb sysMEM™ embedded memory
• High speed memory support through SSTL and
HSTL
• Advanced buses supported through PCI, GTL+,
LVDS, BLVDS, and LVPECL
• Standard logic supported through LVTTL,
LVCMOS 3.3, 2.5, and 1.8
• Programmable drive strength for series termination
• Programmable bus maintenance
■ High Performance Programmable Function
Unit (PFU)
• Four LUT-4 per PFU supports wide and narrow
functions
• Dual flip-flops per LUT-4 for extensive pipelining
• Dedicated logic for adders, multipliers, multiplexers, and counters
■ sysHSI™ Capability for Ultra Fast Serial
Communications
• Up to 850Mbps performance
• Up to 20 channels per device
• Built in Clock Data Recovery (CDR) and
Serialization and De-serialization (SERDES)
■ Variable-Length Interconnect Routing
Technology
• Optimum speed, power, and flexibility for logic
interconnections
■ Flexible Programming, Reconfiguration,
and Testing
■ Flexible Memory Resources
• IEEE 1532 and 1149.1 compliant
• Microprocessor configuration interface
• Program E2CMOS while operating from SRAM
• Multiple sysMEM Embedded RAM Blocks
– Single port, Dual port, and FIFO operation
• 64-bit distributed memory in each PFU
– Single port, Double port, FIFO, and Shift
Register operation
Table 1. ispXPGA Family Selection Guide
System Gates
ispXPGA 125
ispXPGA 200
ispXPGA 500
ispXPGA 1200
139K
210K
476K
1.25M
PFUs
484
676
1764
3844
LUT-4s
1936
2704
7056
15376
Logic FFs
3.8K
5.4K
14.1K
30.7K
sysMEM Memory
92K
111K
184K
414K
Distributed Memory
30K
43K
112K
246K
20
24
40
90
EBR
sysHSI Channels
User I/O
Packaging
4
8
12
20
160/176
160/208
336
496
256 fpBGA
516 fpBGA1
256 fpBGA
516 fpBGA1
516 fpBGA1
900 fpBGA
680 fpSBGA1
900 fpBGA
1. Thermally enhanced package.
Note: LFX1200B/C is preliminary, LFX125/200/500B/C information is advanced.
© 2003 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
xpga_04
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Family Overview
The ispXPGA family of devices allows the creation of high-performance logic designs that are both non-volatile and
infinitely re-programmable. Other FPGA solutions force a compromise being either re-programmable or non-volatile. This family couples this capability with a mainstream architecture containing the features required for today’s
system-level design.
Electrically Erasable CMOS (E2CMOS) memory cells provide the ispXPGA family with non-volatile capability.
These allow logic to be functional microseconds after power is applied, allowing easy interfacing in many applications. This capability also means that expensive external configuration memories are not required and that designs
can be secured from unauthorized read back. Internal SRAM cells allow the device to be infinitely reconfigured if
desired. Both the SRAM and E2CMOS cells can be programmed and verified through the IEEE 1532 industry standard. Additionally, the SRAM cells can be configured and read-back through the sysCONFIG™ peripheral port.
The family spans the density and I/O range required for the majority of today’s logic designs, 139K to 1.25M system
gates and 160 to 496 I/O. The devices are available for operation from 1.8V, 2.5V, and 3.3V power supplies, providing easy integration into the overall system.
The system-level needs of designers are met through the incorporation of sysMEM dual-port memory blocks,
sysIO advanced I/O support, and sysCLOCK Phase Locked Loops (PLLs). High-speed serial communications are
supported through multiple sysHSI blocks, which provide clock data recovery (CDR) and serialization/de-serialization (SERDES).
The ispLEVER™ design tool from Lattice allows designers easy implementation of designs using the ispXPGA
product. Synthesis library support is available for the major logic synthesis tools. The ispLEVER tool takes the output from these common synthesis packages and place and routes the design in the ispXPGA product. The tool
allows floor planning and the management of other constraints within the device. The tool also provides outputs to
common timing analysis tools for timing analysis.
To increase designer productivity, Lattice provides a variety of pre-designed modules referred to as IP cores for the
ispXPGA product. These IP cores allow designers to concentrate on the unique portions of their design while using
pre-designed block to implement standard functions such as bus-interfaces, standard communication-interfaces,
and memory-controllers.
Through the use of advanced technology and innovative architecture the ispXPGA FPGA devices provide designers with excellent speed performance. Although design dependent, many typical designs can run at over 150MHz.
Certain designs can run at over 300MHz. Table 2 details the performance of several building blocks commonly
used by logic designers.
Table 2. ispXPGA Speed Performance for Typical Building Blocks
Function
Performance
8:1 Asynch MUX
150 MHz
1:32 Asynch Demultiplexer
125 MHz
8 x 8 2-LL Piped Multiplier
225 MHz
32-bit Up/Down Counter
290 MHz
32-bit Shift Register
360 MHz
2
Lattice Semiconductor
ispXPGA Family Data Sheet
Architecture Overview
The ispXPGA architecture is a symmetrical architecture consisting of an array of Programmable Function Units
(PFUs) enclosed by Input Output Groups (PICs) with columns of sysMEM Embedded Block RAMs (EBRs) distributed throughout the array. Figure 1 illustrates the ispXPGA architecture. Each PIC has two corresponding sysIO
blocks, each of which includes one input and output buffer. On two sides of the device, between the PICs and the
sysIO blocks, there are sysHSI High-Speed Interface blocks. The symmetrical architecture allows designers to easily implement their designs, since any logic function can be placed in any section of the device.
The PFUs contain the basic building blocks to create logic, memory, arithmetic, and register functions. They are
optimized for speed and flexibility allowing complex designs to be implemented quickly and efficiently.
The PICs interface the PFUs and EBRs to the external pins of the device. They allow the signals to be registered
quickly to minimize setup times for high-speed designs. They also allow connections directly to the different logic
elements for fast access to combinatorial functions.
The sysMEM EBRs are large, fast memory elements that can be configured as RAM, ROM, FIFO, and other storage types. They are designed to facilitate both single and dual-port memory for high-speed applications.
These three components of the architecture are interconnected via a high-speed, flexible routing array. The routing
array consists of Variable Length Interconnect (VLI) lines between the PICs, PFUs, and EBRs. There is additional
routing available to the PFU for feedback and direct routing of signals to adjacent PFUs or PICs.
The sysIO blocks consist of configurable input and output buffers connected directly to the PICs. These buffers can
be configured to interface with 16 different I/O standards. This allows ispXPGA to interface with other devices without the need for external transceivers.
The sysHSI blocks provide the necessary components to allow the ispXPGA device to transfer data at up to
850Mbps using the LVDS standard. These components include serializing, de-serializing, and clock data recovery
(CDR) logic.
The sysCLOCK blocks provide clock multiplication/division, clock distribution, delay compensation, and increased
performance through the use of PLL circuitry that manipulates the global clocks. There is one sysCLOCK block for
each global clock tree in the device.
3
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 1. ispXPGA Block Diagram
PFU
PIC
sysMEM Block
sysCLOCK PLL
sysHSI Block
sysIO Buffer
Programmable Function Unit
The Programmable Function Unit (PFU) is the basic building block of the ispXPGA architecture. The PFUs are
arranged in rows and columns in the device with PFU (1,1) referring to (row 1, column 1). Each PFU consists of
four Configurable Logic Elements (CLEs), four Configurable Sequential Elements (CSEs), and a Wide Logic Generator (WLG). By utilizing these components, the PFU can implement a variety of functions. Table 3 lists some of
the function capabilities of the PFU.
There are 57 inputs to each PFU and nine outputs. The PFU uses 20 inputs for logic, and 37 inputs drive the control logic from which six control signals are derived for the PFU.
Table 3. Function Capability of ispXPGA PFU
Function
Capability
Look-up table
LUT-4, LUT-5, LUT-6
Wide logic functions
Up to 20 input logic functions
Multiplexing
2:1, 4:1, 8:1
Arithmetic logic
Dedicated carry chain and booth multiplication logic
Single-port RAM
16X1, 16X2, 16X4, 32X1, 32X2, 64X1
Double-port RAM
16X1, 16X2, 32X1
Shift register
8-bit shift registers (up to 32-bit shift capability)
4
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 2. ispXPGA PFU
COUT(r,c)
OE
OE
PFUCLK0
PFUCLK1
CEB0
CEB1
SR
WLGW0
S3
SYNC/ASYNC
WIN2
CCG
CLE0
WIN3
D
S
R
IN
WIN2
WIN3
CLK/LE
CE
WLGW1
D
S
R
SEL0
XIN3
LUT-4
CCG
SEL0
IN
XIN2
XIN3
SEL1
SEL1
4C
YIN0
YIN2
LUT-4
COUT
LUT-4 SUM
S1
WLGY0
SYNC/ASYNC
CLE2
IN
YIN2
YIN3
WLGY1
4D
CLE3
ZIN2
LUT-4
WLGZ0
CCG
ZIN3
IN
ZIN2
ZIN3
SEL3
SEL3
CIN(r,c) from
COUT(r-1,c)
5
CLK/LE
CLK/LE
CE
CE
DD
SS
RR
S0
SYNC/ASYNC
ZIN1
Y0
QQ
Y1
Q
CLK/LE
CE
SEL2
COUT
LUT-4 SUM
DD
SS
RR
D
S
R
SEL2
ZIN0
X1
Q
CLK/LE
CE
CCG
YIN3
D
S
R
X0
QQ
CLK/LE
CLK/LE
CE
CE
WLGX1
SYNC/ASYNC
YIN1
DD
SS
RR
S2
Wide Logic Generator
CLE1
XIN2
WLGX0
4B
COUT
LUT-4 SUM
SYNC/ASYNC
XIN1
W1
Q
CLK/LE
CE
SEL0
XIN0
W0
Q
CSE1
LUT-4
COUT
LUT-4 SUM
CSE2
WIN1
CSE0
COUT
4A
WIN0
WLGZ1
CLK/LE
CLK/LE
CE
CE
D
S
R
Z0
QQ
Q
CLK/LE
CE
CSE3
Control
Logic
Z1
Lattice Semiconductor
ispXPGA Family Data Sheet
Configurable Logic Element
The CLE is made up of a four-input Look-up Table (LUT-4), a Carry Chain Generator (CCG), and a two-input AND
gate. The LUT-4 creates various combinatorial and memory elements, the CCG creates a single one-bit full adder,
and the two-input AND gate can expand the CCG to incorporate Booth Multiplier capability by feeding the output of
the AND gate to one of the inputs of the CCG.
Of the five inputs that feed each CLE, two are dedicated inputs into each LUT-4 and the remaining three take on
varying functionality. The third and fourth inputs can be used as either inputs to the LUT-4 or as a Feed-Thru to the
CSE via the WLG. The fifth input can be a data port when the LUT is configured as Distributed Memory, a select
line for multiplexer operation, or a Feed-Thru directly to the CSE via the WLG (Figure 2).
Look-Up Table – Combinatorial Mode
In combinatorial mode, the LUT-4 can implement any logic function up to four inputs. By using the carry chain and
the WLG, each LUT-4 can be combined to form the enhanced functions listed in Table 3.
Look-Up Table – Distributed Memory Mode
In the distributed memory mode, the LUT functions as a memory element. The inputs to the LUT function as
Address and Data. Each PFU is capable of implementing up to 64 SRAM bits. Both single and double port RAM
can be performed in the PFU (Table 3). Furthermore, the distributed memory can be configured as either synchronous or asynchronous memory. Figure 3 illustrates the LUT while in distributed memory mode. When using any
LUT in the PFU in memory mode, the Set/Reset signal will be used for Write Enable (WE(SR)) and the CLK0 signal
will be used as the clock for synchronous read and write.
Figure 3. LUT in Distributed Memory Mode
PFUCLK0
CEB0
WE (SR)
ADDR[0] (IN0)
ADDR[1] (IN1)
ADDR[2] (IN2)
LUT-4
DOUT (4A)
ADDR[3] (IN3)
DIN (SEL)
Look-Up Table – Shift Register Mode
In the shift register mode, the LUT functions as a 1-bit to 8-bit shift register. This means that each PFU can implement up to four 8-bit shift registers or any cascaded combination. Figure 4 illustrates the LUT when configured in
shift register mode.
6
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 4. LUT in Shift Register Mode
PFUCLK0
CEB0
SEL (SHIFTIN)
LUT-4
SHIFTOUT (4A)
Carry Chain Generator
The Carry Chain Generator is useful for implementing high-speed arithmetic functions. The CCG consists of a twoinput XOR gate whose carryout can be cascaded with the input of the adjacent CCG. As shown in Figure 5, the
carryin signal feeds CLE3 of the PFU and is propagated through CLE2 and CLE1 before reaching CLE0. The sum
output of the CCG can be fed to the CSE through the WLG. The carryout must propagate to CLE0 for use outside
the PFU. The carryout from the PFU can feed the W0 input of CSE0. The CCG also helps to effectively implement
wider functions by using its logic elements to expand the capabilities of the LUT-4.
Figure 5. Carry Chain Generator
COUT(r,c)
COUT to
CSE0
CLE0
SUM3
CLE1
SUM2
CLE2
SUM1
CLE3
SUM0
A
B
COUT
SUM
CIN
CIN from
Routing
COUT(r+1,c)
Wide Logic Generator
The WLG contains the logic necessary to implement wide gate functions. This is made up of a set of multiplexers
that are located between the CLE and the CSE. The WLG helps in enhancing the wide gating capability of the PFU.
The outputs of each CLE can be cascaded in the WLG to build wide gating functions. Wide multiplexing functions
are also possible with a similar use of the WLG. Figure 6 illustrates the WLG.
7
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 6. ispXPGA Wide Logic Generator
COUT
WIN2
WIN3
4A
S3
SEL0
WLGW0
WLGW1
4B
XIN2
XIN3
WLGX0
S2
SEL1
WLGX1
SEL3
4C
SEL2
4D
YIN2
YIN3
S1
WLGY0
WLGY1
ZIN2
ZIN3
WLGZ0
S0
WLGZ1
Configurable Sequential Element
There are two registers in each CSE for a total of eight registers in each PFU. This high register count assists in
implementing efficient pipelined applications with no utilization penalty. Each register can be configured as a latch
or D type flip-flop with either synchronous or asynchronous set or reset. Figure 2 shows the signals that feed the
register’s D inputs. Feed-through signals in the architecture ensure that registers are efficiently utilized even if the
accompanying LUT is occupied.
Control Logic
The control signals available to the registers in a PFU are Clock, Clock Enable, and Set/Reset. Figure 7 shows the
various options available to generate the clock signal. As can be seen, the clock signal is the output of a 12:1 MUX
with true and compliment versions available from the 12:1 MUX. Each CSE can chose whether it uses the true or
compliment form of the clock. Figure 8 shows the Set/Reset selection for each PFU in the ispXPGA. A common
8
Lattice Semiconductor
ispXPGA Family Data Sheet
Set/Reset signal controls all the registers for each PFU. This common Set/Reset signal is composed of the logical
OR term of the Global Set/Reset signal (GSR) and the selected signal from routing. The polarity of this signal is not
controllable inside the PFU. Figure 9 shows the Clock Enable and Output Enable selection for each PFU.
Figure 7. Clock Selection per PFU
CLK0
CLK1
CLK2
CLK3
CLK4
CLK5
CLK6
CLK7
PFUCLK0
PFUCLK1
From routing
4
Figure 8. Set/Reset Selection per PFU
8
From routing
Set/Reset
GSR
Figure 9. Clock Enable and Output Enable Selection per PFU
8
CEB0
From routing
8
CEB1
From routing
OE
Programmable Input/Output Cell
The Programmable Input/Output Cell (PIC) is an essential part of the symmetrical architecture of the ispXPGA
Family. The PICs interface the PFUs and EBRs to the sysIO and sysHSI blocks of the device.
Each PIC contains two Programmable Input/Outputs (PIOs) with a total of 21 inputs and 10 outputs. There are 18
inputs from routing, two inputs from the sysIO buffers, and the Global Set/Reset signal. Four outputs of the PIC
connect to routing and two outputs are available as Output Enables for the tri-statable Long Lines. The remaining
four outputs feed the sysIO buffers directly (one output enable and one output to each). Each PIC associated with
a sysHSI block has four additional inputs and six additional outputs to support the sysHSI blocks. The four additional inputs come from the sysHSI block associated with the PIC. The four of the six additional outputs come from
the PIC outputs and feed the sysHSI block, while the remaining two outputs feed routing. Figure 10 shows the
block diagram of the PIC with the sysHSI block inputs and outputs.
9
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 10. ispXPGA PIC
GSR
sysIO
9
2
From routing
PIO0
To routing
2
From sysHSI block
2
To sysHSI block
Only for PICs
associated with
sysHSI blocks
To routing
Only for PICs
associated with
sysHSI blocks
PIC
2
To routing
From sysHSI block
2
To sysHSI block
9
2
To routing
PIO1
From routing
sysIO
OE1 OE0
Programmable Input/Output
The PIO is the building block of a PIC. The PIO has a total of 11 inputs and five outputs. Nine of the 11 inputs are
generated from routing. The inputs from routing are the PIO Input (IN), Feed-Thru (FT), Clock (CLK), Input Clock
Enable (ICE), Input Set/Reset (ISR), Output Clock Enable (OCEN), Output Set/Reset (OSR), PIO Output Enable
(OEN), and PIO Input Enable (IEN). The remaining inputs are the sysIO input buffer signal and the Global Set/
Reset signal. Three of the five outputs (OUT0, OUT1, and OE) feed routing. The last two outputs feed the sysIO
buffer directly as the output and output enable of the sysIO output buffer.
PIOs associated with sysHSI blocks contain two additional inputs and outputs to support the sysHSI block. The two
inputs come from the sysHSI block associated with the PIO, and the two outputs feed the sysHSI block. One of the
inputs routes directly through the PIO to routing, while the other is multiplexed with the Feed-Thru, register bypass,
and Q output of the register to form the OUT1 output of the PIO. The outputs to the sysHSI block are the same signals as the outputs which feed the sysIO buffers (sysIO Output and sysIO Output Enable).
Each PIO has an input register, an output register, and an output enable register as shown in Figure 11. The input
register path of the PIO has a ‘delay’ option, which slows the data-flow. A two-input OR function of the Global Set/
Reset (GSR) and Set/Reset (ISR or OSR) signals creates the set/reset term for the respective registers. Each PIO
has two pairs of set/reset and clock enable signals. One is exclusive to the input register, whereas the other is common for both the output and output enable registers. The clock (CLK) is common to all registers in a PIO, and the
polarity of the clock is controllable. The input, output, and the output enable registers can be configured as a latch
or D-type flip-flop. Each PIO is capable of generating an output enable signal, which in turn becomes a PIC output.
10
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 11. ispXPGA PIO
Only for PIOs associated with sysHSI Blocks
From sysHSI block
From sysHSI block
To Routing
Feed-through (FT)
From sysIO Input
Clock (CLK)
Input Clock Enable (ICEN)
OUT0
Delay
D
Q
OUT1
CLK/LE
CE
S R
Input Set/Reset (ISR)
Global Set/Reset(GSR)
To sysIO
Output
PIO Input (IN)
D
Q
To sysHSI
block
CLK/LE
Output Clock Enable (OCEN)
CE
S R
Output Set/Reset (OSR)
PIO Output Enable(OEN)
Only for PIOs
Associated with
sysHSI Blocks
To sysHSI
block
D
Q
To sysIO
Output
Enable
CLK/LE
CE
PIO Input Enable (IEN)
S R
OE
VLI Routing Resources
The ispXPGA architecture contains a Variable-Length-Interconnect (VLI) routing technology connecting the PFUs,
PICs, and EBRs in the device. There are four types of routing resources, Global Lines, Long Lines, General Interconnect, and Local Lines forming the global routing structure. This allows a signal to be routed to any element in
the device with the optimal delay.
The Global Lines consist of global clock lines and a global set/reset line. These lines are routed to all elements in
the device. They are specifically designed for high speed, predictable timing regardless of fan-out. The global clock
lines can also be used as dedicated inputs.
The Long Lines consist of Horizontal and Vertical Long Lines (HLL and VLL). The VLL and HLL are tri-statable lines
spanning the entire device. These lines allow fast routing for high fan-out nets and general-purpose functions.
The General Interconnect consists of Double and Deca Lines. The Double Lines connect up to three elements (two
plus the driving element), while the Deca Lines connect up to eleven elements (ten plus the driving element).
The Local Lines are extremely fast routing paths consisting of Feedback and Direct Connect Lines. The Feedback
Lines are internal routing paths from the PFU outputs to the PFU inputs. The Direct Connect Lines connect all adjacent elements.
The Common Interface Block (CIB) provides the link between the logic element (PFU, PIC, or EBR) and the VLI
Routing resources. The CIB is a switch matrix that can be programmed to connect virtually any routing resource to
any input or output of the logic element.
11
Lattice Semiconductor
ispXPGA Family Data Sheet
Memory
The ispXPGA architecture provides a large amount of resources for memory intensive applications. Embedded
Block RAMs (EBRs) are available to complement the Distributed Memory that is configured in the PFUs (see LookUp Table -Distributed Memory Mode in the PFU section above). Each memory element can be configured as RAM
or ROM. Additionally, the internal logic of the device can be used to configure the memory elements as FIFO and
other storage types. These EBRs are referred to as sysMEM blocks. Refer to Table 1 for memory resources per
device.
sysMEM Blocks
The sysMEM blocks are organized in columns distributed throughout the device. Each EBR contains 4.6K bits of
dual-port RAM with dedicated control, address, and data lines for each port. Each column of sysMEM blocks has
dedicated address and control lines that can be used by each block separately or cascaded to form larger memory
elements. The memory cells are symmetrical and contain two sets of identical control signals. Each port has a
read/write clock, clock enable, write enable, and output enable. Figure 12 illustrates the sysMEM block.
The ispXPGA memory block can operate as single-port or dual-port RAM. Supported configurations are:
•
•
•
•
512 x 9 bits single-port
256 x 18 bits single-port
512 x 9 bits dual-port
256 x18 bits dual-port
(8 bits data / 1 bit parity)
(16 bits data / 2 bits parity)
(8 bits data / 1 bit parity)
(16 bits data / 2 bits parity)
The data widths of “9” and “18” are ideal for applications where parity is necessary. This allows 9 data bits, 8 data
bits plus a parity bit, 18 data bits, or 16 data bits plus two parity bits. The logic for generating and checking the parity must be customized separately.
Figure 12. sysMEM Block Diagram
ADDRA
ADDRB
DATAA
DATAB
CLKA
CLKB
sysMEM Block
CEA
CEB
WEA
WEB
OEA
OEB
Read and Write Operations
The ispXPGA EBR has fully synchronous read and write operations as well as an asynchronous read operation.
These operations allow several different types of memory to be implemented in the device.
Synchronous Read: The Clock Enable (CE) and Write Enable (WE) signals control the synchronous read operation. When the CE signal is low, the clock is enabled. When the WE signal is low the read operation begins. Once
the address (ADDR) is present, a rising clock edge (or falling edge depending on polarity) causes the stored data
to be available on the DATA port. Figure 13 illustrates the synchronous read timing.
12
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 13. EBR Synchronous Read Timing Diagram
tEBCPW
CLK
CE
tEBCES
tEBCEH
WE
tEBWES
tEBWEH
OE
DATA
tEBOEDIS
Invalid Data
tEBCO
tEBWEDIS
Valid Data
tEBADDS
ADDR
tEBOEEN
tEBWEEN
Valid Data
tEBADDH
Synchronous Write: The WE signal controls the synchronous write operation. When the WE signal is high and the
write operation begins. Once the address and data are present and the Output Enable (OE) is active, a rising clock
edge (or falling edge depending on polarity) causes the data to be stored into the EBR. Figure 14 illustrates the
synchronous write timing.
Figure 14. EBR Synchronous Write Timing Diagram
CLK
tEBPW
tEBWES
WE
tEBWEH
tEBDATAH
DATA
tEBDATAS
tEBADDH
ADDR
WRITE
tEBADDS
WRITE
Asynchronous Read: The WE signal controls the asynchronous read operation. When the WE signal is low, the
read operation begins. Shortly after the address is present, the stored data is available on the DATA port. Figure 15
illustrates the asynchronous read timing. For more information about the EBR, refer to Lattice technical note number TN1028 ispXPGA Memory Usage Guidelines, available at www.latticesemi.com.
Figure 15. EBR Asynchronous Read Timing Diagram
WE
OE
tEBOEDIS
Invalid Data
DATA0
DATA
ADDR
ADDR0
tEBOEEN
tEBWEEN
tEBWEDIS
DATA1
tEBARAD_H
DATA1
ADDR1
tEBARADO
13
ADDR2
Lattice Semiconductor
ispXPGA Family Data Sheet
sysCLOCK PLL Description
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset, and feedback
signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are aligned
either at the board level or the device level.
The ispXPGA devices provide up to eight PLLs. Each PLL receives its input clock from its associated global clock
pin, and its output is routed to the associated global clock net. For example, PLL0 receives its clock input from the
GCLK0 global clock pin and provides output to the CLK0 global clock net. The PLL also has the ability to output a
secondary clock that is a division of the primary clock output. When using the secondary clock, the secondary
clock will be routed to the neighboring global clock net. For example, PLL0 will drive its primary clock output on the
CLK0 global clock net and its secondary clock output will drive the CLK1 global clock net. Additionally, each PLL
has a set of PLL_RST, PLL_FBK, and PLL_LOCK signals. The PLL_RST signal can be generated through routing
or a dedicated dual-function I/O pin. The PLL_FBK signal can be generated through a dedicated dual-function I/O
pin or internally from the Global Clock net associated with the PLL. The PLL_LOCK signal feeds routing directly
from the sysCLOCK PLL circuit. Figure 17 illustrates how the PLL_RST and PLL_FBK signals are generated.
Each PLL has four dividers associated with it, M, N, V, and K. The M divider is used to divide the clock signal, while
the N divider is used to multiply the clock signal. The V divider allows the VCO frequency to operate at higher frequencies than the clock output, thereby increasing the frequency range. The K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and feeds to the adjacent global clock
net. Different combinations of these dividers allow the user to synthesize clock frequencies. Figure 16 shows the
ispXPGA PLL block diagram.
The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and
clock-to-out times for better performance. This operates by inserting delay on the input or feedback lines of the
PLL. For more information on the PLL, please refer to Lattice technical note number TN1003, sysCLOCK PLL
Usage and Design Guidelines, available at www.latticesemi.com.
Figure 16. ispXPGA PLL Block Diagram
GCLK_IN
Input Clock
(M) Divider
Post-scalar
(V) Divider
Programable
Delay
CLK_OUT
Clock Net
PLL
PLL_RST
PLL_LOCK
Secondary
Clock
(K) Divider
Feedback
Loop
(N) Divider
PLL_FBK
14
SEC_OUT
Clock Net
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 17. ispXPGA PLL_RST and PLL_FBK Generation
I/O/PLL_RST
To PLL
From Routing
I/O/PLL_FBK
To PLL
From Clock Net
Clock Routing
The Global Clock Lines (GCLK) have two sources, their dedicated pins and the sysCLOCK circuit. Figure 18 illustrates the generation of the Global Clock Lines.
Figure 18. Global Clock Line Generation
From Routing
GCLK0
GCLK7
CLK_OUT0
PLL0
CLK0
CLK_OUT7
CLK7
SEC_OUT0
PLL7
SEC_OUT7
From Routing
GCLK1
GCLK6
CLK_OUT1
PLL1
CLK1
CLK_OUT6
CLK6
SEC_OUT1
PLL6
SEC_OUT6
From Routing
GCLK2
GCLK5
CLK_OUT2
PLL2
CLK2
CLK_OUT5
CLK5
SEC_OUT2
PLL5
SEC_OUT5
From Routing
GCLK3
GCLK4
CLK_OUT3
PLL3
CLK3
CLK_OUT4
CLK4
SEC_OUT3
PLL4
SEC_OUT4
sysIO Capability
All the ispXPGA devices have eight sysIO banks, where each bank is capable of supporting multiple I/O standards.
Each sysIO bank has its own I/O supply voltage (VCCO) and reference voltage (VREF) resources allowing each
bank complete independence from the others. Each I/O is individually configurable based on the bank’s VCCO and
VREF settings. In addition, each I/O has configurable drive strength, weak pull-up, weak pull-down, or a bus-keeper
latch. Table 4 lists the number of I/Os supported per bank in each of the ispXPGA devices.
Table 5 lists the sysIO standards with the typical values for VCCO, VREF and VTT.
The TOE, JTAG TAP pins, PROGRAM, CFG0 and DONE pins of the ispXPGA device are the only pins that do not
have the sysIO capabilities. The TOE and CFG0 pins operate off the VCC of the device, supporting only the LVCMOS standard corresponding to the device supply voltage. The TAP pins have a separate supply voltage (VCCJ),
which determines the LVCMOS standard corresponding to that supply voltage.
There are three classes of I/O interface standards that are implemented in the ispXPGA devices. The first is the unterminated, single-ended interface. It includes the 3.3V LVTTL standard along with the 1.8V, 2.5V, and 3.3V LVCMOS interface standards. Additionally, PCI and AGP-1X are subsets of this type of interface.
15
Lattice Semiconductor
ispXPGA Family Data Sheet
The second type of interface implemented is the terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL interfaces along with CTT, and GTL+. Usage of these particular I/O interfaces requires an additional VREF signal. At the system level a termination voltage, VTT, is also required.
Typically an output will be terminated to VTT at the receiving end of the transmission line it is driving.
The third type of interface standards are the differential standards LVDS, BLVDS, and LVPECL. The differential
standards require two I/O pins to create the differential pair. The logic level is determined by the difference in the
two signals. Table 6 lists how these interface standards are implemented in the ispXPGA devices.
For more information on sysIO capability, refer to Lattice technical note number TN1000, sysIO Usage Guidelines
for Lattice Devices available at www.latticesemi.com.
Figure 19. sysIO Banks per Device
VCCO6
I/O 0
I/O N
I/O 0
Bank 6
VREF0
GND
I/O N
VCCO5
Bank 5
Bank 0
VCCO0
VREF6
GND
VCCO7
VREF7
GND
I/O N
Bank 7
I/O 0
VREF5
GND
I/O N
I/O 0
I/O 0
I/O N
VREF1
GND
I/O N
VCCO4
Bank 4
Bank 1
VCCO1
Bank 2
VREF4
GND
I/O 0
Bank 3
I/O N
I/O 0
I/O N
I/O 0
VCCO3
VREF3
GND
VCCO2
VREF2
GND
Table 4. Number of I/Os per Bank
Device
Max. Number of I/Os per Bank (N)
XPGA 1200
62
XPGA 500
42
XPGA 200
26
XPGA 125
22
16
Lattice Semiconductor
ispXPGA Family Data Sheet
Table 5. ispXPGA Supported I/O Standards
sysIO Standard
VCCO
VREF
VTT
LVTTL
3.3V
N/A
N/A
LVCMOS-3.3
3.3V
N/A
N/A
LVCMOS-2.5
2.5V
N/A
N/A
LVCMOS-1.8
1.8V
N/A
N/A
PCI
3.3V
N/A
N/A
AGP-1X
3.3V
N/A
N/A
SSTL3, Class I, II
3.3V
1.5V
1.5V
SSTL2, Class I, II
2.5V
1.25V
1.25V
HSTL, Class I
1.5V
0.75V
0.75V
HSTL, Class III
1.5V
0.9V
1.5V
GTL+
N/A
1.0V
1.5V
LVPECL
3.3V
N/A
N/A
LVDS
2.5V
N/A
N/A
BLVDS
2.5V
N/A
N/A
1
1. VCCO must be 2.5V for high speed serial operations (sysHSI block).
Table 6. Differential Interface Standard Support1
sysIO Buffer Not Using sysHSI Block
LVDS
BLVDS
LVPECL
sysIO Buffer Using sysHSI Block
Driver
Supported with external resistor network
Supported
Receiver
Supported with standard termination
Supported with standard termination
Driver
Supported with external resistor network
Not supported
Receiver
Supported (may need termination)
Supported (may need termination)
Driver
Supported with external resistor network
Not supported
Receiver
Supported with termination
Supported with termination
1. For more information, refer to Lattice technical note TN1000, sysIO Usage Guidelines, available at www.latticesemi.com.
17
Lattice Semiconductor
ispXPGA Family Data Sheet
High Speed Serial Interface Block (sysHSI Block)
The High Speed Serial Interface (sysHSI) allows high speed serial data transfer over a pair of LVDS I/O. The
ispXPGA devices have multiple sysHSI blocks.
Each sysHSI block has two SERDES blocks which contain two main sub-blocks, Transmitter (with a serializer) and
Receiver (with a deserializer) including Clock/Data Recovery Circuit (CDR). Each SERDES can be used as a full
duplex channel. The two SERDES in sysHSI blocks share a common clock and must operate at the same nominal
frequency. Figure 20 shows the sysHSI block.
Device features support two data coding modes: 10B/12B and 8B/10B (for use with other encoding schemes, see
Lattice’s sysHSI technical notes). The encoding and decoding of the 10B/12B standard are performed within the
sysHSI block. For the 8B/10B standard, the symbol boundaries are aligned internally but the encoding and decoding are performed outside the sysHSI block.
Each SERDES block receives a single high speed serial data input stream (with embedded clock) from an input,
and provide a low speed 10-bit wide data stream and a recovered clock to the device. For transmitting, SERDES
converts a 10-bit wide low-speed data stream to a single high-speed data stream with embedded clock for output.
Additionally, multiple sysHSI blocks can be grouped together to form a source synchronous interface of 1-10 channels.
Table 7 shows the clock sources available for the REFCLKs of the different sysHSI blocks. The Signal Description
table in this data sheet provides the descriptions of the sysHSI block inputs and outputs.
For more information on the SERDES/CDR, refer to Lattice technical note number TN1020, sysHSI Usage Guidelines.
Figure 20. sysHSI Block Diagram
SOUT
SERDES(HSI#A)
Serializer
SIN
10
TXD
10
RXD
RECCLK
Deserializer and Clock/Data Recovery
LOSS
SYDT
EXLOSS
CDRRST
sysIO
Shared Source
Synchronous Pins Drive
Multiple sysHSI blocks
CDRLOCK
CAL
SS_CLKOUT
CSLOCK
CSPLL
REFCLK
SS_CLKIN
EXLOSS
CDRRST
SYDT
LOSS
Deserializer and Clock/Data Recovery
SIN
Serializer
SERDES(HSI#B)
18
To PICs
To PICs
To PICs
To PICs
To PICs
From PICs
From PICs
From PICs
To PICs
From Global
Clock Tree
From PICs
From PICs
To PICs
CDRLOCK
To PICs
RECCLK
To PICs
10
SOUT
From PICs
10
RXD
TXD
To PICs
To PICs
From PICs
Lattice Semiconductor
ispXPGA Family Data Sheet
Table 7. sysHSI Block REFCLK Selections1
sysHSI Block
Available Global Clock Nets
0
CLK0, CLK1, CLK2, CLK3
1
CLK0, CLK1, CLK2, CLK4
2
CLK0, CLK1, CLK2, CLK5
3
CLK0, CLK1, CLK3, CLK6
4
CLK0, CLK1, CLK3, CLK7
5
CLK0, CLK3, CLK5, CLK7
6
CLK0, CLK2, CLK5, CLK7
7
CLK0, CLK1, CLK5, CLK6
8
CLK0, CLK5, CLK6
9
CLK0, CLK5, CLK6, CLK7
1. Table 6 applies to all devices. Ignore sysHSI blocks not available
in a specific device.
Configuration and Programming
The ispXPGA family of devices takes a unique approach to FPGA configuration memory. It contains two types of
memory, Static RAM and non-volatile E2CMOS cells. The static RAM is used to control the functionality of the
device during normal operation and the E2CMOS memory cells are used to load the SRAM. The E2CMOS memory
module can be thought of as the hard drive for the ispXPGA configuration and the SRAM as the working configuration memory. There is a one-to-one relationship between SRAM memory and the E2CMOS cells. The SRAM can be
configured either from the E2CMOS memory or from an external source, as shown in Figure 21.
Figure 21 shows the different ports and modes that are used in the configuration and programming of the ispXPGA
devices. There are two possible ports that can be used for configuration of the SRAM memory: the ISP port which
is compliant to the IEEE 1149.1 Test Access Port (TAP) Std. and the ISP port which accommodates bit-wide configuration. The sysCONFIG port allows byte-wide configuration of the SRAM configuration memory. When programming the E2CMOS memory, only the 1149.1 TAP can be used.
Configuration and programming done through the 1149.1 Test Access Port (TAP) are fully compliant to both the
IEEE Std. 1149.1 Boundary Scan TAP specification and the IEEE Std. 1532 In-System Configuration specification.
To configure or program the device using the 1149.1 TAP the device must be in the ISP mode. To configure the
SRAM memory using the sysCONFIG Port, the device must be in the sysCONFIG mode. Upon power-up, the
device’s SRAM memory can be configured either from the E2CMOS memory or from an external source through
the sysCONFIG mode. Additionally, the SRAM can be re-configured from the E2CMOS memory by executing a
“REFRESH.” See Lattice technical note number TN1026, ispXP Configuration Usage Guide, for more in depth
information on the different programming modes, timing and wake-up, available at www.latticesemi.com.
19
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 21. ispXP Block Diagram
sysCONFIG Peripheral Port
ISP 1149.1 TAP Port
Port
ISP
BACKGND
1532
sysCONFIG
Mode
Configuration
in milliseconds
Programming
in seconds
Power-up
E2CMOS
Memory Space
Refresh
SRAM
Memory Space
Download in
microseconds
Memory Space
IEEE 1149.1-Compliant Boundary Scan Testability
All ispXPGA devices have boundary scan cells and are compliant with the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal boundary scan registers are linked internally, allowing test data to be shifted in and loaded
directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices
can be linked into a board-level serial scan path for more board level testing.
Security Scheme
A programmable security scheme is provided on the ispXPGA devices as a deterrent to unauthorized copying of
the array configuration patterns. Once programmed, the security scheme prevents read-back of the programmed
pattern by a device programmer, securing proprietary designs from competitors. The entire device must be erased
in order to erase the security scheme.
Density Shifting
The ispXPGA family has been designed to ensure that different density devices in the same package have the
same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from
lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted
for a high-density device to a lower density device. However, the exact details of the final resource utilization will
impact the likely success in each case.
20
Lattice Semiconductor
ispXPGA Family Data Sheet
Absolute Maximum Ratings1, 2, 3
1.8V
2.5V/3.3V
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . .-0.5 to 5.5V
PLL Supply Voltage (VCCP) . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . .-0.5 to 5.5V
Output Supply Voltage (VCCO) . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . .-0.5 to 4.5V
IEEE 1149.1 TAP Supply Voltage (VCCJ) . . . . . . . -0.5 to 4.5V . . . . . . . . . .-0.5 to 4.5V
Input Voltage Applied4 . . . . . . . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . .-0.5 to 4.5V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C. . . . . . . . . -65 to 150°C
Junction Temperature (TJ) with Power Applied . . -55 to 150°C. . . . . . . . . -55 to 150°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, following the programming specifications).
2. Compliance with the Lattice Thermal Management technical note is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2V to (VIH (MAX) + 2) volts is permitted for a duration of <20ns
Recommended Operating Conditions
Symbol
VCC
VCCP
VCCJ
Parameter
Min
Max
Units
Supply Voltage for 1.8V device
1.65
1.95
V
Supply Voltage for 2.5V device
2.3
2.7
V
Supply Voltage for 3.3V device
3.0
3.6
V
Supply Voltage for PLL block for 1.8V device
1.65
1.95
V
Supply Voltage for PLL block for 2.5V device
2.3
2.7
V
Supply Voltage for PLL block for 3.3V device
3.0
3.6
V
Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 1.8V
1.65
1.95
V
Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 2.5V
2.3
2.7
V
Supply Voltage for IEEE 1149.1 Test Access Port for LVCMOS 3.3V
3.0
3.6
V
0
85
C
-40
105
C
Min
Max
Units
1,000
—
Cycles
TJ (COM)
Junction Temperature Commercial Operation
TJ (IND)
Junction Temperature Industrial Operation
E2CMOS Erase Reprogram Specifications
Parameter
1
Erase/Reprogram Cycle
1. Valid over commercial temperature range.
Hot Socketing Characteristics1, 2, 3, 4
Symbol
IDK
1.
2.
3.
4.
Parameter
Input or I/O Leakage Current
Condition
0 ≤ VIN ≤ 3.0V
Min
Typ
Max
Units
—
+/-50
+/-800
µA
Insensitive to sequence of VCC and VCCO. However, assumes monotonic rise / fall rates for VCC and VCCO.
LVTTL, LVCMOS only
0 < VCC ≤ VCC (MAX), 0 < VCCO ≤ VCCO (MAX)
IDK is additive to IPU, IPD or IBH. Device defaults to pull-up until fuse circuitry is active.
21
Lattice Semiconductor
ispXPGA Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
Parameter
Condition
0 ≤ VIN < (VCCO - 0.2V)
Min
Typ
Max
Units
—
—
10
µA
IIL, IIH1
Input or I/O Low Leakage
(VCCO - 0.2V) ≤ VIN ≤ 3.6V
—
—
40
µA
IPU
I/O Active Pull-up Current
0 ≤ VIN ≤ 0.7 VCCO
30
—
150
µA
IPD
I/O Active Pull-down Current
VIL (MAX) ≤ VIN ≤ VIH (MAX)
30
—
150
µA
IBHLS
Bus Hold Low Sustaining Current VIN = VIL (MAX)
30
—
—
µA
IBHHS
Bus Hold High Sustaining Current VIN = 0.7 VCCO
30
—
—
µA
IBHLO
Bus Hold Low Overdrive Current
—
—
150
µA
IBHHO
Bus Hold High Overdrive Current 0 ≤ VIN ≤ VIH (MAX)
VBHT
Bus Hold Trip Points
C1
I/O Capacitance2
C2
Clock Capacitance2
C3
Global Input Capacitance2
0 ≤ VIN ≤ VIH (MAX)
—
—
150
µA
VCCO * 0.35
—
VCCO * 0.65
V
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
—
8
pf
—
—
6
pf
—
—
6
pf
—
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not
measured with the output driver active. Bus maintenance circuits are disabled.
2. TA = 25°C, f = 1.0MHz.
Supply Current
Over Recommended Operating Conditions
Symbol
ICC1, 2
ICCO3
ICCP4
ICCJ5
Parameter
Condition
Standby Core Operating Power Supply Current
Standby Output Power Supply Current
Standby PLL Operating Supply Current
Standby IEEE 1149.1 TAP Power Supply Current
Min
Typ
Max
Units
VCC = 3.3V
—
220
—
mA
VCC = 2.5V
—
220
—
mA
VCC = 1.8V
—
200
—
mA
VCCO = 3.3V
—
2.0
—
mA
VCCO = 2.5V
—
2.0
—
mA
VCCO = 1.8V
—
2.0
—
mA
VCCO = 1.5V
—
2.0
—
mA
VCCP = 3.3V
—
17.0
—
mA
VCCP = 2.5V
—
17.0
—
mA
VCCP = 1.8V
—
15.0
—
mA
VCCJ = 3.3V
—
2.0
—
mA
VCCJ = 2.5V
—
1.5
—
mA
VCCJ = 1.8V
—
1.0
—
mA
1. TA = 25˚C, frequency = 1.0 MHz, device configured with 16-bit counters.
2. ICC varies with specific device configuration and operating frequency. For more accurate power calculation use the ispXPGA Power
Estimator.
3. TA = 25˚C, per bank, no DC load, frequency = 0 MHz.
4. TA = 25˚C, per PLL, frequency = 10 MHz.
5. TA = 25˚C
22
Lattice Semiconductor
ispXPGA Family Data Sheet
sysIO Recommended Operating Conditions
VCCO (V)1
Standard
LVCMOS 3.3
VREF (V)
Min.
Typ.
Max.
Min.
Typ.
Max.
3.0
3.3
3.6
-
-
-
LVCMOS 2.5
2.3
2.5
2.7
-
-
-
LVCMOS 1.82
1.65
1.8
1.95
-
-
-
LVTTL
3.0
3.3
3.6
-
-
-
PCI 3.3
3.0
3.3
3.6
-
-
-
AGP-1X
3.15
3.3
3.45
-
-
-
SSTL 2
2.3
2.5
2.7
1.15
1.25
1.35
SSTL 3
3.0
3.3
3.6
1.3
1.5
1.7
CTT 3.3
3.0
3.3
3.6
1.35
1.5
1.65
CTT 2.5
2.3
2.5
2.7
1.35
1.5
1.65
HSTL Class I
1.4
1.5
1.6
0.68
0.75
0.9
HSTL Class III
1.4
1.5
1.6
-
0.9
-
GTL+
-
-
-
0.882
1.0
1.122
LVDS
2.3
2.5
2.7
-
-
-
LVPECL
3.0
3.3
3.6
-
-
-
BLVDS
2.3
2.5
2.7
-
-
-
1. Inputs independent of VCCO.
2. Design tool default setting.
23
Lattice Semiconductor
ispXPGA Family Data Sheet
sysIO DC Electrical Characteristics
Over Recommended Operating Conditions
VIL
Standard
LVCMOS 3.3
LVCMOS 2.5
LVCMOS 1.81
LVTTL
Min. (V)
-0.3
-0.3
-0.3
-0.3
VIH
Max. (V)
0.8
2.0
0.7
1.7
0.683
1.073
0.35VCC
0.8
-0.3
AGP-1X
-0.3
SSTL 3 Class I
-0.3
0.65VCC
2.0
3
PCI 3.3
Min. (V)
Max. (V)
3.6
3.6
3.6
VOL
Max. (V)
VOH
Min. (V)
IOL (mA)
IOH (mA)
20, 16, 12, -20, -16,-12,
8, 5.33, 4 -8, -5.33, -4
0.4
VCCO - 0.4
0.2
VCCO - 0.2
0.1
-0.1
0.4
VCCO - 0.4
16, 12, 8,
5.33, 4
-16, -12, -8,
-5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
0.4
VCCO - 0.4
12, 81, 5.33,
4
-12, -81,
-5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
20, 16, 12, -20, -16,-12,
8, 5.33, 4 -8, -5.33, -4
0.4
VCCO - 0.4
0.2
VCCO - 0.2
0.1
-0.1
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
0.7
VCCO - 1.1
8
-8
3.6
3
1.08
1.5
0.3VCCO
0.5 VCCO
1.083
1.53
0.3 VCCO
0.5 VCCO
VREF - 0.2
VREF + 0.2
3.6
SSTL 3 Class II
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.5
VCCO - 0.9
16
-16
SSTL 2 Class I
-0.3
VREF - 0.18 VREF + 0.18
3.6
0.54
VCCO - 0.62
7.6
-7.6
SSTL 2 Class II
-0.3
VREF - 0.18 VREF + 0.18
3.6
0.35
VCCO - 0.43
15.2
-15.2
CTT 3.3
-0.3
VREF - 0.2
VREF + 0.2
3.6
VREF - 0.4
VREF + 0.4
8
-8
CTT 2.5
-0.3
VREF - 0.2
VREF + 0.2
3.6
VREF - 0.4
VREF + 0.4
8
-8
HSTL Class I
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCO - 0.4
8
-8
HSTL Class III
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCO - 0.4
24
-8
GTL+
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.6
N/A
36
N/A
1. Design tool default setting.
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND
connections or between the last GND in a bank and the end of a bank
3. Applicable for ispXPGA V/B devices.
24
Lattice Semiconductor
ispXPGA Family Data Sheet
sysIO Differential Standards DC Electrical Characteristics
Parameter
Description
Test Conditions
Min.
Typ.
Max.
0V
—
2.4V
+/-100mV
—
—
0.05V
—
2.35V
1
LVDS
VINP, VINM
Input voltage
VTHD
Differential input threshold
VCM
Input Common Mode voltage
IIN
Input current
Power on or Power off
—
—
+/-10uA
VOH
Output High Voltage for VOP or VOM
RT = 100 Ohm
—
1.38V
1.60V
VOL
Output Low Voltage for VOP or VOM
RT = 100 Ohm
0.9V
1.03V
—
VOD
Output Voltage Differential
|VOP - VOM|, RT = 100 ohm
250mV
350mV
450mV
—
—
50mV
|VOP + VOM|/2, RT = 100 ohm
1.125V
1.25V
1.375V
∆VOD
Change in VOD between high and low
VOS
Output Voltage Offset
∆VOS
Change in VOS between H and L
IOSD
Output short circuit current
Half the sum of the two inputs
VOD = 0V Driver outputs
shorted
—
—
50mV
—
—
24mA
0V
—
2.4V
+/-100mV
—
—
BLVDS1
VINP, VINM
Input voltage
VTHD
Differential input threshold
VCM
Input Common Mode voltage
Half the sum of the two inputs
IIN
Input current
Power on or Power off
0.05V
—
2.35V
—
—
+/-10uA
VOH
Output High Voltage for VOP or VOM
RT = 27Ω
—
1.4V
1.80V
VOL
Output Low Voltage for VOP or VOM
RT = 27Ω
0.95V
1.1V
—
|VOP - VOM|, RT = 27Ω
240mV
300mV
460mV
VOD
Output Voltage Differential
∆VOD
Change in VOD Between H and L
VOS
Output Voltage Offset
∆VOS
Change in VOS Between H and L
IOSD
Output Short Circuit Current
27mV
|VOP + VOM| /2, RT = 27Ω
1.1V
1.3V
1.5V
27mV
VOD = 0. Driver Outputs
Shorted.
36mA
65mA
1. VOP and VOM are the two outputs of the LVDS/BLVDS output buffer.
LVPECL1
DC
Parameter
Parameter Description
Min.
Max.
Min.
3.0
VCCO
Max.
Min.
3.3
Max.
3.6
Units
V
VIH
Input Voltage High
1.49
2.72
1.49
2.72
1.49
2.72
V
VIL
Input Voltage Low
0.86
2.125
0.86
2.125
0.86
2.125
V
VOH
Output Voltage High
1.8
2.11
1.92
2.28
2.13
2.41
V
VOL
Output Voltage Low
0.96
1.27
1.06
1.43
1.3
1.57
V
Differential Input voltage
0.3
—
0.3
—
0.3
—
V
VDIFF
1. These values are valid at the output of the source termination pack as shown above with 100-ohm differential load only (see Figure 22).
The VOH levels are 200mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges.
25
Lattice Semiconductor
ispXPGA Family Data Sheet
Figure 22. LVPECL Driver with Three Resistor Pack
1/4 of Bourns P/N
CAT 16-PC4F12
ispXPGA
LVPECL Buffer
A
Zo
to LVPECL
differential
receiver
RD
RT=100
Rs
Rs
Zo
ispXPGA External Switching Characteristics
Over Recommended Operating Conditions
-4
Parameter
Description
Conditions
-3
Min.
Max.
Min.
—
7.1
—
-2.7
—
-2.3
—
ns
4.6
—
5.3
—
ns
4.4
—
ns
0.0
—
tCO
Global Clock Input to Output PIO Output Register
tS
Global Clock Input Setup
PIO Input Register without input delay
tH
Global Clock Input Hold
PIO Input Register without input delay
tSINDLY
Global Clock Input Setup
PIO Input Register with input delay
3.8
—
tHINDLY
Global Clock Input Hold
PIO Input Register with input delay
0.0
—
tCOPLL
Global Clock Input to Output PIO Output Register using PLL without delay
Max. Units
8.2
ns
—
3.3
—
3.8
ns
1.1
—
1.3
—
ns
tSPLL
Global Clock Input Setup
PIO Input Register without input delay using
PLL without delay
tHPLL
Global Clock Input Hold
PIO Input Register without input delay using
PLL without delay
0.8
—
1.0
—
ns
tSINDLYPLL
Global Clock Input Setup
PIO Input Register with input delay using PLL
without delay
7.6
—
8.8
—
ns
tHINDLYPLL
Global Clock Input Hold
PIO Input Register with input delay using PLL
without delay
-4.6
—
-4.0
—
ns
26
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA PFU Timing Parameters
Over Recommended Operating Conditions
-4
Parameter
Description
-3
Min.
Max.
Min.
Max.
Units
Functional Delays
LUTs
tLUT4
4-Input LUT Delay
—
0.44
—
0.51
ns
tLUT5
5-Input LUT Delay
—
0.79
—
0.91
ns
tLUT6
6-Input LUT Delay
—
0.93
—
1.07
ns
—
-0.53
—
ns
Shift Register (LUT)
tLSR_S
Shift Register Setup Time
-0.62
tLSR_H
Shift Register Hold Time
0.63
—
0.72
—
ns
tLSR_CO
Shift Register Clock to Output Delay
—
0.75
—
0.86
ns
Arithmetic Functions
tLCTHRUR
MC (Macro Cell) Carry In to MC Carry Out Delay (Ripple)
—
0.09
—
0.10
ns
tLCTHRUL1
MC Carry In to MC Carry Out Delay (Look Ahead)
—
0.05
—
0.06
ns
tLSTHRU
MC Sum In to MC Sum Out Delay
—
0.45
—
0.52
ns
tLSINCOUT
MC Sum In to MC Carry Out Delay
—
0.31
—
0.36
ns
tLCINSOUTR
MC Carry In to MC Sum Out Delay (Ripple)
—
0.39
—
0.45
ns
tLCINSOUTL
MC Carry In to MC Sum Out Delay (Look Ahead)
—
0.28
—
0.32
ns
PFU Feed-Thru Delay
—
0.16
—
0.18
ns
1.33
—
1.53
ns
Feed-thru
tLFT
Distributed RAM
tLRAM_CO
Clock to RAM Output
—
tLRAMAD_S
Address Setup Time
-0.40
—
-0.34
—
ns
tLRAMD_S
Data Setup Time
0.22
—
0.25
—
ns
tLRAMWE_S
Write Enable Setup Time
0.46
—
0.53
—
ns
tLRAMAD_H
Address Hold Time
0.60
—
0.69
—
ns
tLRAMD_H
Data Hold Time
0.11
—
0.13
—
ns
tLRAMWE_H
Write Enable Hold Time
0.12
—
0.14
—
ns
tLRAMCPW
Clock Pulse Width (High or Low)
3.00
—
3.45
—
ns
tLRAMADO
Address to Output Delay
—
0.93
—
1.07
ns
—
0.62
—
0.71
ns
0.14
—
0.16
—
ns
Register/Latch Delays
Registers
tL_CO
Register Clock to Output Delay
tL_S
Register Setup Time (Data before Clock)
tL_H
Register Hold Time (Data after Clock)
-0.12
—
-0.10
—
ns
tLCE_S
Register Clock Enable Setup Time
-0.11
—
-0.09
—
ns
tLCE_H
Register Clock Enable Hold Time
0.11
—
0.13
—
ns
Latches
tL_GO
Latch Gate to Output Delay
—
0.10
—
0.12
ns
tLL_S
Latch Setup Time
0.14
—
0.16
—
ns
tLL_H
Latch Hold Time
-0.12
—
-0.10
—
ns
tLLPD
Latch Propagation Delay (Transparent Mode)
—
0.10
—
0.12
ns
27
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA PFU Timing Parameters (Continued)
Over Recommended Operating Conditions
-4
Parameter
Description
-3
Min.
Max.
Min.
Max.
Units
—
1.17
—
1.35
ns
Reset/Set
tLASSRO
Asynchronous Set/Reset to Output
tLASSRPW
Asynchronous Set/Reset Pulse Width
—
4.50
—
5.18
ns
tLASSRR
Asynchronous Set/Reset Recovery
—
0.55
—
0.63
ns
tLSSR_S
Synchronous Set/Reset Setup Time
-0.03
—
-0.03
—
ns
tLSSR_H
Synchronous Set/Reset Hold Time
0.03
—
0.03
—
ns
1. tLCTHRUL quoted bit by bit.
Timing v.2.0
ispXPGA PIC Timing Parameters
-4
Parameter
Description
-3
Min.
Max.
Min.
Max.
Units
—
0.05
1.09
—
1.25
ns
—
0.06
—
ns
Register/Latch Delays
tIO_CO
Register Clock to Output Delay
tIO_S
Register Setup Time (Data before Clock)
tIO_H
Register Hold Time (Data after Clock)
0.06
—
0.07
—
ns
tIOCE_S
Register Clock Enable Setup Time
-0.03
—
-0.03
—
ns
tIOCE_H
Register Clock Enable Hold Time
0.13
—
0.15
—
ns
tIO_GO
Latch Gate to Output Delay
—
0.91
—
1.05
ns
tIOL_S
Latch Setup Time
0.05
—
0.06
—
ns
tIOL_H
Latch Hold Time
0.06
—
0.07
—
ns
tIOLPD
Latch Propagation Delay (Transparent Mode)
—
0.10
—
0.12
ns
tIOASRO
Asynchronous Set/Reset to Output
—
1.26
—
1.45
ns
tIOASRPW
Asynchronous Set/Reset Pulse Width
—
4.50
—
5.18
ns
tIOASRR
Asynchronous Set/Reset Recovery Time
—
0.25
—
0.29
ns
—
1.06
—
1.22
ns
Input/Output Delays
tIOBUF
Output Buffer Delay
tIOIN
Input Buffer Delay
—
0.76
—
0.87
ns
tIOEN
Output Enable Delay
—
0.56
—
0.64
ns
tIODIS
Output Disable Delay
—
-0.10
—
-0.09
ns
tIOFT
Feed-thru Delay
—
0.20
—
0.23
ns
Timing v.2.0
28
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA EBR Timing Parameters
-4
Parameter
Description
-3
Min.
Max.
Min.
Max.
Units
Synchronous Write
tEBSWAD_S
Address Setup Delay
0.61
—
0.70
—
ns
tEBSWAD_H
Address Hold Delay
-0.39
—
-0.33
—
ns
tEBSWCPW
Clock Pulse Width
—
3.40
—
3.91
ns
tEBSWWE_S
Write Enable Setup Time
-0.12
—
-0.10
—
ns
tEBSWWE_H
Write Enable Hold Time
0.16
—
0.18
—
ns
tEBSWD_S
Data Setup Time
0.28
—
0.32
—
ns
tEBSWD_H
Data Hold Time
-0.26
—
-0.22
—
ns
Synchronous Read
tEBSR_CO
Clock to Data Delay
—
2.19
—
2.52
ns
tEBSRAD_S
Address Setup Delay
0.10
—
0.12
—
ns
tEBSRAD_H
Address Hold Delay
-0.07
—
-0.06
—
ns
tEBSRCPW
Clock Pulse Width
—
3.40
—
3.91
ns
tEBSRCE_S
Clock Enable Setup Time
-1.71
—
-1.45
—
ns
tEBSRCE_H
Clock Enable Hold Time
1.69
—
1.94
—
ns
tEBSRWE_S
Write Enable Setup Time
-0.17
—
-0.14
—
ns
tEBSRWE_H
Write Enable Hold Time
0.12
—
0.14
—
ns
tEBSRWEEN
Write Enable to Data Enable Time
—
1.05
—
1.21
ns
tEBSRWEDIS
Write Enable to Data Disable Time
—
1.02
—
1.17
ns
tEBSREN
Output Enable to Data Enable Time
—
1.05
—
1.21
ns
tEBSRDIS
Output Enable to Data Disable Time
—
0.86
—
0.99
ns
Asynchronous Read
tEBARADO
Address to New Valid Data Delay
—
2.46
—
2.83
ns
tEBARAD_H
Address to Previous Valid Data Delay
—
2.17
—
2.50
ns
tEBARWEEN
Write Enable to Data Enable Time
—
1.04
—
1.20
ns
tEBARWEDIS
Write Enable to Data Disable Time
—
1.01
—
1.16
ns
tEBAREN
Output Enable to Data Enable Time
—
1.05
—
1.21
ns
tEBARDIS
Output Enable to Data Disable Time
—
0.86
—
0.99
ns
Timing v.2.0
29
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Family Timing Adders
Parameter
Description
Base
Parameter
-4
-3
Min.
Max.
Min.
Max.
Units
Optional Adders
Input Delay
—
—
6.0
—
6.9
ns
LVTTL_in
Using 3.3V TTL
tIOIN
—
0.5
—
0.5
ns
LVCMOS_18_in
Using 1.8V CMOS
tIOIN
—
0.0
—
0.0
ns
LVCMOS_25_in
Using 2.5V CMOS
tIOIN
—
0.3
—
0.3
ns
tINDIO
tIOI Input Adjusters
LVCMOS_33_in
Using 3.3V CMOS
tIOIN
—
0.5
—
0.5
ns
AGP_1X_in
Using AGP 1x
tIOIN
—
1.0
—
1.0
ns
CTT25_in
Using CTT 2.5V
tIOIN
—
1.0
—
1.0
ns
CTT33_in
Using CTT 3.3V
tIOIN
—
1.0
—
1.0
ns
GTL+_in
Using GTL+
tIOIN
—
0.5
—
0.5
ns
HSTL_I_in
Using HSTL 2.5V, Class I
tIOIN
—
0.5
—
0.5
ns
HSTL_III_in
Using HSTL 2.5V, Class III
tIOIN
—
0.5
—
0.5
ns
LVDS_in
Using Low Voltage
Differential Signaling (LVDS)
tIOIN
—
0.8
—
0.8
ns
BLVDS_in
Using Bus Low Voltage
tIOIN
Differential Signaling (BLVDS)
—
0.8
—
0.8
ns
LVPECL_in
Using Low Voltage PECL
tIOIN
—
0.8
—
0.8
ns
PCI_in
Using PCI
tIOIN
—
1.0
—
1.0
ns
SSTL2_I_in
Using SSTL 2.5V, Class I
tIOIN
—
0.8
—
0.8
ns
SSTL2_II_in
Using SSTL 2.5V, Class II
tIOIN
—
0.5
—
0.5
ns
SSTL3_I_in
Using SSTL 3.3V, Class I
tIOIN
—
0.8
—
0.8
ns
SSTL3_II_in
Using SSTL 3.3V, Class II
tIOIN
—
0.8
—
0.8
ns
tIOO Output Adjusters
Slow Slew
Using Slow Slew (LVTTL and tIOBUF, tIOEN
LVCMOS Outputs only)
—
0.7
—
0.7
ns
LVTTL_out
Using 3.3V TTL Drive
tIOBUF, tIOEN,
tIODIS
—
1.0
—
1.0
ns
LVCMOS_18_4mA_out
Using 1.8V CMOS Standard,
4mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.8
—
0.8
ns
LVCMOS_18_5.33mA_out Using 1.8V CMOS Standard,
5.33mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.6
—
0.6
ns
LVCMOS_18_8mA_out
Using 1.8V CMOS Standard,
8mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.0
—
0.0
ns
LVCMOS_18_12mA_out
Using 1.8V CMOS Standard,
12mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.2
—
0.2
ns
LVCMOS_25_4mA_out
Using 2.5V CMOS Standard,
4mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.7
—
0.7
ns
LVCMOS_25_5.33mA_out Using 2.5V CMOS Standard,
5.33 mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVCMOS_25_8mA_out
Using 2.5V CMOS Standard,
8mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVCMOS_25_12mA_out
Using 2.5V CMOS Standard,
12mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVCMOS_25_16mA_out
Using 2.5V CMOS Standard,
16mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
30
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Family Timing Adders (Continued)
Parameter
LVCMOS_33_4mA_out
Description
Base
Parameter
-4
-3
Min.
Max.
Min.
Max.
Units
Using 3.3V CMOS Standard,
4mA Drive
tIOBUF, tIOEN,
tIODIS
—
1.0
—
1.0
ns
LVCMOS_33_5.33mA_out Using 3.3V CMOS Standard,
5.33mA Drive
tIOBUF, tIOEN,
tIODIS
—
1.0
—
1.0
ns
LVCMOS_33_8mA_out
Using 3.3V CMOS Standard,
8mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.7
—
0.7
ns
LVCMOS_33_12mA_out
Using 3.3V CMOS Standard,
12mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVCMOS_33_16mA_out
Using 3.3V CMOS Standard,
16mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVCMOS_33_24mA_out
Using 3.3V CMOS Standard,
24mA Drive
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
AGP_1X_out
Using AGP 1x Standard
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
CTT25_out
Using CTT 2.5V
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
CTT33_out
Using CTT 3.3V
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
GTL+_out
Using GTL+
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
HSTL_I_out
Using HSTL 2.5V, Class I
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
HSTL_III_out
Using HSTL 2.5V, Class III
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
LVDS_out
Using Low Voltage Differential Signaling (LVDS)
tIOBUF, tIOEN,
tIODIS
—
1.0
—
1.0
ns
BLVDS_out
Using Bus Low Voltage Differ- tIOBUF, tIOEN,
tIODIS
ential Signaling (BLVDS)
—
1.0
—
1.0
ns
LVPECL_out
Using Low Voltage PECL
tIOBUF, tIOEN,
tIODIS
—
1.0
—
1.0
ns
PCI_out
Using PCI Standard
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
SSTL2_I_out
Using SSTL 2.5V, Class I
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
SSTL2_II_out
Using SSTL 2.5V, Class II
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
SSTL3_I_out
Using SSTL 3.3V, Class I
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
SSTL3_II_out
Using SSTL 3.3V, Class II
tIOBUF, tIOEN,
tIODIS
—
0.5
—
0.5
ns
Timing v.2.0
31
Lattice Semiconductor
ispXPGA Family Data Sheet
sysHSI Block Timing
Figure 23 provides a graphical representation of the SERDES receiver input requirements. It provides guidance on
a number of input parameters, including signal amplitude and rise time limits, noise and jitter limits, and P and N
input skew tolerance.
Figure 23. Receive Data Eye Diagram Template (Differential)
BIT TIME
VLVDT = 200mV
1.2 V
JTTH
EOSIN
JTTH
JTTH : Optimum Threshold Crossing Jitter
The data pattern eye opening at the receive end of a link is considered the ultimate measure of received signal
quality. Almost all detrimental characteristics of a transmit signal and the interconnection link design result in eye
closure. This combined with the eye-opening limitations of the line receiver can provide a good indication of a link’s
ability to transfer error-free data.
Signal jitter is of special interest to system designers. It is often the primary limiting characteristic of long digital
links and of systems with high noise level environments. An interesting characteristics of the clock and data recovery (CDR) portion of the ispXPGA SERDES receiver is its ability to filter incoming signal jitter that is below the
clock recovery PLL bandwidth. For signals with high levels of low frequency jitter, the receiver can detect incoming
data error free, with eye openings significantly less than that shown in Figure 23.
sysHSI Block AC Specifications
Operating Frequency Ranges
Symbol
fCLK
Description
REFCLK, SS_CLKIN,
SS_CLKOUT
Mode
Test Condition
All
SS: no CAL
fSIN
fSOUT
Serial Input
Serial Out
with eoSIN
Min
Max
Unit
40
250
MHz
400
7501
Mbps
1
SS: CAL
with eoSIN
400
800
Mbps
10B12B
with eoSIN
400
8501
Mbps
1
8B10B
with eoSIN
400
850
Mbps
LVDS
CL=5 pF, RL=100 Ohm
400
850
Mbps
1. These max. numbers apply to the -4 speed grade only. For the -3 speed grade, the corresponding numbers are:
SS: no CAL 650
SS: CAL
700
10B12B
800
8B10B
800
32
Lattice Semiconductor
ispXPGA Family Data Sheet
LOCKIN Time
Symbol
tSCLOCK
Description
Mode
Min.
Max.
Units
All
After Input is Stabilized
—
25
µS
SS
With SS mode Sync Pattern
—
1024
tRCP1
10B12B
With 10B12B Sync Pattern
—
1024
tRCP
8B10B
With 8B10B Idle Pattern
CSPLL Lock Time
Condition
tCDRLOCK
CDRPLL Lock-in Time
—
480
tRCP
tSYNC
SyncPat Length
SS
1200
—
tRCP
tCAL
CAL Duration
SS
1100
—
tRCP
tSUSYNC
SyncPat Set-up Time to CAL
SS
50
—
tRCP
tHDSYNC
SyncPat Hold Time from CAL
SS
50
—
tRCP
Min.
Max.
Units
-100
100
ppm
-0.005
0.005
UIPP
1. REFCLK clock period.
REFCLK and SS_CLKIN Timing
Symbol
Description
Mode
Condition
fDREFCLK
Frequency Deviation Between TX REFCLK and
CDRX REFCLK on one link.
8B10B,
10B12B
tJPPREFCLK
REFCLK, SS_CLKIN Peak-to-Peak Period Jitter
All
tPWREFCLK
REFCLK, SS_CLKIN Pulse Width, (80% to 80% or
20% to 20%).
All
1
—
ns
tRFREFCLK
REFCLK, SS_CLKIN Rise/Fall Time. (20% to 80%
or 80% to 20%)
All
—
2
ns
40-250 (MHz)
SERIALIZER Timing1
Symbol
tJPPSOUT
tJPP8B10B
tRFSOUT
Description
SOUT Peak-to-Peak Output Data Jitter
Mode
Condition
All
SOUT Peak-to-Peak Random Jitter
8B10B
900 Mbps w/k28.7-
SOUT Peak-to-Peak Deterministic Jitter
8B10B
900 Mbps w/k28.5+
SOUT Output Data Rise/Fall Time (20%,
80%)
LVDS
Min.
Max.
Units
—
0.25
UIPP
—
130
ps
—
110
ps
—
700
ps
BLVDS
—
900
ps
SS/8B10B
2Bt2 + 2
2Bt2 + 10
ns
2
tCOSOUT
REFCLK to SOUT Delay
10B12B
1Bt + 2
1Bt + 10
ns
tSKTX
Skew of SOUT with Respect to
SS_CLKOUT
SS
—
250
ps
tCKOSOUT
SS_CLKOUT to bit0 of SOUT
SS
2
2Bt2 + tSKTX 2Bt2 + tSKTX
ns
tHSITXDDATAS TXD Data Setup Time
All
Note 3
1.5
—
ns
tHSITXDDATAH TXD Data Hold Time
All
Note 3
—
1.0
ns
1. The SIN and SOUT jitter specifications listed above are under the condition that the clock tree that drives the REFCLK to sysHSI Block is in
sysCLOCK PLL BYPASS mode.
2. Bt = bit time period. High speed serial bit time.
3. Internal timing for reference only.
33
Lattice Semiconductor
ispXPGA Family Data Sheet
DESERIALIZER Timing1
Symbol
Description
Mode
fDSIN
SIN Frequency Deviation from REFCLK
eoSIN
SIN Eye Opening Tolerance
ber
Bit Error Rate
Min.
Max.
Units
8B10B/
10B12B
Conditions
-100
+100
ppm
All CDR
0.4
—
UIPP
SS (Note 1)
0.65
—
UIPP
All
—
10-12
Bits
—
0.125
UIPP
tSKRX
Skew Margin Between SIN and SS_CLKIN
SS
Note 2
tCKISIN
SS_CLKIN to bit0 of SIN
SS
Note 2
2Bt - tSKRX 2Bt + tSKRX
ns
tHSIOUTVALIDPRE
RXD, LOSS, CDRLOCK, SYDT Valid Time
Before RECCLK Falling Edge
All
Note 3
tRCP / 2-0.7
—
ns
tHSIOUTVALIDPOST RXD, LOSS, CDRLOCK, SYDT Valid Time
After RECCLK Falling Edge
All
Note 3
tRCP / 2-0.7
—
ns
1.5tRCP +
4.5Bt + 2
1.5tRCP +
4.5Bt + 10
ns
1.5tRCP +
1.5Bt + 3
1.5tRCP +
1.5Bt + 15
ns
tDSIN
Bit 0 of SIN Delay to RXD Valid at RECCLK
Falling edge
All CDR
SS
Note 2
1. ispXPGA only. RX_SS mode only. This limit is increased if EO is increased.
2. SS Normal Receive Mode (no de-skew option).
3. Internal timing for reference only.
Lock-in Timing
CDRX_SS LOCK-IN (DE-SKEW) TIMING
SIN
CAL
CDRLOCK
SYDT
MIN. 1200 SYNCPAT
DATA (SERIAL)
MIN. 1100 LS CYCLE
tHDSYNC
tSUSYNC
tCDRLOCK
RXD(0:7)
SYNCPAT
TRAINING SEQUENCE
DATA (PARALLEL)
SS MODE DATA TRANSFER
CDR_10B12B LOCK-IN TIMING
SIN
1024 SYNCPAT
DATA (SERIAL)
CDRLOCK
SYDT
RXD(0:9)
tCDRLOCK
SYNCPAT
34
DATA (PARALLEL)
Lattice Semiconductor
ispXPGA Family Data Sheet
Lock-in Timing (Continued)
CDR_8B10B LOCK-IN TIMING
SIN
120 Idle Pattern(480 TRCP)
DATA (SERIAL)
CDRLOCK
SYDT
t CDRLOCK
RXD(0:9)
DATA (PARALLEL)
Idle Pattern
SYDT Timing
SYDT TIMING FOR CDRX_10B12B
RECCLK
SYDT
RXD(0:9)
Data0 Data1 Data2 Data3 Data4
Parallel Data
SYNC PATTERN
SYDT TIMING FOR CDRX_8B10B
RECCLK
SYDT
RXD(0:9)
K28.5 D21.4 D21.5 D21.5 K28.5 D21.4 D21.5 D21.5
IDLE PATTERN
IDLE PATTERN
D0
D1
D2
Data
Serializer Timing
8B/10B SERIALIZER DELAY TIMING
SYMBOL N
TXD
SYMBOL N+1
tCOSOUT
REFCLK
SOUT
b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2
SYMBOL N
SYMBOL N-1
35
SYMBOL N+1
Lattice Semiconductor
ispXPGA Family Data Sheet
Serializer Timing (Continued)
10B/12B SERIALIZER DELAY TIMING
SYMBOL N
TXD
SYMBOL N+1
t COSOUT
REFCLK
b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1"
SOUT
SYMBOL N
SYMBOL N-1
SS Mode SERIALIZER DELAY TIMING
SYMBOL N
TXD
SYMBOL N+1
t COSOUT
REFCLK
SS_CLKOUT
t CKOSOUT
SOUT
b4
b5
b6
t SKTX
b7
b0
b2
b1
b4
b3
b5
SYMBOL N
SYMBOL N-1
b6
b7
b0
SYMBOL
N+1
INTERNAL TIMING FOR sysHSI BLOCK
t PWREFCLK
REFCLK
tHSITXDDATAS
tHSITXDDATAH
TXD
Deserializer Timing
8B/10B DESERIALIZER DELAY TIMING
SYMBOL N+1
SYMBOL N
SIN
TDSIN
RECCLK
RXD
SYMBOL N+2
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5
SYMBOL N
SYMBOL N-1
36
Lattice Semiconductor
ispXPGA Family Data Sheet
Deserializer Timing (Continued)
10B/12B DESERIALIZER DELAY TIMING
SYMBOL N
SIN
SYMBOL N+2
SYMBOL N+1
"1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4
TTDSIN
RECCLK
RXD
SYMBOL N-1
SYMBOL N-2
SYMBOL N
CDRX_SS DESERIALIZER DELAY TIMING
SYMBOL N
b0
SIN
b1
b2
b3
SYMBOL N+2
SYMBOL N+1
b4
b5
b6
b7
b0
b1
b2
b3
b4
b5
b6
b7
b0
b1
b2
b3
b4
TDSIN
RECCLK
SYMBOL N-2
RXD
SYMBOL N
SYMBOL N-1
RX_SS DESERIALIZER DELAY TIMING
SS_CLKIN
TCKISIN
b6
SIN
b7
SYMBOL N
b0
b1
b2
b3
b4
SYMBOL N+1
b5
b6
b7
b0
b1
b2
b3
b4
SYMBOL N+2
b5
TDSIN
RECCLK
SYMBOL N-2
RXD
SYMBOL N-1
INTERNAL TIMING FOR sysHSI BLOCK
RECCLK
t HSIOUTVALIDPRE
t HSIOUTVALIDPOST
LOSS, SYDT,
RXD, CDRLOCK
37
SYMBOL N
b6
b7
b0
b1
b2
Lattice Semiconductor
ispXPGA Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Symbol
Parameter
Conditions
Min
Max
Units
tPWH
Input clock, high time
80% to 80%
1.2
—
ns
tPWL
Input clock, low time
20% to 20%
1.2
—
ns
tR, tF
Input Clock, rise and fall time
20% to 80%
—
3.0
ns
tINSTB
Input clock stability, cycle to cycle (peak)
—
+/- 250
ps
fMDIVIN
M Divider input, frequency range
10
320
MHz
fMDIVOUT
M Divider output, frequency range
10
320
MHz
fNDIVIN
N Divider input, frequency range
10
320
MHz
fNDIVOUT
N Divider output, frequency range
10
320
MHz
fVDIVIN
V Divider input, frequency range
100
400
MHz
fVDIVOUT
V Divider output, frequency range
10
320
MHz
tOUTDUTY
output clock, duty cycle
40
60
%
Clean reference.
10 MHz < fMDIVOUT < 20 MHz or
100MHz < fVDIVIN < 160 MHz
—
+/- 250
ps
Clean reference.
20 MHz < fMDIVOUT < 320 MHz and
160MHz < fVDIVIN < 320 MHz
—
+/- 150
ps
Clean reference.
10 MHz < fMDIVOUT < 20 MHz or
100MHz < fVDIVIN < 160 MHz
—
+/- 300
ps
Clean reference.
20 MHz < fMDIVOUT < 320 MHz and
160MHz < fVDIVIN < 320 MHz
—
+/- 150
ps
tCLK_OUT_DELAY Input clock to CLK_OUT delay
Internal feedback
—
3.0
ns
tPHASE
Input clock to external feedback delta
External feedback
—
600
ps
tLOCK
Time to acquire phase lock after input stable
—
25
us
tPLL_DELAY
Delay increment (Lead/Lag)
tRANGE
Total output delay range (lead/lag)
tPLL_RSTW
Minimum reset pulse width
—
1.8
ns
tCLK_IN3
Global clock input delay
—
1.0
ns
tPLL_SEC_DELAY Secondary PLL output delay (tPLL_DELAY)
—
1.5
ns
tJIT(CC)
TJIT(PERIOD)
Output clock, cycle to cycle jitter (peak)
Output clock, period jitter (peak)
Typical = +/- 250ps
1. This condition assures that the output phase jitter will remain within specification
2. Accumulated jitter measured over 10,000 waveform samples
3. Internal timing for reference only.
38
+/- 120 +/- 550
ps
+/- 0.84 +/- 3.85
ns
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXP sysCONFIG Port Timing Specifications
Symbol
Timing Parameter
Min.
Typ.
Max.
Units
12
—
—
ns
sysCONFIG Write Cycle Timing
tSUCS
Input setup time of CS to CCLK rise
tHCS
Hold time of CS to CCLK Rise
0
—
—
ns
tSUWD
Input setup time of write data to CCLK rise
12
—
—
ns
tHWD
Hold time of write data to CCLK rise
0
—
—
ns
tPRGM
Low time to reset device SRAM
5
—
50
ns
tWINIT
INIT pulse width
4
—
—
ms
tIODISS
User I/O disable
—
—
30
ns
tWRDY
Time to write data into SRAM
—
—
4
ms
tIOENSS
User I/O enable
—
—
30
ns
tWH
Write clock High pulse width
12
—
—
ns
tWL
Write clock Low pulse width
12
—
—
ns
fMAXW
Write fMAX
—
—
25
MHz
sysCONFIG Read Cycle Timing
tHREAD
Hold time of READ to CCLK rise
0
—
—
ns
tSUREAD
Input setup time of READ High to CCLK rise
30
—
—
ns
tRH
READ clock high pulse width
12
—
—
ns
tRL
READ clock low pulse width
15
—
—
ns
fMAXR
Read fMAX
—
—
25
MHz
tCORD
Clock to out for read data
—
—
25
ns
Boundary Scan Timing
Parameter
Description
Min.
Max.
Units
40
—
ns
tBTCP
TCK [BSCAN] Clock Pulse Width
tBTCPH
TCK [BSCAN] Clock Pulse Width High
20
—
ns
tBTCPL
TCK [BSCAN] Clock Pulse Width Low
20
—
ns
tBTS
TCK [BSCAN] Setup Time
8
—
ns
tBTH
TCK [BSCAN] Hold Time
10
—
ns
tBTRF
TCK [BSCAN] Rise/Fall Time
50
—
mV/ns
tBTCO
TAP Controller Falling Edge of Clock to Valid Output
—
18
ns
tBTCODIS
TAP Controller Falling Edge of Clock to Valid Disable
—
18
ns
tBTCOEN
TAP Controller Falling Edge of Clock to Valid Enable
—
18
ns
tBTCRS
BSCAN Test Capture Register Setup Time
8
—
ns
tBTCRH
BSCAN Test Capture Register Hold Time
25
—
ns
tBUTCO
BSCAN Test Update Register, Falling Edge of Clock to Valid Output
—
45
ns
tBTUODIS
BSCAN Test Update Register, Falling Edge of Clock to Valid Disable
—
20
ns
tBTUPOEN
BSCAN Test Update Register, Falling Edge of Clock to Valid Enable
—
20
ns
39
Lattice Semiconductor
ispXPGA Family Data Sheet
Switching Test Conditions
Figure 24 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 8.
Figure 24. Output Test Load, LVTTL and LVCMOS Standards
VCCO
R1
Test
Point
Device
Output
R2
CL*
*CL includes test fixture and probe capacitance.
Table 8. Text Fixture Required Components
Test Condition
LVCMOS I/O, (L -> H, H -> L)
R1
106
R2
106
CL
35pF
Timing Reference
VCCO
LVCMOS 3.3 = VCCO/2
LVCMOS 3.3 = 3.0V
LVCMOS 2.5 = VCCO/2
LVCMOS 2.5 = 2.3V
LVCMOS 1.8 = VCCO/2
LVCMOS 1.8 = 1.65V
Default LVCMOS 1.8 I/O (Z -> H)
∞
106
35pF
0.9V
1.65V
Default LVCMOS 1.8 I/O (Z -> L)
106
∞
35pF
0.9V
1.65V
Default LVCMOS 1.8 I/O (H -> Z)
∞
106
5pF
VOH - 0.3
1.65V
Default LVCMOS 1.8 I/O (L -> Z)
106
∞
5pF
VOL + 0.3
1.65V
Note: Output test conditions for all other interfaces are determined by the respective standards.
40
Lattice Semiconductor
ispXPGA Family Data Sheet
Signal Descriptions1
Signal Name
Signal Type
Description
General Purpose
BKy_IOx1,2
Input/Output
GCLKn/In 7
Input
GSR
Input
NC
—
General purpose I/O number x in I/O Bank y
Global clock/input8
Global Set/Reset
No Connect
GND
GND
Ground
VCC
VCC
Core logic power supply
VCCJ
VCC
IEEE 1149.1 TAP power supply
VCCOy2
VCC
I/O Bank y power supply
Input
I/O Bank y reference voltage
2
VREFy
DXN, DXP
Output
Temperature Sensing Diodes, provide a differential voltage, which
corresponds to the temperature of the device.
Test and Program/Configuration
TMS
Input
Test Mode Select
TCK
Input
Test Clock
TDI
Input
Test Data In
TDO
Output
TOE
Input
Test Output Enable tri-states all I/O pins
CFG0
Input
Selects the SRAM memory configuration type (Peripheral or
E2CMOS Refresh)
PROGRAMb
Input
Initiates download from E2CMOS or the peripheral port to SRAM
memory (active low)
Test Data Out
DONE
Bi-directional Indicates when configuration is complete
INITb
Bi-directional Indicates the device is ready for programming (active low)
READ
Input
Selects the READ operation when in sysCONFIG mode
CCLK
Input
sysCONFIG Configuration Clock
CSb
Input
sysCONFIG Chip Select (active low)
DATA[0:7]
Bi-directional sysCONFIG Peripheral Port Data I/O
sysCLOCK PLL3
PLL_FBKz
Input
Optional external feedback
PLL_RSTz
Input
Optional external M divider reset
CLK_OUTz
Internal Signal Clock output (routable to any I/O)
PLL_LOCKz
Internal Signal Lock output (routable to any I/O)
GNDP
GND
PLL Ground
VCCP
VCC
PLL power supply
Input
P-side of differential serial data input
sysHSI Block4, 5
HSImA_SINP, HSImB_SINP
HSImA_SINN, HSImB_SINN
HSImA_SOUTP, HSImB_SOUTP
HSImA_SOUTN, HSImB_SOUTN
Input
N-side of differential serial data input
Output
P-side of differential serial data output
Output
N-side of differential serial data output
HSImA_LOSS, HSImB_LOSS
Internal Signal Detects loss of signal
HSImA_SYDT, HSImB_SYDT
Internal Signal Symbol alignment detect
HSImA_RECCLK, HSImB_RECCLK
Internal Signal Recovered clock
HSImA_CDRLOCK, HSImB_CDRLOCK
Internal Signal Indicates when the CDR circuit is locked
41
Lattice Semiconductor
ispXPGA Family Data Sheet
Signal Descriptions1 (Continued)
Signal Name
Signal Type
Description
HSImA_CDRRST, HSImB_CDRRST
Input
CDR Reset
HSImA_EXLOSS, HSImB_EXLOSS
Input
External loss indicates data on SIN is invalid, forces LOSS to “1”
HSIm_CSLOCK, HSIm_CSLOCK
Internal Signal Indicates when the CSPLL circuit is locked
sysHSI Block (Source Synchronous Mode)6
SS_CLKIN0P, SS_CLKIN1P
SS_CLKIN0N, SS_CLKIN1N
Input
P-side of differential clock input
Input
N-side of differential clock input
SS_CLKOUT0P, SS_CLKOUT1P
Output
P-side of differential clock output
SS_CLKOUT0N, SS_CLKOUT1N
Output
CAL0, CAL1
1.
2.
3.
4.
5.
6.
7.
8.
Input
N-side of differential clock output
Initiates source synchronous calibration sequence
x is a variable for the I/O number.
y is a variable for the I/O Bank.
z is a variable for the PLL number.
m is a variable for the sysHSI block number.
A and B refer to the sysHSI block channels.
0 and 1 refer to Source Synchronous group 0 and 1
n is a variable for the GCLK and Input number
See Logic Signal Connections Table for differential pairing.
42
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Power Supply and NC Connections1
256-Ball fpBGA3
Signal
516-Ball fpBGA3
VCC
C3, C14, D4, D13, E5, E12, F6, F11, A9, A22, D4, D27, J1, J30, L11, L12, L15, L16, L19, L20, M11, M20, R11,
L6, L11, M5, M12, N4, N13, P3, P14 R20, T11, T20, W11, W20, Y11, Y12, Y15, Y16, Y19, Y20, AB1, AB30, AG4,
AG27, AK9, AK22
VCCO0
F5, G5
F4, J4, M4, N11, P4, P11
VCCO1
K5, L5
U4, U11, V11, W4, AB4, AE4
VCCO2
M6, M7
Y13, Y14, AG6, AG9, AG12, AG14
VCCO3
M10, M11
Y17, Y18, AG17, AG19, AG22, AG25
VCCO4
K12, L12
U20, U27, V20, W27, AB27, AE27
VCCO5
G12, F12
F27, J27, M27, N20, P20, P27
VCCO6
E10, E11
D17, D19, D22, D25, L17, L18
VCCO7
E6, E7
D6, D9, D12, D14, L13, L14
VCCP
H3, J15
R4, T30
VCCJ
A2
C4
GND
A1, A16, B2, B15, F7, F8, F9, F10,
G6, G7, G8, G9, G10, G11, H6, H7,
H8, H9, H10, H11, J6, J7, J8, J9, J10,
J11, K6, K7, K8, K9, K10, K11, L7,
L8, L9, L10, R2, R15, T1, T16
A1, A30, B2, B29, C3, C28, M12, M13, M14, M15, M16, M17, M18, M19,
N12, N13, N14, N15, N16, N17, N18, N19, P12, P13, P14, P15, P16, P17,
P18, P19, R12, R13, R14, R15, R16, R17, R18, R19, T12, T13, T14, T15,
T16, T17, T18, T19, U12, U13, U14, U15, U16, U17, U18, U19, V12, V13,
V14, V15, V16, V17, V18, V19, W12, W13, W14, W15, W16, W17, W18, W19,
AH3, AH28, AJ2, AJ29, AK1, AK30
GNDP
H15, J4
R29, T4
NC2
—
LFX125: A10, A13, A16, A17, A24, A25, A26, A4, A5, A6, A7, AA1, AA2,
AA28, AA29, AA3, AB28, AC1, AC28, AD1, AD27, AD4, AE28, AE29, AE3,
AE30, AF27, AF28, AF29, AF3, AF4, AG1, AG10, AG11, AG15, AG2, AG20,
AG23, AG24, AG29, AG3, AG8, AH1, AH15, AH19, AH2, AH20, AH23,
AH24, AH30, AH7, AH8, AH9, AJ1, AJ12, AJ14, AJ15, AJ19, AJ20, AJ21,
AJ23, AJ24, AJ25, AJ27, AJ30, AJ6, AJ7, AJ8, AK11, AK14, AK15, AK20,
AK21, AK23, AK24, AK25, AK27, AK5, AK6, AK7, B10, B13, B16, B17, B18,
B23, B24, B25, B5, B6, B7, C11, C13, C14, C16, C17, C22, C23, C24, C25,
C6, C7, C8, D11, D16, D23, D24, D28, D29, D3, D7, D8, E30, E4, F1, F29,
F30, G1, G2, G27, G28, G29, G30, H1, H2, H27, H28, H29, H30, J2, J28,
J29, J3, K1, K2, K27, K28, K3, K4, L1, L2, L27, L3, L4, M1, M2, M29, M3,
M30, V27, V28, V3, V4, W1, W30, Y1, Y27, Y28, Y3, Y30
LFX200: A26, A25, A24, A17, A10, A7, A6, A5, A4, B25, B24, B23, B17, B10,
B7, B6, B5, C25, C24, C23, C22, C16, C11, C8, C7, C6, D24, D23, D16,
D11, D8, D7, E30, F30, F29, F1, G30, G29, G28, G27, G2, G1, H30, H29,
H28, H27, H2, H1, J29, J28, J3, J2, K28, K27, K4, K3, K2, K1, L27, L4, L3,
L2, L1, M3, V28, V27, V4, V3, W30, W1, Y30, Y28, Y27, Y3, Y1, AA29, AA28,
AA3, AA2, AA1, AD27, AD4, AE28, AE3, AF29, AF28, AF27, AF3, AG29,
AG24, AG23, AG20, AG11, AG10, AG8, AG2, AG1, AH30, AH24, AH23,
AH20, AH9, AH8, AH7, AH2, AH1, AJ30, AJ27, AJ25, AJ24, AJ23, AJ21,
AJ15, AJ12, AJ8, AJ7, AJ6, AJ1, AK27, AK25, AK24, AK23, AK21, AK15,
AK11, AK7, AK6, AK5
1. All grounds must be electrically connected at the board level.
2. NC pins should not be connected to any active signals, VCC or GND.
3. Balls for GND, VCC and VCCOx are connected within the substrate to their respective common signals. Pin orientation A1 starts from the
upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
43
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Power Supply and NC Connections1 (Continued)
680-Ball fpBGA3
Signal
900-Ball fpBGA3
VCC
AE35, AE5, AL5, AR15, AR25, AR31, AR35, AR5, L11, L20, M12, M13, M14, M17, M18, M19, N12, N19, P12, P19,
AT36, AT4, AU3, AU37, C3, C37, D36, D4, E15, E25, U12, U19, V12, V19, W12, W13, W14, W17, W18, W19, Y11, Y20
E35, E5, E9, J35, R35, R5
VCCO0
E11, E12, E13, E17, E18, E7
K3, L10, M11, N11, N5, P11, R11, R12
VCCO1
E22, E23, E27, E29, E31, E33
AA3, T11, T12, U11, V11, V5, W11, Y10
VCCO2
G35, L35, M35, N35, U35, V35
AA11, AF13, AH10, W15, Y12, Y13, Y14, Y15
VCCO3
AB35, AC35, AG35, AJ35, AL35, AN35
AA20, AF18, AH21, W16, Y16, Y17, Y18, Y19
VCCO4
AR22, AR23, AR27, AR28, AR29, AR33
AA28, T19, T20, U20, V20, V26, W20, Y21
VCCO5
AR11, AR13, AR17, AR18, AR7, AR9
K28, L21, M20, N20, N26, P20, R19, R20
VCCO6
AB5, AC5, AG5, AH5, AJ5, AN5
C21, E18, K20, L16, L17, L18, L19, M16
VCCO7
G5, J5, L5, N5, U5, V5
C10, E13, K11, L12, L13, L14, L15, M15
VCCP
E20, AW22
R5, T26
VCCJ
D3
B3
GND
A1, A2, A20, A38, A39, AE3, AE37, AK3, AK37,
AR36, AR4, AT20, AT35, AT5, AU10, AU14, AU20,
AU26, AU30, AV1, AV2, AV20, AV38, AV39, AW1,
AW2, AW20, AW38, AW39, B1, B2, B20, B38, B39,
C10, C14, C20, C26, C30, D20, D35, D5, E36, E4,
K3, K37, P37, R3, Y1, Y2, Y3, Y36, Y37, Y38, Y39, Y4
A1, A2, A29, A30, AB28, AB3, AG27, AG4, AH22, AH28, AH3, AH9,
AJ1, AJ2, AJ29, AJ30, AK1, AK2, AK29, AK30, B1, B2, B29, B30,
C22, C28, C3, C9, D27, D4, J28, J3, N13, N14, N15, N16, N17, N18,
P13, P14, P15, P16, P17, P18, R13, R14, R15, R16, R17, R18, T13,
T14, T15, T16, T17, T18, U13, U14, U15, U16, U17, U18, V13, V14,
V15, V16, V17, V18
GNDP
AR20, A21
R28, T3
NC2
A3, B29, AW3, AV3, AW11, AV11, AV29, AW29,
AW37, B3, AV37, C39, C38, AU39, AU38, AJ39,
AJ38, N38, N39, C2, C1, AU1, AU2, AJ2, AJ1, N2,
N1, B11, A11, A37, B37, A29
LFX500: A8, A9, A10, A11, A19, A20, A21, A22, B8, B9, B10, B11,
B19, B20, B21, B22, C1, C2, C11, C12, C19, C20, C23, D3, D10,
D11, D12, D19, D20, D21, D22, D23, E3, E10, E11, E12, E21, E22,
E28, E29, E30, F1, F2, F10, F11, F12, F21, F26, F29, F30, G1, G2,
G3, G4, G10, G25, G26, G27, G28, G29, G30, H1, H2, H3, H4, H27,
H28, H29, H30, J1, J2, J4, J5, J6, J7, J24, J25, J26, J27, W25, W26,
Y3, Y4, Y5, Y6, Y25, Y26, Y27, Y28, AA4, AA5, AA16, AA17, AA18,
AA19, AA21, AA26, AA27, AB1, AB2, AB4, AB5, AB6, AB7, AB24,
AB25, AB26, AB27, AC1, AC2, AC3, AC4, AC5, AC6, AC27, AC28,
AC29, AC30, AD1, AD2, AD10, AD21, AD29, AD30, AE10, AE11,
AE12, AE19, AE20, AE21, AE29, AE30, AF10, AF11, AF12, AF19,
AF20, AF21, AF22, AG10, AG11, AG12, AG19, AG20, AG21, AG22,
AH11, AH12, AH19, AH20, AJ8, AJ9, AJ10, AJ11, AJ20, AJ21,
AJ22, AK8, AK9, AK10, AK11, AK20, AK21, AK22
LFX1200: AA22, AA23, AA24, AA25, AB23, AC24, T21, T22, T23,
T24, T25, U21, U22, U23, U24, V21, V22, V23, W21, W22, W23,
W24, Y22, Y23, Y24, AA16, AA17, AA18, AA19, AA21, AB16, AB17,
AB18, AB19, AB20, AB21, AB22, AC16, AC17, AC18, AC19, AC20,
AC21, AC22, AC23, AD16, AD17, AD19, AD20, AD22, AD23, AD24,
AE22, AE25, AF25, AF26, AA10, AA12, AA13, AA14, AA15, AB10,
AB11, AB12, AB13, AB14, AB15, AB9, AC10, AC11, AC12, AC13,
AC14, AC15, AC8, AC9, AD11, AD12, AD14, AD15, AD7, AD8,
AD9, AE6, AE9, AF5, AF6, H24, J23, K22, K23, K24, K25, L22, L23,
L24, M21, M22, M23, M24, N21, N22, N23, P21, P22, P23, P24,
R21, R22, R23, R24, R25, AA6, AA7, AA8, AA9, AB8, AC7, T10, T6,
T7, T8, T9, U10, U7, U8, U9, V10, V8, V9, W10, W7, W8, W9, Y7, Y8,
Y9, H5, H6, H7, J8, K6, K7, K8, K9, L7, L8, L9, M10, M7, M8, M9,
N10, N8, N9, P10, P7, P8, P9, R10, R8, R9, E25, E26, F22, F25,
G16, G17, G19, G20, G22, G23, G24, H16, H17, H18, H19, H20,
H21, H22, H23, J16, J17, J18, J19, J20, J21, J22, K16, K17, K18,
K19, K21, E5, E6, F6, F9, G11, G12, G14, G15, G7, G8, G9, H10,
H11, H12, H13, H14, H15, H8, H9, J10, J11, J12, J13, J14, J15, J9,
K10, K12, K13, K14, K15
1. All grounds must be electrically connected at the board level.
2. NC pins should not be connected to any active signals, VCC or GND.
3. Balls for GND, VCC and VCCOx are connected within the substrate to their respective common signals. Pin orientation A1 starts from the
upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
44
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA
LFX200
LFX125
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
C2
BK0_IO2
HSI0A_SOUTP
1P
BK0_IO0
HSI0A_SOUTP
0P
-
GND (Bank 0)
-
-
-
-
-
D2
BK0_IO3
HSI0A_SOUTN
1N
BK0_IO1
HSI0A_SOUTN
0N
B1
BK0_IO6
HSI0A_SINP
3P
BK0_IO4
HSI0A_SINP
2P
256-fpBGA Ball
-
-
-
-
GND (Bank 0)
-
-
C1
BK0_IO7
HSI0A_SINN
3N
BK0_IO5
HSI0A_SINN
2N
D3
BK0_IO8
-
4P
BK0_IO6
-
3P
E3
BK0_IO9
VREF0
4N
BK0_IO7
VREF0
3N
D1
BK0_IO10
HSI0B_SOUTP
5P
BK0_IO8
HSI0B_SOUTP
4P
-
GND (Bank 0)
-
-
-
-
-
E1
BK0_IO11
HSI0B_SOUTN
5N
BK0_IO9
HSI0B_SOUTN
4N
E2
BK0_IO12
-
6P
BK0_IO10
-
5P
F2
BK0_IO13
-
6N
BK0_IO11
-
5N
F1
BK0_IO14
HSI0B_SINP
7P
BK0_IO12
HSI0B_SINP
6P
-
-
-
-
GND (Bank 0)
-
-
G1
BK0_IO15
HSI0B_SINN
7N
BK0_IO13
HSI0B_SINN
6N
F3
BK0_IO18
PLL_FBK0
9P
BK0_IO14
PLL_FBK0
7P
-
GND (Bank 0)
-
-
-
-
-
G2
BK0_IO19
PLL_RST1
9N
BK0_IO15
PLL_RST1
7N
E4
BK0_IO20
-
10P
BK0_IO16
-
8P
F4
BK0_IO21
PLL_FBK1
10N
BK0_IO17
PLL_FBK1
8N
H1
BK0_IO22
PLL_RST0
11P
BK0_IO18
PLL_RST0
9P
-
-
-
-
GND (Bank 0)
-
-
J1
BK0_IO23
-
11N
BK0_IO19
-
9N
H2
BK0_IO24
CLK_OUT0
12P
BK0_IO20
CLK_OUT0
10P
G3
BK0_IO25
CLK_OUT1
12N
BK0_IO21
CLK_OUT1
10N
-
GND (Bank 0)
-
-
-
-
-
G4
GCLK0
-
LVDSCLK0
GCLK0
-
LVDSCLK0
H4
GCLK1
-
LVDSCLK0
GCLK1
-
LVDSCLK0
H3
VCCP0
-
-
VCCP0
-
-
J4
GNDP0
-
-
GNDP0
-
-
J2
GCLK2
-
LVDSCLK1
GCLK2
-
LVDSCLK1
J3
GCLK3
-
LVDSCLK1
GCLK3
-
LVDSCLK1
-
GND (Bank 1)
-
-
-
-
-
H5
BK1_IO0
CLK_OUT2
13P
BK1_IO0
CLK_OUT2
11P
J5
BK1_IO1
CLK_OUT3
13N
BK1_IO1
CLK_OUT3
11N
K1
BK1_IO2
SS_CLKOUT0P
14P
BK1_IO2
SS_CLKOUT0P
12P
-
-
-
-
GND (Bank 1)
-
-
L1
BK1_IO3
SS_CLKOUT0N
14N
BK1_IO3
SS_CLKOUT0N
12N
K4
BK1_IO4
PLL_FBK2
15P
BK1_IO4
PLL_FBK2
13P
L4
BK1_IO5
PLL_FBK3
15N
BK1_IO5
PLL_FBK3
13N
K3
BK1_IO6
SS_CLKIN0P
16P
BK1_IO6
SS_CLKIN0P
14P
45
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA (Continued)
LFX200
LFX125
256-fpBGA Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
-
GND (Bank 1)
-
-
-
-
-
L3
BK1_IO7
SS_CLKIN0N
16N
BK1_IO7
SS_CLKIN0N
14N
K2
BK1_IO8
-
17P
BK1_IO8
-
15P
-
-
-
-
GND (Bank 1)
-
-
L2
BK1_IO9
-
17N
BK1_IO9
-
15N
M1
BK1_IO10
HSI1A_SOUTP
18P
BK1_IO10
-
16P
N1
BK1_IO11
HSI1A_SOUTN
18N
BK1_IO11
-
16N
M3
BK1_IO12
PLL_RST2
19P
BK1_IO12
PLL_RST2
17P
M4
BK1_IO13
PLL_RST3
19N
BK1_IO13
PLL_RST3
17N
-
GND (Bank 1)
-
-
-
-
-
M2
BK1_IO161
VREF1
-
BK1_IO141
VREF1
-
P1
BK1_IO18
HSI1B_SOUTP
22P
BK1_IO16
-
19P
-
-
-
-
GND (Bank 1)
-
-
R1
BK1_IO19
HSI1B_SOUTN
22N
BK1_IO17
-
19N
N3
BK1_IO201
-
-
BK1_IO181
-
-
N2
BK1_IO22
HSI1B_SINP
24P
BK1_IO20
-
21P
-
GND (Bank 1)
-
-
-
-
-
P2
BK1_IO23
HSI1B_SINN
24N
BK1_IO21
-
21N
P4
TCK
-
-
TCK
-
-
T2
TMS
-
-
TMS
-
-
T3
TOE
-
-
TOE
-
-
R3
BK2_IO0
-
26P
BK2_IO0
-
22P
R4
BK2_IO1
-
26N
BK2_IO1
-
22N
N5
BK2_IO2
-
27P
BK2_IO2
-
23P
-
GND (Bank 2)
-
-
-
-
-
P5
BK2_IO3
-
27N
BK2_IO3
-
23N
-
-
-
-
GND (Bank 2)
-
-
T4
BK2_IO6
-
29P
BK2_IO6
-
25P
T5
BK2_IO7
-
29N
BK2_IO7
-
25N
N6
BK2_IO8
-
30P
BK2_IO8
-
26P
P6
BK2_IO9
VREF2
30N
BK2_IO9
VREF2
26N
R5
BK2_IO10
-
31P
BK2_IO10
-
27P
-
GND (Bank 2)
-
-
-
-
-
R6
BK2_IO11
-
31N
BK2_IO11
-
27N
N7
BK2_IO12
-
32P
BK2_IO12
-
28P
-
-
-
-
GND (Bank 2)
-
-
P7
BK2_IO13
-
32N
BK2_IO13
-
28N
T6
BK2_IO14
-
33P
BK2_IO14
-
29P
T7
BK2_IO15
-
33N
BK2_IO15
-
29N
M8
BK2_IO16
-
34P
BK2_IO16
-
30P
M9
BK2_IO17
-
34N
BK2_IO17
-
30N
R7
BK2_IO18
-
35P
BK2_IO18
-
31P
46
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA (Continued)
LFX200
LFX125
256-fpBGA Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
R8
BK2_IO19
-
35N
BK2_IO19
-
31N
N8
BK2_IO20
-
36P
BK2_IO20
-
32P
P8
BK2_IO21
-
36N
BK2_IO21
-
32N
-
GND (Bank 2)
-
-
-
-
-
-
GND (Bank 3)
-
-
-
-
-
T8
BK3_IO0
-
39P
BK3_IO0
-
33P
T9
BK3_IO1
-
39N
BK3_IO1
-
33N
R9
BK3_IO2
-
40P
BK3_IO2
-
34P
-
-
-
-
GND (Bank 3)
-
-
R10
BK3_IO3
-
40N
BK3_IO3
-
34N
P9
BK3_IO4
-
41P
BK3_IO4
-
35P
N9
BK3_IO5
-
41N
BK3_IO5
-
35N
36P
T10
BK3_IO6
-
42P
BK3_IO6
-
-
GND (Bank 3)
-
-
-
-
-
T11
BK3_IO7
-
42N
BK3_IO7
-
36N
P10
BK3_IO8
-
43P
BK3_IO8
-
37P
-
-
-
-
GND (Bank 3)
-
-
N10
BK3_IO9
-
43N
BK3_IO9
-
37N
R11
BK3_IO14
-
46P
BK3_IO10
-
38P
-
GND (Bank 3)
-
-
-
-
-
R12
BK3_IO15
-
46N
BK3_IO11
-
38N
P11
BK3_IO16
VREF3
47P
BK3_IO12
VREF3
39P
N11
BK3_IO17
-
47N
BK3_IO13
-
39N
T12
BK3_IO18
-
48P
BK3_IO14
-
40P
T13
BK3_IO19
-
48N
BK3_IO15
-
40N
R13
BK3_IO20
-
49P
BK3_IO16
-
41P
-
-
-
-
GND (Bank 3)
-
-
R14
BK3_IO21
-
49N
BK3_IO17
-
41N
P12
BK3_IO22
-
50P
BK3_IO18
-
42P
-
GND (Bank 3)
-
-
-
-
-
N12
BK3_IO23
-
50N
BK3_IO19
-
42N
T14
RESET
-
-
RESET
-
-
T15
DXP
-
-
DXP
-
-
P13
DXN
-
-
DXN
-
-
P15
BK4_IO0
-
52P
BK4_IO0
-
44P
N14
BK4_IO1
-
52N
BK4_IO1
-
44N
R16
BK4_IO2
HSI2A_SINP
53P
BK4_IO2
-
45P
-
GND (Bank 4)
-
-
-
-
-
P16
BK4_IO3
HSI2A_SINN
53N
BK4_IO3
-
45N
N15
BK4_IO4
-
54P
BK4_IO4
-
46P
-
-
-
-
GND (Bank 4)
-
-
47
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA (Continued)
LFX200
LFX125
256-fpBGA Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
M15
BK4_IO5
-
54N
BK4_IO5
-
46N
M14
BK4_IO8
-
56P
BK4_IO6
-
47P
M13
BK4_IO9
VREF4
56N
BK4_IO7
VREF4
47N
-
GND (Bank 4)
-
-
-
-
-
L13
BK4_IO12
PLL_RST4
58P
BK4_IO8
PLL_RST4
48P
L14
BK4_IO13
PLL_RST5
58N
BK4_IO9
PLL_RST5
48N
N16
BK4_IO14
HSI2B_SOUTP
59P
BK4_IO10
-
49P
M16
BK4_IO15
HSI2B_SOUTN
59N
BK4_IO11
-
49N
-
-
-
-
GND (Bank 4)
-
-
L15
BK4_IO18
SS_CLKIN1P
61P
BK4_IO14
SS_CLKIN1P
51P
-
GND (Bank 4)
-
-
-
-
-
K15
BK4_IO19
SS_CLKIN1N
61N
BK4_IO15
SS_CLKIN1N
51N
K14
BK4_IO20
PLL_FBK4
62P
BK4_IO16
PLL_FBK4
52P
K13
BK4_IO21
PLL_FBK5
62N
BK4_IO17
PLL_FBK5
52N
L16
BK4_IO22
SS_CLKOUT1P
63P
BK4_IO18
SS_CLKOUT1P
53P
-
-
-
-
GND (Bank 4)
-
-
K16
BK4_IO23
SS_CLKOUT1N
63N
BK4_IO19
SS_CLKOUT1N
53N
J13
BK4_IO24
CLK_OUT4
64P
BK4_IO20
CLK_OUT4
54P
J12
BK4_IO25
CLK_OUT5
64N
BK4_IO21
CLK_OUT5
54N
-
GND (Bank 4)
-
-
-
-
-
J14
GCLK4
-
LVDSCLK2
GCLK4
-
LVDSCLK2
H14
GCLK5
-
LVDSCLK2
GCLK5
-
LVDSCLK2
J15
VCCP1
-
-
VCCP1
-
-
H15
GNDP1
-
-
GNDP1
-
-
J16
GCLK6
-
LVDSCLK3
GCLK6
-
LVDSCLK3
H16
GCLK7
-
LVDSCLK3
GCLK7
-
LVDSCLK3
-
GND (Bank 5)
-
-
-
-
-
H12
BK5_IO0
CLK_OUT6
65P
BK5_IO0
CLK_OUT6
55P
H13
BK5_IO1
CLK_OUT7
65N
BK5_IO1
CLK_OUT7
55N
G14
BK5_IO2
-
66P
BK5_IO2
-
56P
-
-
-
-
GND (Bank 5)
-
-
G15
BK5_IO3
PLL_RST7
66N
BK5_IO3
PLL_RST7
56N
G13
BK5_IO6
PLL_RST6
68P
BK5_IO6
PLL_RST6
58P
-
GND (Bank 5)
-
-
-
-
-
F13
BK5_IO7
-
-
BK5_IO7
PLL_FBK7
58N
G16
BK5_IO10
HSI3A_SINP
70P
BK5_IO8
HSI1A_SINP
59P
-
-
-
-
GND (Bank 5)
-
-
F16
BK5_IO11
HSI3A_SINN
70N
BK5_IO9
HSI1A-SINN
59N
F14
BK5_IO12
-
71P
BK5_IO10
-
60P
F15
BK5_IO13
-
71N
BK5_IO11
-
60N
E16
BK5_IO14
HSI3A_SOUTP
72P
BK5_IO12
HSI1A_OUTP
61P
-
GND (Bank 5)
-
-
-
-
-
48
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA (Continued)
LFX200
LFX125
256-fpBGA Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
D16
BK5_IO15
HSI3A_SOUTN
72N
BK5_IO13
HSI1A_OUTN
61N
E13
BK5_IO16
VREF5
73P
BK5_IO14
VREF5
62P
E14
BK5_IO17
-
73N
BK5_IO15
-
62N
E15
BK5_IO18
HSI3B_SINP
74P
BK5_IO16
HSI1B_SINP
63P
-
-
-
-
GND (Bank 5)
-
-
D15
BK5_IO19
HSI3B_SINN
74N
BK5_IO17
HSI1B_SINN
63N
C16
BK5_IO22
HSI3B_SOUTP
76P
BK5_IO20
HSI1B_OUTP
65P
-
GND (Bank 5)
-
-
-
-
-
B16
BK5_IO23
HSI3B_SOUTN
76N
BK5_IO21
HSI1B_OUTN
65N
D14
BK5_IO24
-
77P
BK5_IO18
-
64P
C15
BK5_IO25
-
77N
BK5_IO19
-
64N
C13
CFG0
-
-
CFG0
-
-
A15
DONE
-
-
DONE
-
-
A14
PROGRAMb
-
-
PROGRAMb
-
-
D12
BK6_IO0
INITb
78P
BK6_IO0
INITb
66P
C12
BK6_IO1
CCLK
78N
BK6_IO1
CCLK
66N
B14
BK6_IO2
-
79P
BK6_IO2
-
67P
-
GND (Bank 6)
-
-
-
-
-
B13
BK6_IO3
-
79N
BK6_IO3
-
67N
A13
BK6_IO4
CSb
80P
BK6_IO4
CSb
68P
-
-
-
-
GND (Bank 6)
-
-
A12
BK6_IO5
Read
80N
BK6_IO5
READ
68N
D11
BK6_IO6
DATA7
81P
BK6_IO6
DATA7
69P
C11
BK6_IO7
DATA6
81N
BK6_IO7
DATA6
69N
B12
BK6_IO8
-
82P
BK6_IO8
-
70P
B11
BK6_IO9
VREF6
82N
BK6_IO9
VREF6
70N
D10
BK6_IO10
DATA5
83P
BK6_IO10
DATA5
71P
-
GND (Bank 6)
-
-
-
-
-
C10
BK6_IO11
DATA4
83N
BK6_IO11
DATA4
71N
-
-
-
-
GND (Bank 6)
-
-
A11
BK6_IO14
DATA3
85P
BK6_IO14
DATA3
73P
A10
BK6_IO15
DATA2
85N
BK6_IO15
DATA2
73N
D9
BK6_IO16
-
86P
BK6_IO16
-
74P
C9
BK6_IO17
-
86N
BK6_IO17
-
74N
B10
BK6_IO18
DATA1
87P
BK6_IO18
DATA1
75P
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
B9
BK6_IO19
DATA0
87N
BK6_IO19
DATA0
75N
E9
BK6_IO20
-
88P
BK6_IO20
-
76P
E8
BK6_IO21
-
88N
BK6_IO21
-
76N
-
GND (Bank 6)
-
-
-
-
-
-
GND (Bank 7)
-
-
-
-
-
D8
BK7_IO0
-
91P
BK7_IO0
-
77P
49
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 256-Ball fpBGA (Continued)
LFX200
LFX125
256-fpBGA Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
C8
BK7_IO1
-
91N
BK7_IO1
-
77N
B8
BK7_IO2
-
92P
BK7_IO2
-
78P
B7
BK7_IO3
-
92N
BK7_IO3
-
78N
A9
BK7_IO6
-
94P
BK7_IO4
-
79P
-
GND (Bank 7)
-
-
-
-
-
A8
BK7_IO7
-
94N
BK7_IO5
-
79N
C7
BK7_IO10
-
96P
BK7_IO6
-
80P
D7
BK7_IO11
-
96N
BK7_IO7
-
80N
D6
BK7_IO12
-
97P
BK7_IO8
-
81P
-
-
-
-
GND (Bank 7)
-
-
C6
BK7_IO13
-
97N
BK7_IO9
-
81N
B6
BK7_IO14
-
98P
BK7_IO10
-
82P
-
GND (Bank 7)
-
-
-
-
-
B5
BK7_IO15
-
98N
BK7_IO11
-
82N
A7
BK7_IO16
VREF7
99P
BK7_IO12
VREF7
83P
A6
BK7_IO17
-
99N
BK7_IO13
-
83N
D5
BK7_IO18
-
100P
BK7_IO14
-
84P
C5
BK7_IO19
-
100N
BK7_IO15
-
84N
A5
BK7_IO20
-
101P
BK7_IO16
-
85P
-
-
-
-
GND (Bank 7)
-
-
A4
BK7_IO21
-
101N
BK7_IO17
-
85N
B4
BK7_IO22
-
102P
BK7_IO18
-
86P
-
GND (Bank 7)
-
-
-
-
-
B3
BK7_IO23
-
102N
BK7_IO19
-
86N
A3
TDO
-
-
TDO
-
-
A2
VCCJ
-
-
VCCJ
-
-
C4
TDI
-
-
TDI
-
-
1. Not available for differential pairs.
50
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA
LFX500
516-Ball
BGA Ball
Signal
Name
Second
Function
LFX200
LVDS Pair/
Polarity
Signal
Name
Second
Function
LFX125
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
E4
BK0_IO0
-
0P
BK0_IO0
-
0P
NC
-
-
D3
BK0_IO1
-
0N
BK0_IO1
-
0N
NC
-
-
E3
BK0_IO2
HSI0A_SOUTP
1P
BK0_IO2
HSI0A_SOUTP
1P
BK0_IO0
HSI0A_SOUTP
0P
-
GND (Bank 0)
-
-
GND (Bank 0)
-
-
-
-
-
F3
BK0_IO3
HSI0A_SOUTN
1N
BK0_IO3
HSI0A_SOUTN
1N
BK0_IO1
HSI0A_SOUTN
0N
C2
BK0_IO4
-
2P
BK0_IO4
-
2P
BK0_IO2
-
1P
B1
BK0_IO5
-
2N
BK0_IO5
-
2N
BK0_IO3
-
1N
G4
BK0_IO6
HSI0A_SINP
3P
BK0_IO6
HSI0A_SINP
3P
BK0_IO4
HSI0A_SINP
2P
-
-
-
-
-
-
-
GND (Bank 0)
-
-
G3
BK0_IO7
HSI0A_SINN
3N
BK0_IO7
HSI0A_SINN
3N
BK0_IO5
HSI0A_SINN
2N
C1
BK0_IO8
-
4P
BK0_IO8
-
4P
BK0_IO6
-
3P
D2
BK0_IO9
VREF0
4N
BK0_IO9
VREF0
4N
BK0_IO7
VREF0
3N
H4
BK0_IO10
HSI0B_SOUTP
5P
BK0_IO10
HSI0B_SOUTP
5P
BK0_IO8
HSI0B_SOUTP
4P
-
GND (Bank 0)
-
-
GND (Bank 0)
-
-
-
-
-
H3
BK0_IO11
HSI0B_SOUTN
5N
BK0_IO11
HSI0B_SOUTN
5N
BK0_IO9
HSI0B_SOUTN
4N
D1
BK0_IO12
-
6P
BK0_IO12
6P
BK0_IO10
-
5P
E1
BK0_IO13
-
6N
BK0_IO13
-
6N
BK0_IO11
-
5N
E2
BK0_IO14
HSI0B_SINP
7P
BK0_IO14
HSI0B_SINP
7P
BK0_IO12
HSI0B_SINP
6P
-
-
-
-
-
-
-
GND (Bank 0)
-
-
F2
BK0_IO15
HSI0B_SINN
7N
BK0_IO15
HSI0B_SINN
7N
BK0_IO13
HSI0B_SINN
6N
G2
BK0_IO16
-
8P
NC
-
-
NC
-
-
F1
BK0_IO17
-
8N
NC
-
-
NC
-
-
J3
BK0_IO18
HSI1A_SOUTP
9P
NC
-
-
NC
-
-
-
GND (Bank 0)
-
-
-
-
-
-
-
-
K3
BK0_IO19
HSI1A_SOUTN
9N
NC
-
-
NC
-
-
K4
BK0_IO20
-
10P
NC
-
-
NC
-
-
L4
BK0_IO21
-
10N
NC
-
-
NC
-
-
H2
BK0_IO22
HSI1A_SINP
11P
NC
-
-
NC
-
-
J2
BK0_IO23
HSI1A_SINN
11N
NC
-
-
NC
-
-
G1
BK0_IO24
-
12P
NC
-
-
NC
-
-
H1
BK0_IO25
-
12N
NC
-
-
NC
-
-
L3
BK0_IO26
HSI1B_SOUTP
13P
NC
-
-
NC
-
-
-
GND (Bank 0)
-
-
-
-
-
-
-
-
M3
BK0_IO27
HSI1B_SOUTN
13N
NC
-
-
NC
-
-
K2
BK0_IO28
-
14P
NC
-
-
NC
-
-
L2
BK0_IO29
-
14N
NC
-
-
NC
-
-
K1
BK0_IO30
HSI1B_SINP
15P
NC
-
-
NC
-
-
L1
BK0_IO31
HSI1B_SINN
15N
NC
-
-
NC
-
-
M2
BK0_IO32
-
16P
BK0_IO16
-
8P
NC
-
-
M1
BK0_IO33
-
16N
BK0_IO17
-
8N
NC
-
-
N3
BK0_IO34
PLL_FBK0
17P
BK0_IO18
PLL_FBK0
9P
BK0_IO14
PLL_FBK0
7P
-
GND (Bank 0)
-
-
GND (Bank 0)
-
-
-
-
-
N4
BK0_IO35
PLL_RST1
17N
BK0_IO19
PLL_RST1
9N
BK0_IO15
PLL_RST1
7N
N2
BK0_IO36
-
18P
BK0_IO20
-
10P
BK0_IO16
-
8P
N1
BK0_IO37
PLL_FBK1
18N
BK0_IO21
PLL_FBK1
10N
BK0_IO17
PLL_FBK1
8N
P1
BK0_IO38
PLL_RST0
19P
BK0_IO22
PLL_RST0
11P
BK0_IO18
PLL_RST0
9P
-
-
-
-
-
-
-
GND (Bank 0)
-
-
R1
BK0_IO39
-
19N
BK0_IO23
-
11N
BK0_IO19
-
9N
P3
BK0_IO40
CLK_OUT0
20P
BK0_IO24
CLK_OUT0
12P
BK0_IO20
CLK_OUT0
10P
-
GND (Bank 0)
-
-
-
-
-
-
-
-
P2
BK0_IO41
CLK_OUT1
20N
BK0_IO25
CLK_OUT1
12N
BK0_IO21
CLK_OUT1
10N
51
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
516-Ball
BGA Ball
Signal
Name
Second
Function
LFX200
LVDS Pair/
Polarity
Signal
Name
Second
Function
LFX125
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
-
-
-
-
GND (Bank 0)
-
-
-
-
-
R2
GCLK0
-
LVDSCLK0
GCLK0
-
LVDSCLK0
GCLK0
-
LVDSCLK0
R3
GCLK1
-
LVDSCLK0
GCLK1
-
LVDSCLK0
GCLK1
-
LVDSCLK0
R4
VCCP0
-
-
VCCP0
-
-
VCCP0
-
-
T4
GNDP0
-
-
GNDP0
-
-
GNDP0
-
-
T3
GCLK2
-
LVDSCLK1
GCLK2
-
LVDSCLK1
GCLK2
-
LVDSCLK1
T2
GCLK3
-
LVDSCLK1
GCLK3
-
LVDSCLK1
GCLK3
-
LVDSCLK1
-
-
-
-
GND (Bank 1)
-
-
-
-
-
T1
BK1_IO0
CLK_OUT2
21P
BK1_IO0
CLK_OUT2
13P
BK1_IO0
CLK_OUT2
11P
-
GND (Bank 1)
-
-
-
-
-
-
-
-
U1
BK1_IO1
CLK_OUT3
21N
BK1_IO1
CLK_OUT3
13N
BK1_IO1
CLK_OUT3
11N
U2
BK1_IO2
SS_CLKOUT0P
22P
BK1_IO2
SS_CLKOUT0P
14P
BK1_IO2
SS_CLKOUT0P
12P
-
-
-
-
-
-
-
GND (Bank 1)
-
-
U3
BK1_IO3
SS_CLKOUT0N
22N
BK1_IO3
SS_CLKOUT0
N
14N
BK1_IO3
SS_CLKOUT0
N
12N
V1
BK1_IO4
PLL_FBK2
23P
BK1_IO4
PLL_FBK2
15P
BK1_IO4
PLL_FBK2
13P
V2
BK1_IO5
PLL_FBK3
23N
BK1_IO5
PLL_FBK3
15N
BK1_IO5
PLL_FBK3
13N
V3
BK1_IO6
-
24P
NC
-
-
NC
-
-
-
GND (Bank 1)
-
-
-
-
-
-
-
-
V4
BK1_IO7
-
24N
NC
-
-
NC
-
-
W1
BK1_IO8
-
25P
NC
-
-
NC
-
-
Y1
BK1_IO9
-
25N
NC
-
-
NC
-
-
W2
BK1_IO10
SS_CLKINOP
26P
BK1_IO6
SS_CLKIN0P
16P
BK1_IO6
SS_CLKIN0P
14P
-
-
-
-
GND (Bank 1)
-
-
-
-
-
W3
BK1_IO11
SS_CLKINON
26N
BK1_IO7
SS_CLKIN0N
16N
BK1_IO7
SS_CLKIN0N
14N
Y2
BK1_IO12
PLL_RST2
27P
BK1_IO8
-
17P
BK1_IO8
-
15P
-
-
-
-
-
-
-
GND (Bank 1)
-
-
Y4
BK1_IO13
PLL_RST3
27N
BK1_IO9
-
17N
BK1_IO9
-
15N
Y3
BK1_IO14
-
28P
NC
-
-
NC
-
-
-
GND (Bank 1)
-
-
-
-
-
-
-
-
AA1
BK1_IO15
-
28N
NC
-
-
NC
-
-
AA2
BK1_IO16
-
29P
NC
-
-
NC
-
-
AA3
BK1_IO17
-
29N
NC
-
-
NC
-
-
AB2
BK1_IO18
HSI2A_SOUTP
30P
BK1_IO10
HSI1A_SOUTP
18P
BK1_IO10
-
16P
AC2
BK1_IO19
HSI2A_SOUTN
30N
BK1_IO11
HSI1A_SOUTN
18N
BK1_IO11
-
16N
AB3
BK1_IO20
PLL_RST2
31P
BK1_IO12
PLL_RST2
19P
BK1_IO12
PLL_RST2
17P
AA4
BK1_IO21
PLL_RST3
31N
BK1_IO13
PLL_RST3
19N
BK1_IO13
PLL_RST3
17N
AC1
BK1_IO22
HSI2A_SINP
32P
BK1_IO14
HSI1A_SINP
20P
NC
-
-
-
GND (Bank 1)
-
-
GND (Bank 1)
-
-
-
-
-
AD1
BK1_IO23
HSI2A_SINN
32N
BK1_IO15
HSI1A_SINN
20N
NC
-
-
AE1
BK1_IO24
VREF1
33P
BK1_IO16
VREF1
21P
BK1_IO14
VREF1
18P
AF1
BK1_IO25
-
33N
BK1_IO17
-
21N
BK1_IO15
-
18N
AC3
BK1_IO26
HSI2B_SOUTP
34P
BK1_IO18
HSI1B_SOUTP
22P
BK1_IO16
-
19P
-
-
-
-
-
-
-
GND (Bank 1)
-
-
AC4
BK1_IO27
HSI2B_SOUTN
34N
BK1_IO19
HSI1B_SOUTN
22N
BK1_IO17
-
19N
AD2
BK1_IO28
-
35P
BK1_IO20
-
23P
BK1_IO18
-
20P
AD3
BK1_IO29
-
35N
BK1_IO21
-
23N
BK1_IO19
-
20N
AE2
BK1_IO30
HSI2B_SINP
36P
BK1_IO22
HSI1B_SINP
24P
BK1_IO20
-
21P
-
GND (Bank 1)
-
-
GND (Bank 1)
-
-
-
-
-
AF2
BK1_IO31
HSI2B_SINN
36N
BK1_IO23
HSI1B_SINN
24N
BK1_IO21
-
21N
AD4
BK1_IO32
-
37P
NC
-
-
NC
-
-
52
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
LFX200
LFX125
516-Ball
BGA Ball
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
-
AE3
BK1_IO33
-
37N
NC
-
-
NC
-
AG1
BK1_IO34
-
38P
NC
-
-
NC
-
-
AH1
BK1_IO35
-
38N
NC
-
-
NC
-
-
AG2
BK1_IO36
-
39P
NC
-
-
NC
-
-
AF3
BK1_IO37
-
39N
NC
-
-
NC
-
-
AJ1
BK1_IO38
-
40P
NC
-
-
NC
-
-
-
GND (Bank 1)
-
-
-
-
-
-
-
-
AH2
BK1_IO39
-
40N
NC
-
-
NC
-
-
AG3
BK1_IO40
-
41P
BK1_IO24
-
25P
NC
-
-
AF4
BK1_IO41
-
41N
BK1_IO25
-
25N
NC
-
-
AK2
TCK
-
-
TCK
-
-
TCK
-
-
AJ3
TMS
-
-
TMS
-
-
TMS
-
-
AG5
TOE
-
-
TOE
-
-
TOE
-
-
AH4
BK2_IO0
-
42P
BK2_IO0
-
26P
BK2_IO0
-
22P
AK3
BK2_IO1
-
42N
BK2_IO1
-
26N
BK2_IO1
-
22N
AJ4
BK2_IO2
-
43P
BK2_IO2
-
27P
BK2_IO2
-
23P
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
-
-
-
AH5
BK2_IO3
-
43N
BK2_IO3
-
27N
BK2_IO3
-
23N
AK4
BK2_IO4
-
44P
BK2_IO4
-
28P
BK2_IO4
-
24P
-
-
-
-
-
-
-
GND (Bank 2)
-
-
AJ5
BK2_IO5
-
44N
BK2_IO5
-
28N
BK2_IO5
-
24N
AG7
BK2_IO6
-
45P
BK2_IO6
-
29P
BK2_IO6
-
25P
AH6
BK2_IO7
-
45N
BK2_IO7
-
29N
BK2_IO7
-
25N
AK5
BK2_IO8
-
46P
NC
-
-
NC
-
-
AJ6
BK2_IO9
-
46N
NC
-
-
NC
-
-
AG8
BK2_IO10
-
47P
NC
-
-
NC
-
-
-
GND (Bank 2)
-
-
-
-
-
-
-
-
AH7
BK2_IO11
-
47N
NC
-
-
NC
-
-
AK6
BK2_IO12
-
48P
NC
-
-
NC
-
-
AJ7
BK2_IO13
-
48N
NC
-
-
NC
-
-
AH8
BK2_IO14
-
49P
NC
-
-
NC
-
-
AG10
BK2_IO15
-
49N
NC
-
-
NC
-
-
AK7
BK2_IO16
-
50P
NC
-
-
NC
-
-
AJ8
BK2_IO17
-
50N
NC
-
-
NC
-
-
AH9
BK2_IO18
-
51P
NC
-
-
NC
-
-
-
GND (Bank 2)
-
-
-
-
-
-
-
-
AG11
BK2_IO19
-
51N
NC
-
-
NC
-
-
AK8
BK2_IO20
-
52P
BK2_IO8
-
30P
BK2_IO8
-
26P
AJ9
BK2_IO21
VREF2
52N
BK2_IO9
VREF2
30N
BK2_IO9
VREF2
26N
AH10
BK2_IO22
-
53P
BK2_IO10
-
31P
BK2_IO10
-
27P
-
-
-
-
GND (Bank 2)
-
-
-
-
-
AH11
BK2_IO23
-
53N
BK2_IO11
-
31N
BK2_IO11
-
27N
AJ10
BK2_IO24
-
54P
BK2_IO12
32P
BK2_IO12
-
28P
AK10
BK2_IO25
-
54N
BK2_IO13
-
32N
BK2_IO13
-
28N
AH12
BK2_IO26
-
55P
BK2_IO14
-
33P
BK2_IO14
-
29P
-
GND (Bank 2)
-
-
-
-
-
-
-
-
AJ11
BK2_IO27
-
55N
BK2_IO15
-
33N
BK2_IO15
-
29N
AK11
BK2_IO28
-
56P
NC
-
-
NC
-
-
AJ12
BK2_IO29
-
56N
NC
-
-
NC
-
-
AG13
BK2_IO30
-
57P
BK2_IO16
-
34P
BK2_IO16
-
30P
AH13
BK2_IO31
-
57N
BK2_IO17
-
34N
BK2_IO17
-
30N
53
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
LFX200
516-Ball
BGA Ball
Signal
Name
Second
Function
LVDS Pair/
Polarity
AJ13
BK2_IO32
-
-
-
-
AK12
BK2_IO33
AK13
AH14
LFX125
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
58P
BK2_IO18
-
-
GND (Bank 2)
-
35P
BK2_IO18
-
31P
-
GND (Bank 2)
-
-
58N
BK2_IO19
-
-
35N
BK2_IO19
-
31N
BK2_IO34
-
59P
GND (Bank 2)
-
-
BK2_IO20
-
36P
BK2_IO20
-
32P
-
-
-
-
-
BK2_IO35
-
59N
-
BK2_IO21
-
36N
BK2_IO21
-
32N
AJ14
BK2_IO36
-
60P
BK2_IO22
-
37P
NC
-
-
AK14
BK2_IO37
-
60N
BK2_IO23
-
37N
NC
-
-
AG15
BK2_IO38
-
61P
BK2_IO24
-
38P
NC
-
-
AH15
BK2_IO39
-
61N
BK2_IO25
-
38N
NC
-
-
AJ15
BK2_IO40
-
62P
NC
-
-
NC
-
-
AK15
BK2_IO41
-
62N
NC
-
-
NC
-
-
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
-
-
-
-
GND (Bank 3)
-
-
GND (Bank 3)
-
-
-
-
-
AK16
BK3_IO0
-
63P
BK3_IO0
-
39P
BK3_IO0
-
33P
33N
AJ16
BK3_IO1
-
63N
BK3_IO1
-
39N
BK3_IO1
-
AH16
BK3_IO2
-
64P
BK3_IO2
-
40P
BK3_IO2
-
34P
AG16
BK3_IO3
-
64N
BK3_IO3
-
40N
BK3_IO3
-
34N
AK17
BK3_IO4
-
65P
BK3_IO4
-
41P
BK3_IO4
-
35P
AJ17
BK3_IO5
-
65N
BK3_IO5
-
41N
BK3_IO5
-
35N
AH17
BK3_IO6
-
66P
BK3_IO6
-
42P
BK3_IO6
-
36P
-
GND (Bank 3)
-
-
GND (Bank 3)
-
-
-
-
-
AJ18
BK3_IO7
-
66N
BK3_IO7
-
42N
BK3_IO7
-
36N
AH18
BK3_IO8
-
67P
BK3_IO8
-
43P
BK3_IO8
-
37P
-
-
-
-
-
-
-
GND (Bank 3)
-
-
AG18
BK3_IO9
-
67N
BK3_IO9
-
43N
BK3_IO9
-
37N
AK18
BK3_IO10
-
68P
BK3_IO10
-
44P
BK3_IO10
-
38P
AK19
BK3_IO11
-
68N
BK3_IO11
-
44N
BK3_IO11
-
38N
-
AJ19
BK3_IO12
-
69P
BK3_IO12
AH19
BK3_IO13
-
69N
BK3_IO13
45P
NC
-
-
45N
NC
-
-
AK20
BK3_IO14
-
70P
BK3_IO14
-
GND (Bank 3)
-
-
GND (Bank 3)
-
46P
NC
-
-
-
-
-
-
AJ20
BK3_IO15
-
70N
-
BK3_IO15
-
46N
NC
-
-
AH20
BK3_IO16
-
71P
NC
-
-
NC
-
-
AG20
BK3_IO17
-
71N
NC
-
-
NC
-
-
AK21
BK3_IO18
-
72P
NC
-
-
NC
-
-
AJ21
BK3_IO19
-
72N
NC
-
-
NC
-
-
AH21
BK3_IO20
VREF3
73P
BK3_IO16
VREF3
47P
BK3_IO12
VREF3
39P
AG21
BK3_IO21
-
73N
BK3_IO17
-
47N
BK3_IO13
-
39N
AJ22
BK3_IO22
-
74P
BK3_IO18
-
48P
BK3_IO14
-
40P
-
GND (Bank 3)
-
-
-
-
-
-
-
-
AH22
BK3_IO23
-
74N
BK3_IO19
-
48N
BK3_IO15
-
40N
AK23
BK3_IO24
-
75P
NC
-
-
NC
-
-
AJ23
BK3_IO25
-
75N
NC
-
-
NC
-
-
AH23
BK3_IO26
-
76P
NC
-
-
NC
-
-
AK24
BK3_IO27
-
76N
NC
-
-
NC
-
-
AJ24
BK3_IO28
-
77P
NC
-
-
NC
-
-
AG23
BK3_IO29
-
77N
NC
-
-
NC
-
-
AH24
BK3_IO30
-
78P
NC
-
-
NC
-
-
-
GND (Bank 3)
-
-
-
-
-
-
-
AK25
BK3_IO31
-
78N
NC
-
-
NC
-
-
54
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
516-Ball
BGA Ball
Signal
Name
Second
Function
LFX200
LFX125
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
-
AJ25
BK3_IO32
-
79P
NC
-
-
NC
-
AG24
BK3_IO33
-
79N
NC
-
-
NC
-
-
AK26
BK3_IO34
-
80P
BK3_IO20
-
49P
BK3_IO16
-
41P
-
-
-
-
-
-
-
GND (Bank 3)
-
-
AH25
BK3_IO35
-
80N
BK3_IO21
-
49N
BK3_IO17
-
41N
AJ26
BK3_IO36
-
81P
BK3_IO22
-
50P
BK3_IO18
-
42P
-
-
-
-
GND (Bank 3)
-
-
-
-
-
AH26
BK3_IO37
-
81N
BK3_IO23
-
50N
BK3_IO19
-
42N
AK27
BK3_IO38
-
82P
NC
-
-
NC
-
-
-
GND (Bank 3)
-
-
-
-
-
-
-
-
AJ27
BK3_IO39
-
82N
NC
-
-
NC
-
-
AG26
BK3_IO40
-
83P
BK3_IO24
-
51P
BK3_IO20
-
43P
AH27
BK3_IO41
-
83N
BK3_IO25
-
51N
BK3_IO21
-
43N
AK28
RESET
-
-
RESET
-
-
RESET
-
-
AJ28
DXP
-
-
DXP
-
-
DXP
-
-
AK29
DXN
-
-
DXN
-
-
DXN
-
-
AH29
BK4_IO0
-
84P
BK4_IO0
-
52P
BK4_IO0
-
44P
AG28
BK4_IO1
-
84N
BK4_IO1
-
52N
BK4_IO1
-
44N
AF27
BK4_IO2
-
85P
NC
-
-
NC
-
-
-
GND (Bank 4)
-
-
-
-
-
-
-
-
AF28
BK4_IO3
-
85N
NC
-
-
NC
-
-
AJ30
BK4_IO4
-
86P
NC
-
-
NC
-
-
AH30
BK4_IO5
-
86N
NC
-
-
NC
-
-
AG29
BK4_IO6
-
87P
NC
-
-
NC
-
-
AF29
BK4_IO7
-
87N
NC
-
-
NC
-
-
AE28
BK4_IO8
-
88P
NC
-
-
NC
-
-
AD27
BK4_IO9
-
88N
NC
-
-
NC
-
-
AG30
BK4_IO10
HSI3A_SINP
89P
BK4_IO2
HSI2A_SINP
53P
BK4_IO2
-
45P
-
GND (Bank 4)
-
-
GND (Bank 4)
-
-
-
-
-
AF30
BK4_IO11
HSI3A_SINN
89N
BK4_IO3
HSI2A_SINN
53N
BK4_IO3
-
45N
AD28
BK4_IO12
-
90P
BK4_IO4
-
54P
BK4_IO4
-
46P
-
-
-
-
-
-
-
GND (Bank 4)
-
-
AC27
BK4_IO13
-
90N
BK4_IO5
-
54N
BK4_IO5
-
46N
AE29
BK4_IO14
HSI3A_SOUTP
91P
BK4_IO6
HSI2A_SOUTP
55P
NC
-
-
AE30
BK4_IO15
HSI3A_SOUTN
91N
BK4_IO7
HSI2A_SOUTN
55N
NC
-
-
AD29
BK4_IO16
-
92P
BK4_IO8
-
56P
BK4_IO6
-
47P
AD30
BK4_IO17
VREF4
92N
BK4_IO9
VREF4
56N
BK4_IO7
VREF4
47N
AC28
BK4_IO18
HSI3B_SINP
93P
BK4_IO10
HSI2B_SINP
57P
NC
-
-
-
GND (Bank 4)
-
-
GND (Bank 4)
-
-
-
-
-
AB28
BK4_IO19
HSI3B_SINN
93N
BK4_IO11
HSI2B_SINN
57N
NC
-
-
AA27
BK4_IO20
PLL_RST4
94P
BK4_IO12
PLL_RST4
58P
BK4_IO8
PLL_RST4
48P
AB29
BK4_IO21
PLL_RST5
94N
BK4_IO13
PLL_RST5
58N
BK4_IO9
PLL_RST5
48N
AC29
BK4_IO22
HSI3B_SOUTP
95P
BK4_IO14
HSI2B_SOUTP
59P
BK4_IO10
-
49P
AC30
BK4_IO23
HSI3B_SOUTN
95N
BK4_IO15
HSI2B_SOUTN
59N
BK4_IO11
-
49N
AA28
BK4_IO24
-
96P
NC
-
-
NC
-
-
Y27
BK4_IO25
-
96N
NC
-
-
NC
-
-
Y28
BK4_IO26
-
97P
NC
-
-
NC
-
-
-
GND (Bank 4)
-
-
-
-
-
-
-
-
AA29
BK4_IO27
-
97N
NC
-
-
NC
-
-
Y29
BK4_IO28
-
98P
BK4_IO16
-
60P
BK4_IO12
-
50P
-
-
-
-
-
-
-
GND (Bank 4)
-
-
55
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
516-Ball
BGA Ball
Signal
Name
AA30
W28
LFX200
Second
Function
LVDS Pair/
Polarity
BK4_IO29
-
98N
BK4_IO30
SS_CLKIN1P
99P
-
-
-
-
W29
BK4_IO31
SS_CLKIN1N
Signal
Name
LFX125
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
BK4_IO17
-
60N
BK4_IO18
SS_CLKIN1P
61P
BK4_IO13
-
50N
BK4_IO14
SS_CLKIN1P
GND (Bank 4)
-
-
-
-
51P
-
99N
BK4_IO19
SS_CLKIN1N
61N
BK4_IO15
SS_CLKIN1N
51N
Y30
BK4_IO32
-
100P
NC
-
-
NC
-
-
W30
BK4_IO33
-
100N
NC
-
-
NC
-
-
V27
BK4_IO34
-
101P
NC
-
-
NC
-
-
-
GND (Bank 4)
-
-
-
-
-
-
-
-
V28
BK4_IO35
-
101N
NC
-
-
NC
-
-
V29
BK4_IO36
PLL_FBK4
102P
BK4_IO20
PLL_FBK4
62P
BK4_IO16
PLL_FBK4
52P
V30
BK4_IO37
PLL_FBK5
102N
BK4_IO21
PLL_FBK5
62N
BK4_IO17
PLL_FBK5
52N
U30
BK4_IO38
SS_CLKOUT1P
103P
BK4_IO22
SS_CLKOUT1P
63P
BK4_IO18
SS_CLKOUT1P
53P
U29
BK4_IO39
SS_CLKOUT1N
103N
BK4_IO23
SS_CLKOUT1N
63N
BK4_IO19
SS_CLKOUT1N
53N
U28
BK4_IO40
CLK_OUT4
104P
BK4_IO24
CLK_OUT4
64P
BK4_IO20
CLK_OUT4
54P
-
GND (Bank 4)
-
-
-
-
-
-
-
-
T27
BK4_IO41
CLK_OUT5
104N
BK4_IO25
CLK_OUT5
64N
BK4_IO21
CLK_OUT5
54N
-
-
-
-
GND (Bank 4)
-
-
-
-
-
T28
GCLK4
-
LVDSCLK2
GCLK4
-
LVDSCLK2
GCLK4
-
LVDSCLK2
T29
GCLK5
-
LVDSCLK2
GCLK5
-
LVDSCLK2
GCLK5
-
LVDSCLK2
T30
VCCP1
-
-
VCCP1
-
-
VCCP1
-
-
R29
GNDP1
-
-
GNDP1
-
-
GNDP1
-
-
R28
GCLK6
-
LVDSCLK3
GCLK6
-
LVDSCLK3
GCLK6
-
LVDSCLK3
R27
GCLK7
-
LVDSCLK3
GCLK7
-
LVDSCLK3
GCLK7
-
LVDSCLK3
-
-
-
-
GND (Bank 5)
-
-
-
-
-
R30
BK5_IO0
CLK_OUT6
105P
BK5_IO0
CLK_OUT6
65P
BK5_IO0
CLK_OUT6
55P
-
GND (Bank 5)
-
-
-
-
-
-
-
-
P30
BK5_IO1
CLK_OUT7
105N
BK5_IO1
CLK_OUT7
65N
BK5_IO1
CLK_OUT7
55N
P29
BK5_IO2
-
106P
BK5_IO2
-
66P
BK5_IO2
-
56P
-
-
-
-
-
-
-
GND (Bank 5)
-
-
P28
BK5_IO3
PLL_RST7
106N
BK5_IO3
PLL_RST7
66N
BK5_IO3
PLL_RST7
56N
N30
BK5_IO4
PLL_FBK6
107P
BK5_IO4
PLL_FBK6
67P
BK5_IO4
PLL_FBK6
57P
N29
BK5_IO5
-
107N
BK5_IO5
-
67N
BK5_IO5
-
57N
N28
BK5_IO6
PLL-RST6
108P
BK5_IO6
PLL_RST6
68P
BK5_IO6
PLL_RST6
58P
-
GND (Bank 5)
-
-
GND (Bank 5)
-
-
-
-
-
N27
BK5_IO7
PLL_FBK7
108N
BK5_IO7
PLL_FBK7
68N
BK5_IO7
PLL_FBK7
58N
M30
BK5_IO8
-
109P
BK5_IO8
-
69P
NC
-
-
M29
BK5_IO9
-
109N
BK5_IO9
-
69N
NC
-
-
L30
BK5_IO10
HSI4A_SINP
110P
BK5_IO10
HSI3A_SINP
70P
BK5_IO8
HSI1A_SINP
59P
-
-
-
-
-
-
-
GND (Bank 5)
-
-
L29
BK5_IO11
HSI4A_SINN
110N
BK5_IO11
HSI3A_SINN
70N
BK5_IO9
HSI1A_SINN
59N
-
M28
BK5_IO12
-
111P
BK5_IO12
L28
BK5_IO13
-
111N
BK5_IO13
K30
BK5_IO14
HSI4A_SOUTP
112P
BK5_IO14
-
GND (Bank 5)
-
-
GND (Bank 5)
K29
BK5_IO15
HSI4A_SOUTN
112N
BK5_IO15
71P
BK5_IO10
-
60P
71N
BK5_IO11
-
60N
HSI3A_SOUTP
72P
BK5_IO12
HSI1A_SOUTP
61P
-
-
-
-
-
HSI3A_SOUTN
72N
BK5_IO13
HSI1A_SOUTN
61N
L27
BK5_IO16
-
113P
NC
-
-
NC
-
-
K28
BK5_IO17
-
113N
NC
-
-
NC
-
-
H30
BK5_IO18
HSI4B_SINP
114P
NC
-
-
NC
-
-
G30
BK5_IO19
HSI4B_SINN
114N
NC
-
-
NC
-
-
J28
BK5_IO20
-
115P
NC
-
-
NC
-
-
K27
BK5_IO21
-
115N
NC
-
-
NC
-
-
56
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
516-Ball
BGA Ball
LFX200
LFX125
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
J29
BK5_IO22
HSI4B_SOUTP
116P
NC
-
-
NC
-
-
-
GND (Bank 5)
-
-
-
-
-
-
-
-
H29
BK5_IO23
HSI4B_SOUTN
116N
NC
-
-
NC
-
-
F30
BK5_IO24
-
117P
NC
-
-
NC
-
-
G29
BK5_IO25
-
117N
NC
-
-
NC
-
-
H28
BK5_IO26
HSI5A_SINP
118P
NC
-
-
NC
-
-
H27
BK5_IO27
HSI5A_SINN
118N
NC
-
-
NC
-
-
E30
BK5_IO28
-
119P
NC
-
-
NC
-
-
F29
BK5_IO29
-
119N
NC
-
-
NC
-
-
G28
BK5_IO30
HSI5A_SOUTP
120P
NC
-
-
NC
-
-
-
GND (Bank 5)
-
-
-
-
-
-
-
-
G27
BK5_IO31
HSI5A_SOUTN
120N
NC
-
-
NC
-
-
E29
BK5_IO32
VREF5
121P
BK5_IO16
VREF5
73P
BK5_IO14
VREF5
62P
F28
BK5_IO33
-
121N
BK5_IO17
-
73N
BK5_IO15
-
62N
D30
BK5_IO34
HSI5B_SINP
122P
BK5_IO18
HSI3B_SINP
74P
BK5_IO16
HSI1B_SINP
63P
-
-
-
-
-
-
-
GND (Bank 5)
-
-
C30
BK5_IO35
HSI5B_SINN
122N
BK5_IO19
HSI3B_SINN
74N
BK5_IO17
HSI1B_SINN
63N
D29
BK5_IO36
-
123P
BK5_IO20
75P
NC
-
-
D28
BK5_IO37
-
123N
BK5_IO21
75N
NC
-
-
E28
BK5_IO38
HSI5B_SOUTP
124P
BK5_IO22
HSI3B_SOUTP
76P
BK5_IO20
HSI1B_SOUTP
65P
-
GND (Bank 5)
-
-
GND (Bank 5)
-
-
-
-
-
E27
BK5_IO39
HSI5B_SOUTN
124N
BK5_IO23
HSI3B_SOUTN
76N
BK5_IO21
HSI1B_SOUTN
65N
C29
BK5_IO40
-
125P
BK5_IO24
-
77P
BK5_IO18
-
64P
B30
BK5_IO41
-
125N
BK5_IO25
-
77N
BK5_IO19
-
64N
A29
CFG0
-
-
CFG0
-
-
CFG0
-
-
B28
DONE
-
-
DONE
-
-
DONE
-
-
A28
PROGRAMb
-
-
PROGRAMb
-
-
PROGRAMb
-
-
D26
BK6_IO0
INITb
126P
BK6_IO0
INITb
78P
BK6_IO0
INITb
66P
C27
BK6_IO1
CCLK
126N
BK6_IO1
CCLK
78N
BK6_IO1
CCLK
66N
B27
BK6_IO2
-
127P
BK6_IO2
-
79P
BK6_IO2
-
67P
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
-
-
-
A27
BK6_IO3
-
127N
BK6_IO3
-
79N
BK6_IO3
-
67N
C26
BK6_IO4
CSb
128P
BK6_IO4
CSb
80P
BK6_IO4
CSb
68P
-
-
-
-
-
-
-
GND (Bank 6)
-
-
B26
BK6_IO5
Read
128N
BK6_IO5
Read
80N
BK6_IO5
Read
68N
A26
BK6_IO6
-
129P
NC
-
-
NC
-
-
C25
BK6_IO7
-
129N
NC
-
-
NC
-
-
D24
BK6_IO8
-
130P
NC
-
-
NC
-
-
B25
BK6_IO9
-
130N
NC
-
-
NC
-
-
A25
BK6_IO10
-
131P
NC
-
-
NC
-
-
-
GND (Bank 6)
-
-
-
-
-
-
-
-
C24
BK6_IO11
-
131N
NC
-
-
NC
-
-
D23
BK6_IO12
-
132P
NC
-
-
NC
-
-
B24
BK6_IO13
-
132N
NC
-
-
NC
-
-
C23
BK6_IO14
-
133P
NC
-
-
NC
-
-
A24
BK6_IO15
-
133N
NC
-
-
NC
-
-
C22
BK6_IO16
-
134P
NC
-
-
NC
-
-
B23
BK6_IO17
-
134N
NC
-
-
NC
-
-
B22
BK6_IO18
DATA7
135P
BK6_IO6
DATA7
81P
BK6_IO6
DATA7
69P
-
GND (Bank 6)
-
-
-
-
-
-
-
-
A23
BK6_IO19
DATA6
135N
BK6_IO7
DATA6
81N
BK6_IO7
DATA6
69N
57
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
Second
Function
LFX200
LVDS Pair/
Polarity
Signal
Name
Second
Function
LFX125
516-Ball
BGA Ball
Signal
Name
D21
BK6_IO20
-
136P
BK6_IO8
-
82P
BK6_IO8
-
70P
C21
BK6_IO21
VREF6
136N
BK6_IO9
VREF6
82N
BK6_IO9
VREF6
70N
B21
BK6_IO22
DATA5
137P
BK6_IO10
DATA5
83P
BK6_IO10
DATA5
71P
-
-
-
-
GND (Bank 6)
-
-
-
-
-
A21
BK6_IO23
DATA4
137N
BK6_IO11
DATA4
83N
BK6_IO11
DATA4
71N
D20
BK6_IO24
-
138P
BK6_IO12
-
84P
BK6_IO12
-
72P
-
-
-
-
-
-
-
GND (Bank 6)
-
-
C20
BK6_IO25
-
138N
BK6_IO13
-
84N
BK6_IO13
-
72N
B20
BK6_IO26
DATA3
139P
BK6_IO14
DATA3
85P
BK6_IO14
DATA3
73P
-
GND (Bank 6)
-
-
-
-
-
-
-
-
A20
BK6_IO27
DATA2
139N
BK6_IO15
DATA2
85N
BK6_IO15
DATA2
73N
C19
BK6_IO28
-
140P
BK6_IO16
86P
BK6_IO16
-
74P
B19
BK6_IO29
-
140N
BK6_IO17
86N
BK6_IO17
-
74N
A19
BK6_IO30
DATA1
141P
BK6_IO18
DATA1
87P
BK6_IO18
DATA1
75P
-
-
-
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
A18
BK6_IO31
DATA0
141N
BK6_IO19
DATA0
87N
BK6_IO19
DATA0
75N
D18
BK6_IO32
-
142P
BK6_IO20
88P
BK6_IO20
-
76P
C18
BK6_IO33
-
142N
BK6_IO21
88N
BK6_IO21
-
76N
B18
BK6_IO34
-
143P
BK6_IO22
89P
NC
-
-
-
GND (Bank 6)
-
-
-
-
-
-
-
C17
BK6_IO35
-
143N
BK6_IO23
89N
NC
-
-
B17
BK6_IO36
-
144P
NC
-
-
NC
-
-
A17
BK6_IO37
-
144N
NC
-
-
NC
-
-
D16
BK6_IO38
-
145P
NC
-
-
NC
-
-
C16
BK6_IO39
-
145N
NC
-
-
NC
-
-
B16
BK6_IO40
-
146P
BK6_IO24
-
90P
NC
-
-
A16
BK6_IO41
-
146N
BK6_IO25
-
90N
NC
-
-
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
-
-
-
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
-
-
-
A15
BK7_IO0
-
147P
BK7_IO0
-
91P
BK7_IO0
-
77P
-
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
B15
BK7_IO1
-
147N
BK7_IO1
-
91N
BK7_IO1
-
77N
C15
BK7_IO2
-
148P
BK7_IO2
-
92P
BK7_IO2
-
78P
-
-
-
-
-
-
-
GND (Bank 7)
-
-
D15
BK7_IO3
-
148N
BK7_IO3
-
92N
BK7_IO3
-
78N
A14
BK7_IO4
-
149P
BK7_IO4
-
93P
BK7_IO4
-
79P
B14
BK7_IO5
-
149N
BK7_IO5
-
93N
BK7_IO5
-
79N
C14
BK7_IO6
-
150P
BK7_IO6
-
94P
NC
-
-
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
-
-
-
A13
BK7_IO7
-
150N
BK7_IO7
-
94N
NC
-
-
B13
BK7_IO8
-
151P
BK7_IO8
-
95P
NC
-
-
C13
BK7_IO9
-
151N
BK7_IO9
-
95N
NC
-
-
D13
BK7_IO10
-
152P
BK7_IO10
-
96P
BK7_IO6
-
80P
B12
BK7_IO11
-
152N
BK7_IO11
-
96N
BK7_IO7
-
80N
C12
BK7_IO12
-
153P
BK7_IO12
-
97P
BK7_IO8
-
81P
-
-
-
-
-
-
-
GND (Bank 7)
-
-
A12
BK7_IO13
-
153N
BK7_IO13
97N
BK7_IO9
-
81N
A11
BK7_IO14
-
154P
BK7_IO14
-
98P
BK7_IO10
-
82P
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
-
-
-
B11
BK7_IO15
-
154N
BK7_IO15
-
98N
BK7_IO11
-
82N
C11
BK7_IO16
-
155P
NC
-
-
NC
-
-
D11
BK7_IO17
-
155N
NC
-
-
NC
-
-
58
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 516-Ball fpBGA (Continued)
LFX500
LFX200
LVDS Pair/
Polarity
Signal
Name
Second
Function
LFX125
516-Ball
BGA Ball
Signal
Name
Second
Function
LVDS Pair/
Polarity
Signal
Name
Second
Function
LVDS Pair/
Polarity
A10
BK7_IO18
-
156P
NC
-
-
NC
-
-
B10
BK7_IO19
-
156N
NC
-
-
NC
-
-
C10
BK7_IO20
VREF7
157P
BK7_IO16
VREF7
99P
BK7_IO12
VREF7
83P
D10
BK7_IO21
-
157N
BK7_IO17
-
99N
BK7_IO13
-
83N
B9
BK7_IO22
-
158P
BK7_IO18
-
100P
BK7_IO14
-
84P
-
GND (Bank 7)
-
-
-
-
-
-
-
-
C9
BK7_IO23
-
158N
BK7_IO19
-
100N
BK7_IO15
-
84N
A8
BK7_IO24
-
159P
BK7_IO20
-
101P
BK7_IO16
-
85P
-
-
-
-
-
-
-
GND (Bank 7)
-
-
B8
BK7_IO25
-
159N
BK7_IO21
-
101N
BK7_IO17
-
85N
C8
BK7_IO26
-
160P
NC
-
-
NC
-
-
D8
BK7_IO27
-
160N
NC
-
-
NC
-
-
A7
BK7_IO28
-
161P
NC
-
-
NC
-
-
B7
BK7_IO29
-
161N
NC
-
-
NC
-
-
C7
BK7_IO30
-
162P
NC
-
-
NC
-
-
-
GND (Bank 7)
-
-
-
-
-
-
-
-
D7
BK7_IO31
-
162N
NC
-
-
NC
-
-
A6
BK7_IO32
-
163P
NC
-
-
NC
-
-
B6
BK7_IO33
-
163N
NC
-
-
NC
-
-
B5
BK7_IO34
-
164P
NC
-
-
NC
-
-
C6
BK7_IO35
-
164N
NC
-
-
NC
-
-
A5
BK7_IO36
-
165P
NC
-
-
NC
-
-
A4
BK7_IO37
-
165N
NC
-
-
NC
-
-
B4
BK7_IO38
-
166P
BK7_IO22
-
102P
BK7_IO18
-
86P
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
-
-
-
C5
BK7_IO39
-
166N
BK7_IO23
-
102N
BK7_IO19
-
86N
A3
BK7_IO40
-
167P
BK7_IO24
-
103P
BK7_IO20
-
87P
A2
BK7_IO41
-
167N
BK7_IO25
-
103N
BK7_IO21
-
87N
D5
TDO
-
-
TDO
-
-
TDO
-
-
C4
VCCJ
-
-
VCCJ
-
-
VCCJ
-
-
B3
TDI
-
-
TDI
-
-
TDI
-
-
59
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
C4
BK0_IO0
-
0P
B4
BK0_IO1
-
0N
E6
BK0_IO2
-
1P
-
GND (Bank 0)
-
D6
BK0_IO3
-
A4
BK0_IO4
-
2P
E8
BK0_IO5
-
2N
C5
BK0_IO6
HSI0A_SOUTP
3P
C6
BK0_IO7
HSI0A_SOUTN
3N
A6
BK0_IO8
-
4P
A5
BK0_IO9
-
4N
B6
BK0_IO10
HSI0A_SINP
5P
-
GND (Bank 0)
-
-
B5
BK0_IO11
HSI0A_SINN
5N
B7
BK0_IO12
VREF0
6P
1N
A7
BK0_IO13
-
6N
D8
BK0_IO14
HSI0B_SOUTP
7P
D7
BK0_IO15
HSI0B_SOUTN
7N
D9
BK0_IO16
-
8P
E10
BK0_IO17
-
8N
C8
BK0_IO18
HSI0B_SINP
9P
-
GND (Bank 0)
-
-
C7
BK0_IO19
HSI0B_SINN
9N
A8
BK0_IO20
-
10P
A9
BK0_IO21
-
10N
C9
BK0_IO22
HSI1A_SOUTP
11P
B8
BK0_IO23
HSI1A_SOUTN
11N
B9
BK0_IO24
-
12P
B10
BK0_IO25
-
12N
D11
BK0_IO26
HSI1A_SINP
13P
-
GND (Bank 0)
-
-
D10
BK0_IO27
HSI1A_SINN
13N
A10
BK0_IO28
-
14P
C12
BK0_IO29
-
14N
D12
BK0_IO30
HSI1B_SOUTP
15P
C11
BK0_IO31
HSI1B_SOUTN
15N
A12
BK0_IO32
-
16P
A13
BK0_IO33
-
16N
B13
BK0_IO34
HSI1B_SINP
17P
-
GND (Bank 0)
-
-
B12
BK0_IO35
HSI1B_SINN
17N
E14
BK0_IO36
-
18P
60
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
D14
C13
BK0_IO37
-
18N
BK0_IO38
HSI2A_SOUTP
19P
D13
BK0_IO39
HSI2A_SOUTN
19N
B14
BK0_IO40
-
20P
A14
BK0_IO41
-
20N
C15
BK0_IO42
HSI2A_SINP
21P
-
GND (Bank 0)
-
-
D15
BK0_IO43
HSI2A_SINN
21N
A15
BK0_IO44
-
22P
C16
BK0_IO45
-
22N
B15
BK0_IO46
HSI2B_SOUTP
23P
B16
BK0_IO47
HSI2B_SOUTN
23N
A16
BK0_IO48
-
24P
B17
BK0_IO49
-
24N
D16
BK0_IO50
HSI2B_SINP
25P
-
GND (Bank 0)
-
25N
E16
BK0_IO51
HSI2B_SINN
D17
BK0_IO52
-
26P
C17
BK0_IO53
-
26N
A18
BK0_IO54
PLL_RST0
27P
D18
BK0_IO55
PLL_RST1
27N
A17
BK0_IO56
-
28P
E19
BK0_IO57
-
28N
A19
BK0_IO58
PLL_FBK0
29P
-
GND (Bank 0)
-
-
B19
BK0_IO59
PLL_FBK1
29N
C18
BK0_IO60
CLK_OUT0
30P
B18
BK0_IO61
CLK_OUT1
30N
-
GND (Bank 0)
-
-
D19
GCLK0
-
LVDSCLK0
C19
GCLK1
-
LVDSCLK0
E20
VCCP0
-
-
A21
GNDP0
-
-
B21
GCLK2
-
LVDSCLK1
C21
GCLK3
-
LVDSCLK1
B23
BK1_IO0
CLK_OUT2
31P
C23
BK1_IO1
CLK_OUT3
31N
B22
BK1_IO2
SS_CLKOUT0P
32P
-
GND (Bank 1)
-
-
C22
BK1_IO3
SS_CLKOUT0N
32N
D21
BK1_IO4
PLL_FBK2
33P
E21
BK1_IO5
PLL_FBK3
33N
B24
BK1_IO6
SS_CLKIN0P
34P
61
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
C24
BK1_IO7
SS_CLKIN0N
34N
A22
BK1_IO8
-
35P
D22
BK1_IO9
-
35N
A23
BK1_IO10
-
36P
-
GND (Bank 1)
-
-
B25
BK1_IO11
-
36N
D23
BK1_IO12
PLL_RST2
37P
A24
BK1_IO13
PLL_RST3
37N
A25
BK1_IO14
-
38P
E24
BK1_IO15
-
38N
D24
BK1_IO16
-
39P
A26
BK1_IO17
-
39N
D25
BK1_IO18
-
40P
-
GND (Bank 1)
-
-
C25
BK1_IO19
-
40N
B26
BK1_IO20
-
41P
B27
BK1_IO21
-
41N
D26
BK1_IO22
-
42P
A27
BK1_IO23
-
42N
A28
BK1_IO24
-
43P
E26
BK1_IO25
-
43N
C27
BK1_IO26
HSI3A_SOUTP
44P
-
GND (Bank 1)
-
-
D27
BK1_IO27
HSI3A_SOUTN
44N
B28
BK1_IO28
-
45P
A30
BK1_IO29
-
45N
C28
BK1_IO30
HSI3A_SINP
46P
D28
BK1_IO31
HSI3A_SINN
46N
A31
BK1_IO32
-
47P
B30
BK1_IO33
-
47N
E28
BK1_IO34
HSI3B_SOUTP
48P
-
GND (Bank 1)
-
-
D29
BK1_IO35
HSI3B_SOUTN
48N
C29
BK1_IO36
-
49P
B31
BK1_IO37
-
49N
D30
BK1_IO38
HSI3B_SINP
50P
E30
BK1_IO39
HSI3B_SINN
50N
A32
BK1_IO40
-
51P
C31
BK1_IO41
-
51N
D31
BK1_IO42
HSI4A_SOUTP
52P
-
GND (Bank 1)
-
-
C32
BK1_IO43
HSI4A_SOUTN
52N
B32
BK1_IO44
-
53P
62
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
A33
BK1_IO45
-
53N
C33
BK1_IO46
HSI4A_SINP
54P
B33
BK1_IO47
HSI4A_SINN
54N
A34
BK1_IO48
-
55P
A35
BK1_IO49
VREF1
55N
D32
BK1_IO50
HSI4B_SOUTP
56P
-
GND (Bank 1)
-
-
D33
BK1_IO51
HSI4B_SOUTN
56N
E32
BK1_IO52
-
57P
C34
BK1_IO53
-
57N
B34
BK1_IO54
HSI4B_SINP
58P
B35
BK1_IO55
HSI4B_SINN
58N
A36
BK1_IO56
-
59P
D34
BK1_IO57
-
59N
C35
BK1_IO58
-
60P
-
GND (Bank 1)
-
-
E34
BK1_IO59
-
60N
B36
BK1_IO60
-
61P
C36
BK1_IO61
-
61N
D39
TCK
-
-
D37
TMS
-
-
D38
TOE
-
-
E37
BK2_IO0
-
62P
F35
BK2_IO1
-
62N
E39
BK2_IO2
-
63P
-
GND (Bank 2)
-
-
F39
BK2_IO3
-
63N
F36
BK2_IO4
-
64P
E38
BK2_IO5
-
64N
G38
BK2_IO6
-
65P
F37
BK2_IO7
-
65N
G36
BK2_IO8
-
66P
G39
BK2_IO9
-
66N
H35
BK2_IO10
-
67P
-
GND (Bank 2)
-
-
F38
BK2_IO11
-
67N
J37
BK2_IO12
VREF2
68P
H36
BK2_IO13
-
68N
G37
BK2_IO14
-
69P
H37
BK2_IO15
-
69N
H39
BK2_IO16
-
70P
K35
BK2_IO17
-
70N
J36
BK2_IO18
-
71P
63
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
-
GND (Bank 2)
-
-
K36
BK2_IO19
-
71N
H38
BK2_IO20
-
72P
J38
BK2_IO21
-
72N
J39
BK2_IO22
-
73P
L36
BK2_IO23
-
73N
K38
BK2_IO24
-
74P
M36
BK2_IO25
-
74N
L37
BK2_IO26
-
75P
-
GND (Bank 2)
-
-
K39
BK2_IO27
-
75N
L38
BK2_IO28
-
76P
P35
BK2_IO29
-
76N
N36
BK2_IO30
-
77P
M37
BK2_IO31
-
77N
L39
BK2_IO32
-
78P
M38
BK2_IO33
-
78N
M39
BK2_IO34
-
79P
-
GND (Bank 2)
-
-
P36
BK2_IO35
-
79N
R36
BK2_IO36
-
80P
N37
BK2_IO37
-
80N
P38
BK2_IO38
-
81P
T35
BK2_IO39
-
81N
R37
BK2_IO40
-
82P
R38
BK2_IO41
-
82N
P39
BK2_IO42
-
83P
-
GND (Bank 2)
-
-
R39
BK2_IO43
-
83N
T38
BK2_IO44
-
84P
T36
BK2_IO45
-
84N
T37
BK2_IO46
-
85P
U36
BK2_IO47
-
85N
U37
BK2_IO48
-
86P
T39
BK2_IO49
-
86N
V36
BK2_IO50
-
87P
-
GND (Bank 2)
-
-
U38
BK2_IO51
-
87N
U39
BK2_IO52
-
88P
V38
BK2_IO53
-
88N
V37
BK2_IO54
-
89P
W36
BK2_IO55
-
89N
W35
BK2_IO56
-
90P
64
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
V39
BK2_IO57
-
90N
W37
BK2_IO58
-
91P
-
GND (Bank 2)
-
-
W38
BK2_IO59
-
91N
W39
BK2_IO60
-
92P
AA39
BK2_IO61
-
92N
-
GND (Bank 2)
-
-
-
GND (Bank 3)
-
-
AA38
BK3_IO0
-
93P
Y35
BK3_IO1
-
93N
AA37
BK3_IO2
-
94P
-
GND (Bank 3)
-
-
AA35
BK3_IO3
-
94N
AB39
BK3_IO4
-
95P
AB38
BK3_IO5
-
95N
AA36
BK3_IO6
-
96P
AB37
BK3_IO7
-
96N
AC39
BK3_IO8
-
97P
AC38
BK3_IO9
-
97N
AB36
BK3_IO10
-
98P
-
GND (Bank 3)
-
-
AC37
BK3_IO11
-
98N
AC36
BK3_IO12
-
99P
AD39
BK3_IO13
-
99N
AD37
BK3_IO14
-
100P
AD36
BK3_IO15
-
100N
AD35
BK3_IO16
-
101P
AE38
BK3_IO17
-
101N
AD38
BK3_IO18
-
102P
-
GND (Bank 3)
-
-
AE39
BK3_IO19
-
102N
AF38
BK3_IO20
-
103P
AF37
BK3_IO21
-
103N
AF39
BK3_IO22
-
104P
AE36
BK3_IO23
-
104N
AF36
BK3_IO24
-
105P
AG38
BK3_IO25
-
105N
AG39
BK3_IO26
-
106P
-
GND (Bank 3)
-
-
AG37
BK3_IO27
-
106N
AH37
BK3_IO28
-
107P
AH38
BK3_IO29
-
107N
AG36
BK3_IO30
-
108P
65
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
AH39
BK3_IO31
-
108N
AK39
BK3_IO32
-
109P
AK38
BK3_IO33
-
109N
AF35
BK3_IO34
-
110P
-
GND (Bank 3)
-
-
AJ37
BK3_IO35
-
110N
AH36
BK3_IO36
-
111P
AM39
BK3_IO37
-
111N
AL38
BK3_IO38
-
112P
AL39
BK3_IO39
-
112N
AJ36
BK3_IO40
-
113P
AH35
BK3_IO41
-
113N
AL37
BK3_IO42
-
114P
-
GND (Bank 3)
-
-
AN38
BK3_IO43
-
114N
AM38
BK3_IO44
-
115P
AK36
BK3_IO45
-
115N
AM37
BK3_IO46
-
116P
AN37
BK3_IO47
-
116N
AN39
BK3_IO48
-
117P
AL36
BK3_IO49
VREF3
117N
AK35
BK3_IO50
-
118P
-
GND (Bank 3)
-
-
AP39
BK3_IO51
-
118N
AM36
BK3_IO52
-
119P
AP38
BK3_IO53
-
119N
AR39
BK3_IO54
-
120P
AN36
BK3_IO55
-
120N
AM35
BK3_IO56
-
121P
AR38
BK3_IO57
-
121N
AP37
BK3_IO58
-
122P
-
GND (Bank 3)
-
-
AT39
BK3_IO59
-
122N
AR37
BK3_IO60
-
123P
AP36
BK3_IO61
-
123N
AT38
RESET
-
-
AP35
DXP
-
-
AT37
DXN
-
-
AU36
BK4_IO0
-
124P
AV36
BK4_IO1
-
124N
AR34
BK4_IO2
-
125P
-
GND (Bank 4)
-
-
AW36
BK4_IO3
-
125N
66
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
AW35
BK4_IO4
-
126P
AV35
BK4_IO5
-
126N
AV34
BK4_IO6
HSI5A_SINP
127P
AU34
BK4_IO7
HSI5A_SINN
127N
AT34
BK4_IO8
-
128P
AU35
BK4_IO9
-
128N
AT33
BK4_IO10
HSI5A_SOUTP
129P
-
GND (Bank 4)
-
-
AU33
BK4_IO11
HSI5A_SOUTN
129N
AW34
BK4_IO12
VREF4
130P
AV33
BK4_IO13
-
130N
AR32
BK4_IO14
HSI5B_SINP
131P
AT32
BK4_IO15
HSI5B_SINN
131N
AU32
BK4_IO16
-
132P
AW33
BK4_IO17
-
132N
AV32
BK4_IO18
HSI5B_SOUTP
133P
-
GND (Bank 4)
-
-
AV31
BK4_IO19
HSI5B_SOUTN
133N
AU31
BK4_IO20
-
134P
AW32
BK4_IO21
-
134N
AR30
BK4_IO22
HSI6A_SINP
135P
AT31
BK4_IO23
HSI6A_SINN
135N
AW31
BK4_IO24
-
136P
AV30
BK4_IO25
-
136N
AT30
BK4_IO26
HSI6A_SOUTP
137P
-
GND (Bank 4)
-
-
AT29
BK4_IO27
HSI6A_SOUTN
137N
AW30
BK4_IO28
-
138P
AU29
BK4_IO29
-
138N
AT28
BK4_IO30
HSI6B_SINP
139P
AU28
BK4_IO31
HSI6B_SINN
139N
AV28
BK4_IO32
-
140P
AT27
BK4_IO33
-
140N
AU27
BK4_IO34
HSI6B_SOUTP
141P
-
GND (Bank 4)
-
-
AV27
BK4_IO35
HSI6B_SOUTN
141N
AW28
BK4_IO36
-
142P
AR26
BK4_IO37
-
142N
AW27
BK4_IO38
-
143P
AT26
BK4_IO39
-
143N
AV26
BK4_IO40
-
144P
AR24
BK4_IO41
-
144N
AT25
BK4_IO42
-
145P
67
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
-
GND (Bank 4)
-
-
AW26
BK4_IO43
-
145N
AV25
BK4_IO44
-
146P
AT24
BK4_IO45
-
146N
AU24
BK4_IO46
-
147P
AU25
BK4_IO47
-
147N
AW25
BK4_IO48
PLL_RST4
148P
AW24
BK4_IO49
PLL_RST5
148N
AU23
BK4_IO50
-
149P
-
GND (Bank 4)
-
-
AT23
BK4_IO51
-
149N
AV24
BK4_IO52
-
150P
AW23
BK4_IO53
-
150N
AV23
BK4_IO54
SS_CLKIN1P
151P
AU22
BK4_IO55
SS_CLKIN1N
151N
AR21
BK4_IO56
PLL_FBK4
152P
AT22
BK4_IO57
PLL_FBK5
152N
AV22
BK4_IO58
SS_CLKOUT1P
153P
-
GND (Bank 4)
-
-
AV21
BK4_IO59
SS_CLKOUT1N
153N
AT21
BK4_IO60
CLK_OUT4
154P
AU21
BK4_IO61
CLK_OUT5
154N
-
GND (Bank 4)
-
-
AT19
GCLK4
-
LVDSCLK2
AU19
GCLK5
-
LVDSCLK2
AW22
VCCP1
-
-
AR20
GNDP1
-
-
AU18
GCLK6
-
LVDSCLK3
AT18
GCLK7
-
LVDSCLK3
-
GND (Bank 5)
-
-
AV17
BK5_IO0
CLK_OUT6
155P
AV18
BK5_IO1
CLK_OUT7
155N
AW21
BK5_IO2
PLL_FBK6
156P
-
GND (Bank 5)
-
-
AV19
BK5_IO3
PLL_FBK7
156N
AR19
BK5_IO4
-
157P
AW19
BK5_IO5
-
157N
AW18
BK5_IO6
PLL_RST6
158P
AW17
BK5_IO7
PLL_RST7
158N
AT17
BK5_IO8
-
159P
AV16
BK5_IO9
-
159N
AU17
BK5_IO10
HSI7A_SINP
160P
-
GND (Bank 5)
-
-
68
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
AT16
BK5_IO11
HSI7A_SINN
160N
AW16
BK5_IO12
-
161P
AU16
BK5_IO13
-
161N
AV14
BK5_IO14
HSI7A_SOUTP
162P
AV15
BK5_IO15
HSI7A_SOUTN
162N
AU15
BK5_IO16
-
163P
AW15
BK5_IO17
-
163N
AT15
BK5_IO18
HSI7B_SINP
164P
-
GND (Bank 5)
-
-
AR16
BK5_IO19
HSI7B_SINN
164N
AW14
BK5_IO20
-
165P
AW13
BK5_IO21
-
165N
AR14
BK5_IO22
HSI7B_SOUTP
166P
AT14
BK5_IO23
HSI7B_SOUTN
166N
AT13
BK5_IO24
-
167P
AV13
BK5_IO25
-
167N
AU12
BK5_IO26
HSI8A_SINP
168P
-
GND (Bank 5)
-
-
AU13
BK5_IO27
HSI8A_SINN
168N
AV12
BK5_IO28
-
169P
AT12
BK5_IO29
-
169N
AR12
BK5_IO30
HSI8A_SOUTP
170P
AT11
BK5_IO31
HSI8A_SOUTN
170N
AW12
BK5_IO32
-
171P
AU11
BK5_IO33
-
171N
AV9
BK5_IO34
HSI8B_SINP
172P
-
GND (Bank 5)
-
-
AV10
BK5_IO35
HSI8B_SINN
172N
AW10
BK5_IO36
-
173P
AW9
BK5_IO37
-
173N
AT10
BK5_IO38
HSI8B_SOUTP
174P
AU9
BK5_IO39
HSI8B_SOUTN
174N
AT9
BK5_IO40
-
175P
AR10
BK5_IO41
-
175N
AU8
BK5_IO42
HSI9A_SINP
176P
-
GND (Bank 5)
-
-
AV8
BK5_IO43
HSI9A_SINN
176N
AW8
BK5_IO44
-
177P
AW7
BK5_IO45
-
177N
AU7
BK5_IO46
HSI9A_SOUTP
178P
AT8
BK5_IO47
HSI9A_SOUTN
178N
AV7
BK5_IO48
-
179P
AW6
BK5_IO49
VREF5
179N
69
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
AU6
BK5_IO50
HSI9B_SINP
180P
-
GND (Bank 5)
-
-
AV6
BK5_IO51
HSI9B_SINN
180N
AR8
BK5_IO52
-
181P
AT7
BK5_IO53
-
181N
AU5
BK5_IO54
HSI9B_SOUTP
182P
AV5
BK5_IO55
HSI9B_SOUTN
182N
AW5
BK5_IO56
-
183P
AW4
BK5_IO57
-
183N
AT6
BK5_IO58
-
184P
-
GND (Bank 5)
-
-
AV4
BK5_IO59
-
184N
AR6
BK5_IO60
-
185P
AU4
BK5_IO61
-
185N
AT1
CFG0
-
-
AT3
DONE
-
-
AT2
PROGRAMb
-
-
AP4
BK6_IO0
INITb
186P
AP5
BK6_IO1
CCLK
186N
AR3
BK6_IO2
-
187P
-
GND (Bank 6)
-
-
AR2
BK6_IO3
-
187N
AP3
BK6_IO4
CSb
188P
AR1
BK6_IO5
Read
188N
AP2
BK6_IO6
-
189P
AP1
BK6_IO7
-
189N
AN4
BK6_IO8
-
190P
AM5
BK6_IO9
-
190N
AN3
BK6_IO10
-
191P
-
GND (Bank 6)
-
-
AN2
BK6_IO11
-
191N
AM4
BK6_IO12
VREF6
192P
AM3
BK6_IO13
-
192N
AN1
BK6_IO14
-
193P
AM2
BK6_IO15
-
193N
AL4
BK6_IO16
-
194P
AK5
BK6_IO17
-
194N
AM1
BK6_IO18
-
195P
-
GND (Bank 6)
-
-
AK4
BK6_IO19
-
195N
AL3
BK6_IO20
-
196P
AL2
BK6_IO21
-
196N
AL1
BK6_IO22
-
197P
70
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
AK2
BK6_IO23
-
197N
AK1
BK6_IO24
-
198P
AJ4
BK6_IO25
-
198N
AJ3
BK6_IO26
-
199P
-
GND (Bank 6)
-
-
AH4
BK6_IO27
-
199N
AH3
BK6_IO28
-
200P
AH2
BK6_IO29
-
200N
AH1
BK6_IO30
-
201P
AG4
BK6_IO31
-
201N
AF5
BK6_IO32
DATA7
202P
AG3
BK6_IO33
DATA6
202N
AG2
BK6_IO34
-
203P
-
GND (Bank 6)
-
-
AF4
BK6_IO35
-
203N
AF3
BK6_IO36
DATA5
204P
AG1
BK6_IO37
DATA4
204N
AE2
BK6_IO38
-
205P
AF1
BK6_IO39
-
205N
AF2
BK6_IO40
-
206P
AE1
BK6_IO41
-
206N
AE4
BK6_IO42
-
207P
-
GND (Bank 6)
-
-
AD4
BK6_IO43
-
207N
AD5
BK6_IO44
-
208P
AD3
BK6_IO45
-
208N
AD2
BK6_IO46
-
209P
AD1
BK6_IO47
-
209N
AC4
BK6_IO48
-
210P
AC3
BK6_IO49
-
210N
AC2
BK6_IO50
DATA3
211P
-
GND (Bank 6)
-
-
AC1
BK6_IO51
DATA2
211N
AB3
BK6_IO52
-
212P
AB4
BK6_IO53
-
212N
AB2
BK6_IO54
DATA1
213P
AB1
BK6_IO55
DATA0
213N
AA3
BK6_IO56
-
214P
AA4
BK6_IO57
-
214N
AA5
BK6_IO58
-
215P
-
GND (Bank 6)
-
-
AA2
BK6_IO59
-
215N
AA1
BK6_IO60
-
216P
71
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
Y5
BK6_IO61
-
216N
-
GND (Bank 6)
-
-
-
GND (Bank 7)
-
-
W3
BK7_IO0
-
217P
W1
BK7_IO1
-
217N
W2
BK7_IO2
-
218P
-
GND (Bank 7)
-
-
W4
BK7_IO3
-
218N
V1
BK7_IO4
-
219P
V2
BK7_IO5
-
219N
V3
BK7_IO6
-
220P
V4
BK7_IO7
-
220N
W5
BK7_IO8
-
221P
U1
BK7_IO9
-
221N
U2
BK7_IO10
-
222P
-
GND (Bank 7)
-
-
U3
BK7_IO11
-
222N
U4
BK7_IO12
-
223P
T1
BK7_IO13
-
223N
T2
BK7_IO14
-
224P
T3
BK7_IO15
-
224N
R1
BK7_IO16
-
225P
R2
BK7_IO17
-
225N
T4
BK7_IO18
-
226P
-
GND (Bank 7)
-
-
P1
BK7_IO19
-
226N
P2
BK7_IO20
-
227P
P3
BK7_IO21
-
227N
R4
BK7_IO22
-
228P
T5
BK7_IO23
-
228N
M1
BK7_IO24
-
229P
M2
BK7_IO25
-
229N
N3
BK7_IO26
-
230P
-
GND (Bank 7)
-
-
P4
BK7_IO27
-
230N
L1
BK7_IO28
-
231P
M3
BK7_IO29
-
231N
L2
BK7_IO30
-
232P
N4
BK7_IO31
-
232N
K1
BK7_IO32
-
233P
K2
BK7_IO33
-
233N
P5
BK7_IO34
-
234P
-
GND (Bank 7)
-
-
72
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 680-Ball fpBGA (Continued)
LFX1200
680-Ball fpBGA
Signal Name
Second Function
LVDS Pair Polarity
L3
BK7_IO35
-
234N
J1
BK7_IO36
-
235P
J2
BK7_IO37
-
235N
M4
BK7_IO38
-
236P
H1
BK7_IO39
-
236N
J3
BK7_IO40
-
237P
L4
BK7_IO41
-
237N
M5
BK7_IO42
-
238P
-
GND (Bank 7)
-
-
H2
BK7_IO43
-
238N
K4
BK7_IO44
-
239P
G1
BK7_IO45
-
239N
H3
BK7_IO46
-
240P
J4
BK7_IO47
VREF7
240N
K5
BK7_IO48
-
241P
G3
BK7_IO49
-
241N
H4
BK7_IO50
-
242P
-
GND (Bank 7)
-
-
F2
BK7_IO51
-
242N
G2
BK7_IO52
-
243P
H5
BK7_IO53
-
243N
F3
BK7_IO54
-
244P
F1
BK7_IO55
-
244N
G4
BK7_IO56
-
245P
E1
BK7_IO57
-
245N
F4
BK7_IO58
-
246P
-
GND (Bank 7)
-
-
E2
BK7_IO59
-
246N
F5
BK7_IO60
-
247P
E3
BK7_IO61
-
247N
D2
TDO
-
-
D3
VCCJ
-
-
D1
TDI
-
-
73
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA
LFX1200
900 fpBGA
Ball
Signal Name
Second
Function
LFX500
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
D3
BK0_IO0
-
0P
NC
-
-
E3
BK0_IO1
-
0N
NC
-
-
C2
BK0_IO2
-
1P
NC
-
-
-
GND (Bank 0)
-
-
-
-
-
C1
BK0_IO3
-
1N
NC
-
-
E4
BK0_IO4
-
2P
BK0_IO0
-
0P
F5
BK0_IO5
-
2N
BK0_IO1
-
0N
D2
BK0_IO6
HSI0A_SOUTP
3P
BK0_IO2
HSI0A_SOUTP
1P
-
-
-
-
GND (Bank 0)
-
-
D1
BK0_IO7
HSI0A_SOUTN
3N
BK0_IO3
HSI0A_SOUTN
1N
F4
BK0_IO8
-
4P
BK0_IO4
-
2P
F3
BK0_IO9
-
4N
BK0_IO5
-
2N
E2
BK0_IO10
HSI0A_SINP
5P
BK0_IO6
HSI0A_SINP
3P
-
GND (Bank 0)
-
-
-
-
-
E1
BK0_IO11
HSI0A_SINN
5N
BK0_IO7
HSI0A_SINN
3N
G6
BK0_IO12
VREF0
6P
BK0_IO9
VREF0
4N
G5
BK0_IO13
-
6N
BK0_IO8
-
4P
F1
BK0_IO14
HSI0B_SOUTP
7P
NC
-
-
F2
BK0_IO15
HSI0B_SOUTN
7N
NC
-
-
G4
BK0_IO16
-
8P
NC
-
-
G3
BK0_IO17
-
8N
NC
-
-
G2
BK0_IO18
HSI0B_SINP
9P
NC
-
-
-
GND (Bank 0)
-
-
-
-
-
G1
BK0_IO19
HSI0B_SINN
9N
NC
-
-
H3
BK0_IO20
-
10P
NC
-
-
H4
BK0_IO21
-
10N
NC
-
-
H1
BK0_IO22
HSI1A_SOUTP
11P
NC
-
-
H2
BK0_IO23
HSI1A_SOUTN
11N
NC
-
-
J7
BK0_IO24
-
12P
NC
-
-
J6
BK0_IO25
-
12N
NC
-
-
J1
BK0_IO26
HSI1A_SINP
13P
NC
-
-
-
GND (Bank 0)
-
-
-
-
-
J2
BK0_IO27
HSI1A_SINN
13N
NC
-
-
J4
BK0_IO28
-
14P
NC
-
-
J5
BK0_IO29
-
14N
NC
-
-
K1
BK0_IO30
HSI1B_SOUTP
15P
BK0_IO10
HSI0B_SOUTP
5P
-
-
-
-
GND (Bank 0)
-
-
K2
BK0_IO31
HSI1B_SOUTN
15N
BK0_IO11
HSI0B_SOUTN
5N
K5
BK0_IO32
-
16P
BK0_IO12
-
6P
K4
BK0_IO33
-
16N
BK0_IO13
-
6N
L1
BK0_IO34
HSI1B_SINP
17P
BK0_IO14
HSI0B_SINP
7P
-
GND (Bank 0)
-
-
-
-
-
74
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
L2
BK0_IO35
HSI1B_SINN
17N
BK0_IO15
HSI0B_SINN
7N
L6
BK0_IO36
-
18P
BK0_IO16
-
8P
L5
BK0_IO37
-
18N
BK0_IO17
-
8N
M1
BK0_IO38
HSI2A_SOUTP
19P
BK0_IO18
HSI1A_SOUTP
9P
-
-
-
-
GND (Bank 0)
-
-
M2
BK0_IO39
HSI2A_SOUTN
19N
BK0_IO19
HSI1A_SOUTN
9N
L3
BK0_IO40
-
20P
BK0_IO20
-
10P
L4
BK0_IO41
-
20N
BK0_IO21
-
10N
M6
BK0_IO42
HSI2A_SINP
21P
BK0_IO22
HSI1A_SINP
11P
-
GND (Bank 0)
-
-
-
-
-
M5
BK0_IO43
HSI2A_SINN
21N
BK0_IO23
HSI1A_SINN
11N
M4
BK0_IO44
-
22P
BK0_IO24
-
12P
M3
BK0_IO45
-
22N
BK0_IO25
-
12N
N1
BK0_IO46
HSI2B_SOUTP
23P
BK0_IO26
HSI1B_SOUTP
13P
-
-
-
-
GND (Bank 0)
-
-
N2
BK0_IO47
HSI2B_SOUTN
23N
BK0_IO27
HSI1B_SOUTN
13N
N7
BK0_IO48
-
24P
BK0_IO28
-
14P
N6
BK0_IO49
-
24N
BK0_IO29
-
14N
P1
BK0_IO50
HSI2B_SINP
25P
BK0_IO30
HSI1B_SINP
15P
-
GND (Bank 0)
-
-
-
-
-
P2
BK0_IO51
HSI2B_SINN
25N
BK0_IO31
HSI1B_SINN
15N
N3
BK0_IO52
-
26P
BK0_IO32
-
16P
N4
BK0_IO53
-
26N
BK0_IO33
-
16N
P6
BK0_IO54
PLL_RST0
27P
BK0_IO38
PLL_RST0
19P
P5
BK0_IO55
PLL_RST1
27N
BK0_IO35
PLL_RST1
17N
P3
BK0_IO56
-
28P
BK0_IO36
-
18P
P4
BK0_IO57
-
28N
BK0_IO39
-
19N
R7
BK0_IO58
PLL_FBK0
29P
BK0_IO34
PLL_FBK0
17P
-
GND (Bank 0)
-
-
GND (Bank 0)
-
-
R6
BK0_IO59
PLL_FBK1
29N
BK0_IO37
PLL_FBK1
18N
R1
BK0_IO60
CLK_OUT0
30P
BK0_IO40
CLK_OUT0
20P
-
-
-
-
GND (Bank 0)
-
-
R2
BK0_IO61
CLK_OUT1
30N
BK0_IO41
CLK_OUT1
20N
-
GND (Bank 0)
-
-
-
-
-
R3
GCLK0
-
LVDCCLK0
GCLK0
-
LVDSCLK0
R4
GCLK1
-
LVDSCLK0
GCLK1
-
LVDSCLK0
R5
VCCP0
-
-
VCCP0
-
-
T3
GNDP0
-
-
GNDP0
-
-
T4
GCLK2
-
LVDSCLK1
GCLK2
-
LVDSCLK1
T5
GCLK3
-
LVDSCLK1
GCLK3
-
LVDSCLK1
-
GND (Bank 1)
-
-
-
-
-
T2
BK1_IO0
CLK_OUT2
31P
BK1_IO0
CLK_OUT2
21P
75
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
-
-
-
-
GND (Bank 1)
-
-
T1
BK1_IO1
CLK_OUT3
31N
BK1_IO1
CLK_OUT3
21N
U2
BK1_IO2
SS_CLKOUT0P
32P
BK1_IO2
SS_CLKOUT0P
22P
-
GND (Bank 1)
-
-
-
-
-
U1
BK1_IO3
SS_CLKOUT0N
32N
BK1_IO3
SS_CLKOUT0N
22N
U3
BK1_IO4
PLL_FBK2
33P
BK1_IO4
PLL_FBK2
23P
U4
BK1_IO5
PLL_FBK3
33N
BK1_IO5
PLL_FBK3
23N
V1
BK1_IO6
SS_CLKIN0P
34P
BK1_IO10
SS_CLKIN0P
26P
V2
BK1_IO7
SS_CLKIN0N
34N
BK1_IO11
SS_CLKIN0N
26N
U5
BK1_IO8
-
35P
BK1_IO12
-
27P
U6
BK1_IO9
-
35N
BK1_IO13
-
27N
V4
BK1_IO10
-
36P
BK1_IO6
-
24P
-
GND (Bank 1)
-
-
GND (Bank 1)
-
-
V3
BK1_IO11
-
36N
BK1_IO7
-
24N
V6
BK1_IO12
PLL_RST2
37P
BK1_IO20
PLL_RST2
31P
V7
BK1_IO13
PLL_RST3
37N
BK1_IO21
PLL_RST3
31N
W1
BK1_IO14
-
38P
BK1_IO8
-
25P
W2
BK1_IO15
-
38N
BK1_IO9
-
25N
W3
BK1_IO16
-
39P
BK1_IO14
-
28P
-
-
-
-
GND (Bank 1)
-
-
W4
BK1_IO17
-
39N
BK1_IO15
-
28N
W5
BK1_IO18
-
40P
BK1_IO16
-
29P
-
GND (Bank 1)
-
-
-
-
-
W6
BK1_IO19
-
40N
BK1_IO17
-
29N
Y6
BK1_IO20
-
41P
NC
-
-
Y5
BK1_IO21
-
41N
NC
-
-
Y4
BK1_IO22
-
42P
NC
-
-
Y3
BK1_IO23
-
42N
NC
-
-
AA5
BK1_IO24
-
43P
NC
-
-
AA4
BK1_IO25
-
43N
NC
-
-
Y2
BK1_IO26
HSI3A_SOUTP
44P
BK1_IO18
HSI2A_SOUTP
30P
-
GND (Bank 1)
-
-
-
-
-
Y1
BK1_IO27
HSI3A_SOUTN
44N
BK1_IO19
HSI2A_SOUTN
30N
AB7
BK1_IO28
-
45P
NC
-
-
AB6
BK1_IO29
-
45N
NC
-
-
AA2
BK1_IO30
HSI3A_SINP
46P
BK1_IO22
HSI2A_SINP
32P
-
-
-
-
GND (Bank 1)
-
-
AA1
BK1_IO31
HSI3A_SINN
46N
BK1_IO23
HSI2A_SINN
32N
AB5
BK1_IO32
-
47P
NC
-
-
AB4
BK1_IO33
-
47N
NC
-
-
AB2
BK1_IO34
HSI3B_SOUTP
48P
NC
-
-
-
GND (Bank 1)
-
-
-
-
-
76
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AB1
BK1_IO35
HSI3B_SOUTN
48N
NC
-
-
AC6
BK1_IO36
-
49P
NC
-
-
AC5
BK1_IO37
-
49N
NC
-
-
AC2
BK1_IO38
HSI3B_SINP
50P
NC
-
-
AC1
BK1_IO39
HSI3B_SINN
50N
NC
-
-
AC4
BK1_IO40
-
51P
NC
-
-
AC3
BK1_IO41
-
51N
NC
-
-
AD2
BK1_IO42
HSI4A_SOUTP
52P
NC
-
-
-
GND (Bank 1)
-
-
-
-
-
AD1
BK1_IO43
HSI4A_SOUTN
52N
NC
-
-
AD3
BK1_IO44
-
53P
BK1_IO32
-
37P
AD4
BK1_IO45
-
53N
BK1_IO33
-
37N
AE2
BK1_IO46
HSI4A_SINP
54P
BK1_IO34
-
38P
AE1
BK1_IO47
HSI4A_SINN
54N
BK1_IO35
-
38N
AD5
BK1_IO48
-
55P
BK1_IO25
-
33N
AD6
BK1_IO49
VREF1
55N
BK1_IO24
VREF1
33P
AF2
BK1_IO50
HSI4B_SOUTP
56P
BK1_IO26
HSI2B_SOUTP
34P
-
GND (Bank 1)
-
-
-
-
-
AF1
BK1_IO51
HSI4B_SOUTN
56N
BK1_IO27
HSI2B_SOUTN
34N
AE3
BK1_IO52
-
57P
BK1_IO28
-
35P
AE4
BK1_IO53
-
57N
BK1_IO29
-
35N
AG1
BK1_IO54
HSI4B_SINP
58P
BK1_IO30
HSI2B_SINP
36P
-
-
-
-
GND (Bank 1)
-
-
AG2
BK1_IO55
HSI4B_SINN
58N
BK1_IO31
HSI2B_SINN
36N
AE5
BK1_IO56
-
59P
BK1_IO36
-
39P
AF4
BK1_IO57
-
59N
BK1_IO37
-
39N
AH1
BK1_IO58
-
60P
BK1_IO38
-
40P
-
GND (Bank 1)
-
-
GND (Bank 1)
-
-
AH2
BK1_IO59
-
60N
BK1_IO39
-
40N
AF3
BK1_IO60
-
61P
BK1_IO40
-
41P
AG3
BK1_IO61
-
61N
BK1_IO41
-
41N
AH4
TCK
-
-
TCK
-
-
AJ3
TMS
-
-
TMS
-
-
AK3
TOE
-
-
TOE
-
-
AG5
BK2_IO0
-
62P
BK2_IO0
-
42P
AH5
BK2_IO1
-
62N
BK2_IO1
-
42N
AJ4
BK2_IO2
-
63P
BK2_IO2
-
43P
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
AK4
BK2_IO3
-
63N
BK2_IO3
-
43N
AG6
BK2_IO4
-
64P
BK2_IO4
-
44P
AH6
BK2_IO5
-
64N
BK2_IO5
-
44N
AJ5
BK2_IO6
-
65P
BK2_IO6
-
45P
77
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AK5
BK2_IO7
-
65N
BK2_IO7
-
45N
AE7
BK2_IO8
-
66P
BK2_IO8
-
46P
AF7
BK2_IO9
-
66N
BK2_IO9
-
46N
AG7
BK2_IO10
-
67P
BK2_IO10
-
47P
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
AH7
BK2_IO11
-
67N
BK2_IO11
-
47N
AE8
BK2_IO12
VREF2
68P
BK2_IO21
VREF2
52N
AF8
BK2_IO13
-
68N
BK2_IO20
-
52P
AJ6
BK2_IO14
-
69P
BK2_IO12
-
48P
AK6
BK2_IO15
-
69N
BK2_IO13
-
48N
AG8
BK2_IO16
-
70P
BK2_IO14
-
49P
AH8
BK2_IO17
-
70N
BK2_IO15
-
49N
AJ7
BK2_IO18
-
71P
BK2_IO16
-
50P
-
GND (Bank 2)
-
-
-
-
-
AK7
BK2_IO19
-
71N
BK2_IO17
-
50N
AF9
BK2_IO20
-
72P
BK2_IO18
-
51P
-
-
-
-
GND (Bank 2)
-
-
AG9
BK2_IO21
-
72N
BK2_IO19
-
51N
AJ8
BK2_IO22
-
73P
NC
-
-
AK8
BK2_IO23
-
73N
NC
-
-
AD10
BK2_IO24
-
74P
NC
-
-
AE10
BK2_IO25
-
74N
NC
-
-
AJ9
BK2_IO26
-
75P
NC
-
-
-
GND (Bank 2)
-
-
-
-
-
AK9
BK2_IO27
-
75N
NC
-
-
AF10
BK2_IO28
-
76P
NC
-
-
AG10
BK2_IO29
-
76N
NC
-
-
AK10
BK2_IO30
-
77P
NC
-
-
AJ10
BK2_IO31
-
77N
NC
-
-
AE11
BK2_IO32
-
78P
NC
-
-
AF11
BK2_IO33
-
78N
NC
-
-
AG11
BK2_IO34
-
79P
NC
-
-
-
GND (Bank 2)
-
-
-
-
-
AH11
BK2_IO35
-
79N
NC
-
-
AE12
BK2_IO36
-
80P
NC
-
-
AF12
BK2_IO37
-
80N
NC
-
-
AJ11
BK2_IO38
-
81P
NC
-
-
AK11
BK2_IO39
-
81N
NC
-
-
AG12
BK2_IO40
-
82P
NC
-
-
AH12
BK2_IO41
-
82N
NC
-
-
AK12
BK2_IO42
-
83P
BK2_IO22
-
53P
-
GND (Bank 2)
-
-
-
-
-
78
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AJ12
BK2_IO43
-
83N
BK2_IO23
-
53N
AD13
BK2_IO44
-
84P
BK2_IO24
-
54P
AE13
BK2_IO45
-
84N
BK2_IO25
-
54N
AK13
BK2_IO46
-
85P
BK2_IO26
-
55P
-
-
-
-
GND (Bank 2)
-
-
AJ13
BK2_IO47
-
85N
BK2_IO27
-
55N
AG13
BK2_IO48
-
86P
BK2_IO28
-
56P
AH13
BK2_IO49
-
86N
BK2_IO29
-
56N
AE14
BK2_IO50
-
87P
BK2_IO30
-
57P
-
GND (Bank 2)
-
-
-
-
-
AF14
BK2_IO51
-
87N
BK2_IO31
-
57N
AG14
BK2_IO52
-
88P
BK2_IO32
-
58P
AH14
BK2_IO53
-
88N
BK2_IO33
-
58N
AJ14
BK2_IO54
-
89P
BK2_IO34
-
59P
-
-
-
-
GND (Bank 2)
-
-
AK14
BK2_IO55
-
89N
BK2_IO35
-
59N
AE15
BK2_IO56
-
90P
BK2_IO36
-
60P
AF15
BK2_IO57
-
90N
BK2_IO37
-
60N
AG15
BK2_IO58
-
91P
BK2_IO38
-
61P
-
GND (Bank 2)
-
-
-
-
-
AH15
BK2_IO59
-
91N
BK2_IO39
-
61N
AJ15
BK2_IO60
-
92P
BK2_IO40
-
62P
AK15
BK2_IO61
-
92N
BK2_IO41
-
62N
-
GND (Bank 2)
-
-
GND (Bank 2)
-
-
-
GND (Bank 3)
-
-
GND (Bank 3)
-
-
AK16
BK3_IO0
-
93P
BK3_IO0
-
63P
AJ16
BK3_IO1
-
93N
BK3_IO1
-
63N
AH16
BK3_IO2
-
94P
BK3_IO2
-
64P
-
GND (Bank 3)
-
-
-
-
-
AG16
BK3_IO3
-
94N
BK3_IO3
-
64N
AF16
BK3_IO4
-
95P
BK3_IO4
-
65P
AE16
BK3_IO5
-
95N
BK3_IO5
-
65N
AK17
BK3_IO6
-
96P
BK3_IO6
-
66P
-
-
-
-
GND (Bank 3)
-
-
AJ17
BK3_IO7
-
96N
BK3_IO7
-
66N
AH17
BK3_IO8
-
97P
BK3_IO8
-
67P
AG17
BK3_IO9
-
97N
BK3_IO9
-
67N
AF17
BK3_IO10
-
98P
BK3_IO10
-
68P
-
GND (Bank 3)
-
-
-
-
-
AE17
BK3_IO11
-
98N
BK3_IO11
-
68N
AH18
BK3_IO12
-
99P
BK3_IO12
-
69P
AG18
BK3_IO13
-
99N
BK3_IO13
-
69N
79
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AJ18
BK3_IO14
-
100P
BK3_IO14
-
70P
-
-
-
-
GND (Bank 3)
-
-
AK18
BK3_IO15
-
100N
BK3_IO15
-
70N
AE18
BK3_IO16
-
101P
BK3_IO16
-
71P
AD18
BK3_IO17
-
101N
BK3_IO17
-
71N
AJ19
BK3_IO18
-
102P
BK3_IO18
-
72P
-
GND (Bank 3)
-
-
-
-
-
AK19
BK3_IO19
-
102N
BK3_IO19
-
72N
AH19
BK3_IO20
-
103P
NC
-
-
AG19
BK3_IO21
-
103N
NC
-
-
AK20
BK3_IO22
-
104P
NC
-
-
AJ20
BK3_IO23
-
104N
NC
-
-
AF19
BK3_IO24
-
105P
NC
-
-
AE19
BK3_IO25
-
105N
NC
-
-
AH20
BK3_IO26
-
106P
NC
-
-
-
GND (Bank 3)
-
-
-
-
-
AG20
BK3_IO27
-
106N
NC
-
-
AF20
BK3_IO28
-
107P
NC
-
-
AE20
BK3_IO29
-
107N
NC
-
-
AJ21
BK3_IO30
-
108P
NC
-
-
AK21
BK3_IO31
-
108N
NC
-
-
AG21
BK3_IO32
-
109P
NC
-
-
AF21
BK3_IO33
-
109N
NC
-
-
AK22
BK3_IO34
-
110P
NC
-
-
-
GND (Bank 3)
-
-
-
-
-
AJ22
BK3_IO35
-
110N
NC
-
-
AE21
BK3_IO36
-
111P
NC
-
-
AD21
BK3_IO37
-
111N
NC
-
-
AG22
BK3_IO38
-
112P
NC
-
-
AF22
BK3_IO39
-
112N
NC
-
-
AG23
BK3_IO40
-
113P
BK3_IO22
-
74P
-
-
-
-
GND (Bank 3)
-
-
AH23
BK3_IO41
-
113N
BK3_IO23
-
74N
AJ23
BK3_IO42
-
114P
BK3_IO24
-
75P
-
GND (Bank 3)
-
-
-
-
-
AK23
BK3_IO43
-
114N
BK3_IO25
-
75N
AF23
BK3_IO44
-
115P
BK3_IO26
-
76P
AE23
BK3_IO45
-
115N
BK3_IO27
-
76N
AJ24
BK3_IO46
-
116P
BK3_IO28
-
77P
AK24
BK3_IO47
-
116N
BK3_IO29
-
77N
AH24
BK3_IO48
-
117P
BK3_IO21
-
73N
AG24
BK3_IO49
VREF3
117N
BK3_IO20
VREF3
73P
80
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AJ25
BK3_IO50
-
118P
BK3_IO30
-
78P
-
GND (Bank 3)
-
-
GND (Bank 3)
-
-
AK25
BK3_IO51
-
118N
BK3_IO31
-
78N
AF24
BK3_IO52
-
119P
BK3_IO32
-
79P
AE24
BK3_IO53
-
119N
BK3_IO33
-
79N
AK26
BK3_IO54
-
120P
BK3_IO34
-
80P
AJ26
BK3_IO55
-
120N
BK3_IO35
-
80N
AH25
BK3_IO56
-
121P
BK3_IO36
-
81P
AG25
BK3_IO57
-
121N
BK3_IO37
-
81N
AK27
BK3_IO58
-
122P
BK3_IO38
-
82P
-
GND (Bank 3)
-
-
GND (Bank 3)
-
-
AJ27
BK3_IO59
-
122N
BK3_IO39
-
82N
AG26
BK3_IO60
-
123P
BK3_IO40
-
83P
AH26
BK3_IO61
-
123N
BK3_IO41
-
83N
AK28
RESET
-
-
RESET
-
-
AJ28
DXP
-
-
DXP
-
-
AH27
DXN
-
-
DXN
-
-
AG28
BK4_IO0
-
124P
BK4_IO0
-
84P
AF27
BK4_IO1
-
124N
BK4_IO1
-
84N
AF28
BK4_IO2
-
125P
BK4_IO2
-
85P
-
GND (Bank 4)
-
-
GND (Bank 4)
-
-
AE26
BK4_IO3
-
125N
BK4_IO3
-
85N
AE27
BK4_IO4
-
126P
BK4_IO4
-
86P
AE28
BK4_IO5
-
126N
BK4_IO5
-
86N
AH30
BK4_IO6
HSI5A_SINP
127P
BK4_IO10
HSI3A_SINP
89P
-
-
-
-
GND (Bank 4)
-
-
AH29
BK4_IO7
HSI5A_SINN
127N
BK4_IO11
HSI3A_SINN
89N
AD25
BK4_IO8
-
128P
BK4_IO12
-
90P
AD26
BK4_IO9
-
128N
BK4_IO13
-
90N
AG29
BK4_IO10
HSI5A_SOUTP
129P
BK4_IO14
HSI3A_SOUTP
91P
-
GND (Bank 4)
-
-
-
-
-
AG30
BK4_IO11
HSI5A_SOUTN
129N
BK4_IO15
HSI3A_SOUTN
91N
AD27
BK4_IO12
VREF4
130P
BK4_IO17
VREF4
92N
AD28
BK4_IO13
-
130N
BK4_IO16
-
92P
AF29
BK4_IO14
HSI5B_SINP
131P
BK4_IO6
-
87P
AF30
BK4_IO15
HSI5B_SINN
131N
BK4_IO7
-
87N
AC25
BK4_IO16
-
132P
BK4_IO8
-
88P
AC26
BK4_IO17
-
132N
BK4_IO9
-
88N
AE29
BK4_IO18
HSI5B_SOUTP
133P
NC
-
-
-
GND (Bank 4)
-
-
-
-
-
AE30
BK4_IO19
HSI5B_SOUTN
133N
NC
-
-
AC28
BK4_IO20
-
134P
NC
-
-
81
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
AC27
BK4_IO21
-
134N
NC
-
-
AD29
BK4_IO22
HSI6A_SINP
135P
NC
-
-
AD30
BK4_IO23
HSI6A_SINN
135N
NC
-
-
AB24
BK4_IO24
-
136P
NC
-
-
AB25
BK4_IO25
-
136N
NC
-
-
AC29
BK4_IO26
HSI6A_SOUTP
137P
NC
-
-
-
GND (Bank 4)
-
-
-
-
-
AC30
BK4_IO27
HSI6A_SOUTN
137N
NC
-
-
AB27
BK4_IO28
-
138P
NC
-
-
AB26
BK4_IO29
-
138N
NC
-
-
AB30
BK4_IO30
HSI6B_SINP
139P
BK4_IO18
HSI3B_SINP
93P
-
-
-
-
GND (Bank 4)
-
-
AB29
BK4_IO31
HSI6B_SINN
139N
BK4_IO19
HSI3B_SINN
93N
AA26
BK4_IO32
-
140P
NC
-
-
AA27
BK4_IO33
-
140N
NC
-
-
AA30
BK4_IO34
HSI6B_SOUTP
141P
BK4_IO22
HSI3B_SOUTP
95P
-
GND (Bank 4)
-
-
-
-
-
AA29
BK4_IO35
HSI6B_SOUTN
141N
BK4_IO23
HSI3B_SOUTN
95N
Y25
BK4_IO36
-
142P
NC
-
-
Y26
BK4_IO37
-
142N
NC
-
-
Y28
BK4_IO38
-
143P
NC
-
-
Y27
BK4_IO39
-
143N
NC
-
-
W25
BK4_IO40
-
144P
NC
-
-
W26
BK4_IO41
-
144N
NC
-
-
W27
BK4_IO42
-
145P
BK4_IO24
-
96P
-
GND (Bank 4)
-
-
-
-
-
W28
BK4_IO43
-
145N
BK4_IO25
-
96N
V24
BK4_IO44
-
146P
BK4_IO26
-
97P
-
-
-
-
GND (Bank 4)
-
-
V25
BK4_IO45
-
146N
BK4_IO27
-
97N
Y29
BK4_IO46
-
147P
BK4_IO32
-
100P
Y30
BK4_IO47
-
147N
BK4_IO33
-
100N
V27
BK4_IO48
PLL_RST4
148P
BK4_IO20
PLL_RST4
94P
V28
BK4_IO49
PLL_RST5
148N
BK4_IO21
PLL_RST5
94N
W29
BK4_IO50
-
149P
BK4_IO34
-
101P
-
GND (Bank 4)
-
-
GND (Bank 4)
-
-
W30
BK4_IO51
-
149N
BK4_IO35
-
101N
U25
BK4_IO52
-
150P
BK4_IO28
-
98P
U26
BK4_IO53
-
150N
BK4_IO29
-
98N
V29
BK4_IO54
SS_CLKIN1P
151P
BK4_IO30
SS_CLKIN1P
99P
V30
BK4_IO55
SS_CLKIN1N
151N
BK4_IO31
SS_CLKIN1N
99N
U28
BK4_IO56
PLL_FBK4
152P
BK4_IO36
PLL_FBK4
102P
82
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
U27
BK4_IO57
PLL_FBK5
152N
BK4_IO37
PLL_FBK5
102N
U29
BK4_IO58
SS_CLKOUT1P
153P
BK4_IO38
SS_CLKOUT1P
103P
-
GND (Bank 4)
--
-
-
-
-
U30
BK4_IO59
SS_CLKOUT1N
153N
BK4_IO39
SS_CLKOUT1N
103N
T30
BK4_IO60
CLK_OUT4
154P
BK4_IO40
CLK_OUT4
104P
-
-
-
-
GND (Bank 4)
-
-
T29
BK4_IO61
CLK_OUT5
154N
BK4_IO41
CLK_OUT5
104N
-
GND (Bank 4)
-
-
-
-
-
T28
GCLK4
-
LVDSCLK2
GCLK4
-
LVDSCLK2
T27
GCLK5
-
LVDSCLK2
GCLK5
-
LVDSCLK2
T26
VCCP1
-
-
VCCP1
-
-
R28
GNDP1
-
-
GNDP1
-
-
R27
GCLK6
-
LVDSCLK3
GCLK6
-
LVDSCLK3
LVDSCLK3
R26
GCLK7
-
LVDSCLK3
GCLK7
-
-
GND (Bank 5)
-
-
-
-
-
R29
BK5_IO0
CLK_OUT6
155P
BK5_IO0
CLK_OUT6
105P
-
-
-
-
GND (Bank 5)
-
-
R30
BK5_IO1
CLK_OUT7
155N
BK5_IO1
CLK_OUT7
105N
P30
BK5_IO2
PLL_FBK6
156P
BK5_IO4
PLL_FBK6
107P
-
GND (Bank 5)
-
-
GND (Bank 5)
-
-
P29
BK5_IO3
PLL_FBK7
156N
BK5_IO7
PLL_FBK7
108N
P27
BK5_IO4
-
157P
BK5_IO2
-
106P
P28
BK5_IO5
-
157N
BK5_IO5
-
107N
P26
BK5_IO6
PLL_RST6
158P
BK5_IO6
PLL_RST6
108P
P25
BK5_IO7
PLL_RST7
158N
BK5_IO3
PLL_RST7
106N
N27
BK5_IO8
-
159P
BK5_IO8
-
109P
N28
BK5_IO9
-
159N
BK5_IO9
-
109N
N29
BK5_IO10
HSI7A_SINP
160P
BK5_IO10
HSI4A_SINP
110P
-
GND (Bank 5)
-
-
-
-
-
N30
BK5_IO11
HSI7A_SINN
160N
BK5_IO11
HSI4A_SINN
110N
N25
BK5_IO12
-
161P
BK5_IO12
-
111P
N24
BK5_IO13
-
161N
BK5_IO13
-
111N
M29
BK5_IO14
HSI7A_SOUTP
162P
BK5_IO14
HSI4A_SOUTP
112P
-
-
-
-
GND (Bank 5)
-
-
M30
BK5_IO15
HSI7A_SOUTN
162N
BK5_IO15
HSI4A_SOUTN
112N
M28
BK5_IO16
-
163P
BK5_IO16
-
113P
M27
BK5_IO17
-
163N
BK5_IO17
-
113N
L30
BK5_IO18
HSI7B_SINP
164P
BK5_IO18
HSI4B_SINP
114P
-
GND (Bank 5)
-
-
-
-
-
L29
BK5_IO19
HSI7B_SINN
164N
BK5_IO19
HSI4B_SINN
114N
M26
BK5_IO20
-
165P
BK5_IO20
-
115P
M25
BK5_IO21
-
165N
BK5_IO21
-
115N
83
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
K30
BK5_IO22
HSI7B_SOUTP
166P
BK5_IO22
HSI4B_SOUTP
116P
-
-
-
-
GND (Bank 5)
-
-
K29
BK5_IO23
HSI7B_SOUTN
166N
BK5_IO23
HSI4B_SOUTN
116N
L28
BK5_IO24
-
167P
BK5_IO24
-
117P
L27
BK5_IO25
-
167N
BK5_IO25
-
117N
L26
BK5_IO26
HSI8A_SINP
168P
BK5_IO26
HSI5A_SINP
118P
-
GND (Bank 5)
-
-
-
-
-
L25
BK5_IO27
HSI8A_SINN
168N
BK5_IO27
HSI5A_SINN
118N
K27
BK5_IO28
-
169P
BK5_IO28
-
119P
K26
BK5_IO29
-
169N
BK5_IO29
-
119N
J30
BK5_IO30
HSI8A_SOUTP
170P
BK5_IO30
HSI5A_SOUTP
120P
-
-
-
-
GND (Bank 5)
-
-
J29
BK5_IO31
HSI8A_SOUTN
170N
BK5_IO31
HSI5A_SOUTN
120N
J26
BK5_IO32
-
171P
NC
-
-
J27
BK5_IO33
-
171N
NC
-
-
H30
BK5_IO34
HSI8B_SINP
172P
NC
-
-
-
GND (Bank 5)
-
-
-
-
-
H29
BK5_IO35
HSI8B_SINN
172N
NC
-
-
J25
BK5_IO36
-
173P
NC
-
-
J24
BK5_IO37
-
173N
NC
-
-
G30
BK5_IO38
HSI8B_SOUTP
174P
NC
-
-
G29
BK5_IO39
HSI8B_SOUTN
174N
NC
-
-
H27
BK5_IO40
-
175P
NC
-
-
H28
BK5_IO41
-
175N
NC
-
-
F30
BK5_IO42
HSI9A_SINP
176P
NC
-
-
-
GND (Bank 5)
-
-
-
-
-
F29
BK5_IO43
HSI9A_SINN
176N
NC
-
-
G27
BK5_IO44
-
177P
NC
-
-
G28
BK5_IO45
-
177N
NC
-
-
E30
BK5_IO46
HSI9A_SOUTP
178P
NC
-
-
E29
BK5_IO47
HSI9A_SOUTN
178N
NC
-
-
H26
BK5_IO48
-
179P
BK5_IO33
-
121N
H25
BK5_IO49
VREF5
179N
BK5_IO32
VREF5
121P
D30
BK5_IO50
HSI9B_SINP
180P
BK5_IO34
HSI5B_SINP
122P
-
GND (Bank 5)
-
-
-
-
-
D29
BK5_IO51
HSI9B_SINN
180N
BK5_IO35
HSI5B_SINN
122N
F28
BK5_IO52
-
181P
BK5_IO36
-
123P
F27
BK5_IO53
-
181N
BK5_IO37
-
123N
C30
BK5_IO54
HSI9B_SOUTP
182P
BK5_IO38
HSI5B_SOUTP
124P
-
-
-
-
GND (Bank 5)
-
-
C29
BK5_IO55
HSI9B_SOUTN
182N
BK5_IO39
HSI5B_SOUTN
124N
G26
BK5_IO56
-
183P
NC
-
-
84
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
G25
BK5_IO57
-
183N
NC
-
-
F26
BK5_IO58
-
184P
NC
-
-
-
GND (Bank 5)
-
-
-
-
-
E28
BK5_IO59
-
184N
NC
-
-
E27
BK5_IO60
-
185P
BK5_IO40
-
125P
D28
BK5_IO61
-
185N
BK5_IO41
-
125N
C27
CFG0
-
-
CFG0
-
-
B28
DONE
-
-
DONE
-
-
A28
PROGRAMb
-
-
PROGRAMb
-
-
D26
BK6_IO0
INITb
186P
BK6_IO0
INITb
126P
C26
BK6_IO1
CCLK
186N
BK6_IO1
CCLK
126N
B27
BK6_IO2
-
187P
BK6_IO2
-
127P
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
A27
BK6_IO3
-
187N
BK6_IO3
-
127N
D25
BK6_IO4
CSb
188P
BK6_IO4
CSb
128P
C25
BK6_IO5
Read
188N
BK6_IO5
READ
128N
B26
BK6_IO6
-
189P
BK6_IO6
-
129P
A26
BK6_IO7
-
189N
BK6_IO7
-
129N
F24
BK6_IO8
-
190P
BK6_IO8
-
130P
E24
BK6_IO9
-
190N
BK6_IO9
-
130N
A25
BK6_IO10
-
191P
BK6_IO10
-
131P
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
B25
BK6_IO11
-
191N
BK6_IO11
-
131N
D24
BK6_IO12
VREF6
192P
BK6_IO21
VREF6
136N
C24
BK6_IO13
-
192N
BK6_IO20
-
136P
A24
BK6_IO14
-
193P
BK6_IO12
-
132P
B24
BK6_IO15
-
193N
BK6_IO13
-
132N
F23
BK6_IO16
-
194P
BK6_IO14
-
133P
E23
BK6_IO17
-
194N
BK6_IO15
-
133N
A23
BK6_IO18
-
195P
BK6_IO16
-
134P
-
GND (Bank 6)
-
-
-
-
-
B23
BK6_IO19
-
195N
BK6_IO17
-
134N
C23
BK6_IO20
-
196P
NC
-
-
D23
BK6_IO21
-
196N
NC
-
-
E22
BK6_IO22
-
197P
NC
-
-
D22
BK6_IO23
-
197N
NC
-
-
G21
BK6_IO24
-
198P
NC
-
-
F21
BK6_IO25
-
198N
NC
-
-
B22
BK6_IO26
-
199P
NC
-
-
-
GND (Bank 6)
-
-
-
-
-
A22
BK6_IO27
-
199N
NC
-
-
E21
BK6_IO28
-
200P
NC
-
-
85
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
D21
BK6_IO29
-
200N
NC
-
-
A21
BK6_IO30
-
201P
NC
-
-
B21
BK6_IO31
-
201N
NC
-
-
F20
BK6_IO32
DATA7
202P
BK6_IO18
DATA7
135P
-
-
-
-
GND (Bank 6)
-
-
E20
BK6_IO33
DATA6
202N
BK6_IO19
DATA6
135N
D20
BK6_IO34
-
203P
NC
-
-
-
GND (Bank 6)
-
C20
BK6_IO35
-
-
-
-
203N
NC
-
-
F19
BK6_IO36
DATA5
204P
BK6_IO22
DATA5
137P
E19
BK6_IO37
DATA4
204N
BK6_IO23
DATA4
137N
B20
BK6_IO38
-
205P
NC
-
-
A20
BK6_IO39
-
205N
NC
-
-
D19
BK6_IO40
-
206P
NC
-
-
C19
BK6_IO41
-
206N
NC
-
-
A19
BK6_IO42
-
207P
NC
-
-
-
GND (Bank 6)
-
-
-
-
-
B19
BK6_IO43
-
207N
NC
-
-
G18
BK6_IO44
-
208P
BK6_IO24
-
138P
F18
BK6_IO45
-
208N
BK6_IO25
-
138N
A18
BK6_IO46
-
209P
BK6_IO32
-
142P
B18
BK6_IO47
-
209N
BK6_IO33
-
142N
D18
BK6_IO48
-
210P
BK6_IO34
-
143P
-
-
-
-
GND (Bank 6)
-
-
C18
BK6_IO49
-
210N
BK6_IO35
-
143N
F17
BK6_IO50
DATA3
211P
BK6_IO26
DATA3
139P
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
E17
BK6_IO51
DATA2
211N
BK6_IO27
DATA2
139N
D17
BK6_IO52
-
212P
BK6_IO28
-
140P
C17
BK6_IO53
-
212N
BK6_IO29
-
140N
B17
BK6_IO54
DATA1
213P
BK6_IO30
DATA1
141P
A17
BK6_IO55
DATA0
213N
BK6_IO31
DATA0
141N
F16
BK6_IO56
-
214P
BK6_IO36
-
144P
E16
BK6_IO57
-
214N
BK6_IO37
-
144N
D16
BK6_IO58
-
215P
BK6_IO38
-
145P
-
GND (Bank 6)
-
-
-
-
-
C16
BK6_IO59
-
215N
BK6_IO39
-
145N
B16
BK6_IO60
-
216P
BK6_IO40
-
146P
A16
BK6_IO61
-
216N
BK6_IO41
-
146N
-
GND (Bank 6)
-
-
GND (Bank 6)
-
-
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
A15
BK7_IO0
-
217P
BK7_IO0
-
147P
86
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
B15
BK7_IO1
-
217N
BK7_IO1
-
147N
BK7_IO2
-
148P
C15
BK7_IO2
-
218P
-
GND (Bank 7)
-
-
D15
BK7_IO3
-
218N
E15
BK7_IO4
-
219P
-
-
BK7_IO3
-
148N
BK7_IO4
-
149P
F15
BK7_IO5
-
219N
BK7_IO5
-
149N
A14
BK7_IO6
-
220P
BK7_IO6
-
150P
-
-
-
-
GND (Bank 7)
-
-
B14
BK7_IO7
-
220N
BK7_IO7
-
150N
C14
BK7_IO8
-
221P
BK7_IO8
-
151P
D14
BK7_IO9
-
221N
BK7_IO9
-
151N
E14
BK7_IO10
-
222P
BK7_IO10
-
152P
-
GND (Bank 7)
-
-
-
-
-
F14
BK7_IO11
-
222N
BK7_IO11
-
152N
C13
BK7_IO12
-
223P
BK7_IO12
-
153P
D13
BK7_IO13
-
223N
BK7_IO13
-
153N
B13
BK7_IO14
-
224P
BK7_IO14
-
154P
-
-
-
-
GND (Bank 7)
-
-
A13
BK7_IO15
-
224N
BK7_IO15
-
154N
F13
BK7_IO16
-
225P
BK7_IO16
-
155P
G13
BK7_IO17
-
225N
BK7_IO17
-
155N
A12
BK7_IO18
-
226P
BK7_IO18
-
156P
-
GND (Bank 7)
-
-
-
-
-
B12
BK7_IO19
-
226N
BK7_IO19
-
156N
C12
BK7_IO20
-
227P
NC
-
-
D12
BK7_IO21
-
227N
NC
-
-
A11
BK7_IO22
-
228P
NC
-
-
B11
BK7_IO23
-
228N
NC
-
-
E12
BK7_IO24
-
229P
NC
-
-
F12
BK7_IO25
-
229N
NC
-
-
C11
BK7_IO26
-
230P
NC
-
-
-
GND (Bank 7)
-
-
-
-
-
D11
BK7_IO27
-
230N
NC
-
-
E11
BK7_IO28
-
231P
NC
-
-
F11
BK7_IO29
-
231N
NC
-
-
B10
BK7_IO30
-
232P
NC
-
-
A10
BK7_IO31
-
232N
NC
-
-
D10
BK7_IO32
-
233P
NC
-
-
E10
BK7_IO33
-
233N
NC
-
-
A9
BK7_IO34
-
234P
NC
-
-
-
GND (Bank 7)
-
-
-
-
-
B9
BK7_IO35
-
234N
NC
-
-
87
Lattice Semiconductor
ispXPGA Family Data Sheet
ispXPGA Logic Signal Connections: 900-Ball fpBGA (Continued)
LFX1200
LFX500
900 fpBGA
Ball
Signal Name
Second
Function
LVDS Pair/
Polarity
Signal Name
Second
Function
LVDS Pair/
Polarity
F10
BK7_IO36
-
235P
NC
-
-
G10
BK7_IO37
-
235N
NC
-
-
A8
BK7_IO38
-
236P
NC
-
-
B8
BK7_IO39
-
236N
NC
-
-
D9
BK7_IO40
-
237P
BK7_IO22
-
158P
-
-
-
-
GND (Bank 7)
-
-
E9
BK7_IO41
-
237N
BK7_IO23
-
158N
BK7_IO24
A7
BK7_IO42
-
238P
-
GND (Bank 7)
-
-
B7
BK7_IO43
-
238N
C8
BK7_IO44
-
239P
-
159P
-
-
BK7_IO25
-
159N
BK7_IO26
-
160P
D8
BK7_IO45
-
239N
BK7_IO27
-
160N
A6
BK7_IO46
-
240P
BK7_IO21
-
157N
B6
BK7_IO47
VREF7
240N
BK7_IO20
VREF7
157P
E8
BK7_IO48
-
241P
BK7_IO28
-
161P
F8
BK7_IO49
-
241N
BK7_IO29
-
161N
C7
BK7_IO50
-
242P
BK7_IO30
-
162P
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
D7
BK7_IO51
-
242N
BK7_IO31
-
162N
E7
BK7_IO52
-
243P
BK7_IO32
-
163P
F7
BK7_IO53
-
243N
BK7_IO33
-
163N
A5
BK7_IO54
-
244P
BK7_IO34
-
164P
B5
BK7_IO55
-
244N
BK7_IO35
-
164N
C6
BK7_IO56
-
245P
BK7_IO36
-
165P
D6
BK7_IO57
-
245N
BK7_IO37
-
165N
D5
BK7_IO58
-
246P
BK7_IO38
-
166P
-
GND (Bank 7)
-
-
GND (Bank 7)
-
-
C5
BK7_IO59
-
246N
BK7_IO39
-
166N
B4
BK7_IO60
-
247P
BK7_IO40
-
167P
A4
BK7_IO61
-
247N
BK7_IO41
-
167N
A3
TDO
-
-
TDO
-
-
B3
VCCJ
-
-
VCCJ
-
-
C4
TDI
-
-
TDI
-
-
88
Lattice Semiconductor
ispXPGA Family Data Sheet
Part Number Description
LFX XXXX X – XX XXXXX X
Device Family
LFX
Grade
C = Commercial
I = Industrial
Gates
125 = 125K Gates
200 = 200K Gates
500 = 500K Gates
1200 = 1200K Gates
Package
F900 = 900-Ball fpBGA
Speed
4 = Fastest
3 = Slowest
Power Supply Voltage
B = 2.5/3.3V
C = 1.8V
Ordering Information
Commercial1
Part Number
Gates
Voltage
Speed Grade
Package
Balls
LFX1200B-04F900C
1200K
2.5/3.3
-4
fpBGA
900
LFX1200B-03F900C
1200K
2.5/3.3
-3
fpBGA
900
LFX1200C-04F900C
1200K
1.8
-4
fpBGA
900
LFX1200C-03F900C
1200K
1.8
-3
fpBGA
900
Speed Grade
Package
Balls
Industrial1
Part Number
Gates
Voltage
LFX1200B-03F900I
1200K
2.5/3.3
-3
fpBGA
900
LFX1200C-03F900I
1200K
1.8
-3
fpBGA
900
1. The ispXPGA family is dual-marked with both Commercial and Industrial grades. The Commercial speed grade is one speed grade faster
(i.e. LFX1200B-04FE900C) than the Industrial speed grade (i.e. LFX1200B-03FE900I).
For Further Information
In addition to this data sheet, the following Lattice technical notes may be helpful when designing with the ispXPGA
Family:
•
•
•
•
•
ispXPGA sysMEM Memory Design and Usage Guidelines (TN1028)
Lattice sysCLOCK PLL Design and Usage Guidelines (TN1003)
sysIO Usage Guidelines for Lattice Devices (TN1000)
ispXP Configuration Usage Guidelines (TN1026)
sysHSI Usage Guide (TN1020)
89