FAIRCHILD NC7WV07

Revised December 2004
NC7WV07
TinyLogic ULP-A Dual Buffer (Open Drain Output)
General Description
Features
The NC7WV07 is a dual buffer with open drain output from
Fairchild’s Ultra Low Power-A series of TinyLogic. ULP-A
is ideal for applications that require extreme high speed,
high drive and low power. This product is designed for a
wide low voltage operating range (0.9V to 3.6V VCC) and
applications that require more drive and speed than the
TinyLogic ULP series, but still offer best in class low power
operation.
The NC7WV07 is uniquely designed for optimized power
and speed, and is fabricated with an advanced CMOS
technology to achieve high-speed operation while maintaining low CMOS power dissipation.
■ 0.9V to 3.6V VCC supply operation
■ 3.6V overvoltage tolerant I/O’s at VCC from 0.9V to 3.6V
■ Extremely High Speed tPD
1.0 ns typ for 2.7V to 3.6V VCC
1.2 ns typ for 2.3V to 2.7V VCC
2.0 ns typ for 1.65V to 1.95V VCC
3.2 ns typ for 1.4V to 1.6V VCC
6.0 ns typ for 1.1V to 1.3V VCC
13.0 ns typ for 0.9V VCC
■ Power-Off high impedance inputs and outputs
■ High Static Drive (IOH/IOL)
±24 mA @ 3.00V VCC
±18 mA @ 2.30V VCC
±6 mA
@ 1.65V VCC
±4 mA
@ 1.4V VCC
±2 mA
@ 1.1V VCC
±0.1 mA @ 0.9V VCC
■ Uses patented Quiet Series noise/EMI reduction
circuitry
■ Ultra small MicroPak leadfree package
■ Ultra low dynamic power
Ordering Code:
Package
Product Code
Number
Top Mark
NC7WV07P6X
MAA06A
V07
6-Lead SC70, EIAJ SC88, 1.25mm Wide
3k Units on Tape and Reel
NC7WV07L6X
MAC06A
BC
6-Lead MicroPak, 1.0mm Wide
5k Units on Tape and Reel
Order Number
Package Description
Supplied As
Battery Life vs. VCC Supply Voltage
TinyLogic ULP and ULP-A with up to 50% less power consumption can
extend your battery life significantly.
Battery Life = (Vbattery *Ibattery*.9)/(Pdevice)/24hrs/day
Where, Pdevice = (ICC * VCC) + (CPD + C L) * VCC2 * f
Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and
derated 90% and device frequency at 10MHz, with CL = 15 pF load
TinyLogic is a registered trademark of Fairchild Semiconductor Corporation.
MicroPak and Quiet Series are trademarks of Fairchild Semiconductor Corporation.
© 2004 Fairchild Semiconductor Corporation
DS500860
www.fairchildsemi.com
NC7WV07 TinyLogic ULP-A Dual Buffer (Open Drain Output)
October 2003
NC7WV07
Logic Symbol
Connection Diagrams
IEEE/IEC
Pin Assignments for SC70
Pin Descriptions
(Top View)
Pin Names
Description
A1 , A2
Data Inputs
Y1 , Y2
Output
Pin One Orientation Diagram
Function Table
Y=A
Input
Output
A
Y
L
L
H
H
AAA represents Product Code Top Mark - see ordering code.
Note: Orientation of Top Mark determines Pin One location. Read the Top
Product Code Mark left to right, Pin One is the lower left pin (see diagram).
Pad Assignment for MicroPak
H = HIGH Logic Level
L = LOW Logic Level
(Top Thru View)
www.fairchildsemi.com
2
Supply Voltage (VCC)
−0.5V to +4.6V
DC Input Voltage (VIN)
−0.5V to +4.6V
Recommended Operating
Conditions (Note 3)
Supply Voltage
DC Output Voltage (VOUT)
0.9V to 3.6V
Input Voltage (VIN)
−0.5V to VCC +0.5V
HIGH or LOW State (Note 2)
VCC = 0V
−0.5V to +4.6V
DC Input Diode Current (IIK) VIN < 0V
0V to 3.6V
Output Voltage (VOUT)
±50 mA
DC Output Diode Current (IOK)
VCC = 0.0V
0V to 3.6V
HIGH or LOW State
0V to VCC
Output Current in IOH/IOL
VOUT < 0V
−50 mA
VCC = 3.0V to 3.6V
±24 mA
VOUT > VCC
+50 mA
VCC = 2.3V to 2.7V
±18 mA
± 50 mA
VCC = 1.65V to 1.95V
±6 mA
VCC = 1.4V to 1.6V
±4 mA
DC Output Source/Sink Current (IOH/IOL)
DC VCC or Ground Current per
± 50 mA
Supply Pin (ICC or Ground)
Storage Temperature Range (TSTG)
VCC = 1.1V to 1.3V
−65°C to +150 °C
±2 mA
VCC = 0.9V
±0.1 mA
−40°C to +85°C
Free Air Operating Temperature (TA)
Minimum Input Edge Rate (∆t/∆V)
VIN = 0.8V to 2.0V, VCC = 3.0V
10 ns/V
Note 1: Absolute Maximum Ratings: are those values beyond which the
safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The
“Recommended Operating Conditions” table will define the conditions for
actual device operation.
Note 2: IO Absolute Maximum Rating must be observed.
Note 3: Unused inputs must be held HIGH or LOW. They may not float.
DC Electrical Characteristics
Symbol
VIH
Parameter
HIGH Level
Input Voltage
VIL
LOW Level
Input Voltage
VOL
LOW Level
Output Voltage
IIN
Input Leakage Current
VCC
TA = +25°C
(V)
Min
0.90
Max
TA = −40°C to +85°C
Min
0.65 x VCC
0.65 x VCC
1.10 ≤ VCC ≤ 1.30 0.65 x VCC
0.65 x VCC
1.40 ≤ VCC ≤ 1.60 0.65 x VCC
0.65 x VCC
1.65 ≤ VCC ≤ 1.95 0.65 x VCC
0.65 x VCC
2.30 ≤ VCC < 2.70
1.6
2.70 ≤ VCC ≤ 3.60
2.0
Units
Conditions
Max
V
1.6
2.0
0.90
0.35 x VCC
0.35 x VCC
1.10 ≤ VCC ≤ 1.30
0.35 x VCC
0.35 x VCC
1.40 ≤ VCC ≤ 1.60
0.35 x VCC
0.35 x VCC
1.65 ≤ VCC ≤ 1.95
0.35 x VCC
0.35 x VCC
2.30 ≤ VCC < 2.70
0.7
0.7
2.70 ≤ VCC ≤ 3.60
0.8
0.8
0.90
0.1
0.1
1.10 ≤ VCC ≤ 1.30
0.1
0.1
1.40 ≤ VCC ≤ 1.60
0.2
0.2
1.65 ≤ VCC ≤ 1.95
0.2
0.2
2.30 ≤ VCC < 2.70
0.2
0.2
2.70 ≤ VCC ≤ 3.60
0.2
0.2
1.10 ≤ VCC ≤ 1.30
0.25 x VCC
0.25 x VCC
1.40 ≤ VCC ≤ 1.60
0.25 x VCC
0.25 x VCC
1.65 ≤ VCC ≤ 1.95
0.3
0.3
2.30 ≤ VCC < 2.70
0.4
0.4
2.70 ≤ VCC ≤ 3.60
0.4
0.4
2.30 ≤ VCC < 2.70
0.6
0.6
2.70 ≤ VCC ≤ 3.60
0.4
0.4
2.70 ≤ VCC ≤ 3.60
0.55
0.55
0.90 to 3.60
±0.1
±0.5
3
V
IOL = 100 µA
V
IOL = 2 mA
IOL = 4 mA
IOL = 6 mA
IOL = 12 mA
IOL = 18 mA
IOL = 24 mA
µA
0 ≤ VI ≤ 3.6V
www.fairchildsemi.com
NC7WV07
Absolute Maximum Ratings(Note 1)
NC7WV07
DC Electrical Characteristics
Symbol
(Continued)
TA = +25°C
VCC
Parameter
(V)
IOFF
Power Off Leakage Current
ICC
Quiescent Supply Current
Min
TA = −40°C to +85°C
Max
Min
Units
Conditions
µA
0 ≤ (VI, VO) ≤ 3.6V
Max
0
0.5
0.5
0.90 to 3.60
0.9
0.9
µA
±0.9
0.90 to 3.60
VI = VCC or GND
VCC ≤ VI ≤ 3.6V
AC Electrical Characteristics
Symbol
tPZL
Parameter
Propagation Delay
tPLZ
TA = +25°C
VCC
(V)
Min
0.90
Typ
TA = −40°C to +85°C
Max
Min
Max
Units
RU = RD 1MΩ
1.10 ≤ VCC ≤ 1.30
2.0
6.0
15.0
1.0
18.6
CL = 15 pF,
1.40 ≤ VCC ≤ 1.60
1.0
3.2
8.7
1.0
9.7
1.65 ≤ VCC ≤ 1.95
1.0
2.0
6.0
1.0
6.8
CL = 30 pF
2.30 ≤ VCC < 2.70
0.7
1.2
3.6
0.6
4.7
RU = RD 500Ω
2.70 ≤ VCC ≤ 3.60
0.5
1.0
3.3
0.4
4.0
ns
CIN
Input Capacitance
0
2.0
pF
Output Capacitance
0
6.5
pF
CPD
Power Dissipation
0.90 to 3.60
10
pF
RU = RD 2kΩ
VI = 0V or VCC
f = 10 MHz
AC Loading and Waveforms
FIGURE 1. AC Test Circuit
TEST
SWITCH
tPZL, tPLZ
6V at VCC = 3.3 ± 0.3V;
VCC × 2 at VCC = 0.9V − 2.7V
FIGURE 2. Waveform for Inverting and Non-Inverting Functions
Symbol
VCC
3.3V ± 0.3V
2.5V ± 0.2V
1.8V ± 0.15V
1.5V ± 0.1V
1.2 V ± 0.1V
0.9V
Vmi
1.5V
VCC/2
VCC/2
VCC/2
VCC/2
VCC/2
Vx
VOL + 0.3V
VOL + 0.15V
VOL + 0.15V
VOL + 0.1V
VOL + 0.1V
VOL + 0.1V
www.fairchildsemi.com
Figure
Number
CL = 15 pF,
13
COUT
Capacitance
Conditions
4
Figures
1, 2
TAPE FORMAT for SC70
Package
Designator
P6X
Tape
Number
Cavity
Section
Cavities
Status
Cover Tape
Status
Leader (Start End)
125 (typ)
Empty
Sealed
Carrier
3000
Filled
Sealed
Trailer (Hub End)
75 (typ)
Empty
Sealed
TAPE DIMENSIONS inches (millimeters)
5
www.fairchildsemi.com
NC7WV07
Tape and Reel Specification
NC7WV07
Tape and Reel Specification
TAPE FORMAT for MircoPak
Package
Designator
(Continued)
Tape
Number
Cavity
Section
Cavities
Status
Status
Leader (Start End)
125 (typ)
Empty
Sealed
L6X
Cover Tape
Carrier
5000
Filled
Sealed
Trailer (Hub End)
75 (typ)
Empty
Sealed
N
W1
W2
W3
TAPE DIMENSIONS inches (millimeters)
REEL DIMENSIONS inches (millimeters)
Tape
Size
8 mm
A
B
C
D
7.0
0.059
0.512
0.795
2.165
0.331 + 0.059/−0.000
0.567
W1 + 0.078/−0.039
(177.8)
(1.50)
(13.00)
(20.20)
(55.00)
(8.40 + 1.50/−0.00)
(14.40)
(W1 + 2.00/−1.00)
www.fairchildsemi.com
6
NC7WV07
Physical Dimensions inches (millimeters) unless otherwise noted
6-Lead SC70, EIAJ SC88, 1.25mm Wide
Package Number MAA06A
7
www.fairchildsemi.com
NC7WV07 TinyLogic ULP-A Dual Buffer (Open Drain Output)
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
6-Lead MicroPak, 1.0mm Wide
Package Number MAC06A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
2. A critical component in any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
www.fairchildsemi.com
www.fairchildsemi.com
8