MICREL LM4041BIM3-1.2

LM4040/4041
Micrel
LM4040/4041
Precision Micropower Shunt Voltage Reference
General Description
Features
Ideal for space critical applications, the LM4040 and LM4041
precision voltage references are available in the subminiature (3mm × 1.3mm) SOT-23 surface-mount package.
The LM4040 is the available in fixed reverse breakdown
voltages of 2.500V, 4.096V and 5.000V. The LM4041 is
available with a fixed 1.225V or an adjustable reverse breakdown voltage.
The LM4040 and LM4041’s advanced design eliminates the
need for an external stabilizing capacitor while ensuring
stability with any capacitive load, making them easy to use.
The minimum operating current ranges from 60µA for the
LM4041-1.2 to 74µA for the LM4040-5.0. LM4040 versions
have a maximum operating current of 15mA. LM4041
versions have a maximum operating current of 12mA.
The LM4040 and LM4041 utilizes zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime
parts have an accuracy of better than ±0.1% (A grade) at
25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse
breakdown voltage accuracy over a wide range of operating
temperatures and currents.
•
•
•
•
Small SOT-23 package
No output capacitor required
Tolerates capacitive loads
Fixed reverse breakdown voltages of 1.225, 2.500V,
4.096V and 5.000V
• Adjustable reverse breakdown version
• Contact Micrel for parts with extended temperature
range.
Key Specifications
• Output voltage tolerance (A grade, 25°C) .. ±0.1% (max)
• Low output noise (10Hz to 100Hz)
LM4040 ................................................ 35µVRMS (typ)
LM4041 ................................................ 20µVRMS (typ)
• Wide operating current range
LM4040 ................................................ 60µA to 15mA
LM4041 ................................................ 60µA to 12mA
• Industrial temperature range .................. –40°C to +85°C
• Low temperature coefficient ................ 100ppm/°C (max)
Applications
•
•
•
•
•
•
•
•
Battery-Powered Equipment
Data Acquisition Systems
Instrumentation
Process Control
Energy Management
Product Testing
Automotive Electronics
Precision Audio Components
Typical Applications
VS
VS
RS
VR
LM4040
LM4041
RS
I Q + IL
IL
VR
VO
R1
VO
LM4041
Adjustable
IQ
Figure 1. LM4040, LM4041 Fixed
Shunt Regulator Application
VO = 1.233 (R2/R1 + 1)
R2
Figure 2. LM4041 Adjustable
Shunt Regulator Application
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
January 2000
1
LM4040/4041
LM4040/4041
Micrel
Pin Configuration
+
1
FB
1
3
3–
–
+
2
2
Pin 3 must float or
be connected to pin 2.
Fixed Version
SOT-23 (M3) Package
Top View
Adjustable Version
SOT-23 (M3) Package
Top View
Ordering Information
Part Number *
Voltage
Accuracy,
Temp. Coefficient
Part Number *
Voltage
Accuracy,
Temp. Coefficient
LM4040AIM3-2.5
2.500V
±0.1%, 100ppm/°C
LM4041AIM3-1.2
1.225V
±0.1%, 100ppm/°C
LM4040BIM3-2.5
2.500V
±0.2%, 100ppm/°C
LM4041BIM3-1.2
1.225V
±0.2%, 100ppm/°C
LM4040CIM3-2.5
2.500V
±0.5%, 100ppm/°C
LM4041CIM3-1.2
1.225V
±0.5%, 100ppm/°C
LM4040DIM3-2.5
2.500V
±1.0%, 150ppm/°C
LM4041DIM3-1.2
1.225V
±1.0%, 150ppm/°C
LM4040AIM3-4.1
4.096V
±0.1%, 100ppm/°C
LM4041CIM3-ADJ
1.24V to 10V
±0.5%, 100ppm/°C
LM4040BIM3-4.1
4.096V
±0.2%, 100ppm/°C
LM4041DIM3-ADJ
1.24V to 10V
±1.0%, 150ppm/°C
LM4040CIM3-4.1
4.096V
±0.5%, 100ppm/°C
LM4040DIM3-4.1
4.096V
±1.0%, 150ppm/°C
LM4040AIM3-5.0
5.000V
±0.1%, 100ppm/°C
LM4040BIM3-5.0
5.000V
±0.2%, 100ppm/°C
LM4040CIM3-5.0
5.000V
±0.5%, 100ppm/°C
LM4040DIM3-5.0
5.000V
±1.0%, 150ppm/°C
SOT-23 Package Markings
Example
R__
Field
Code
1st Character
R = Reference
Example: R2C represents Reference, 2.500V,
± 0.5% (LM4040CIM3-2.5)
LM4040/4041
Example
_2_
Field
Code
2nd Character 1 = 1.225V
2 = 2.500V
4 = 4.096V
5 = 5.000V
A = Adjustable
2
Example
__A
Field
3rd Character
Code
A = ±0.1%
B = ±0.2%
C = ±0.5%
D = ±1.0%
Note: If 3rd character is omitted, container will
indicate tolerance.
January 2000
LM4040/4041
Micrel
Functional Diagram
LM4040, LM4041 Fixed
Functional Diagram
LM4041 Adjustable
+
+
VREF
FB
Absolute Maximum Ratings
Operating Ratings (Notes 1 and 2)
Reverse Current ......................................................... 20mA
Forward Current ......................................................... 10mA
Maximum Output Voltage
LM4041-Adjustable ................................................... 15V
Power Dissipation at TA = 25°C (Note 2) ................ 306mW
Storage Temperature ............................... –65°C to +150°C
Lead Temperature
Vapor phase (60 seconds) .............................. +215°C
Infrared (15 seconds) ...................................... +220°C
ESD Susceptibility
Human Body Model (Note 3) ................................. 2kV
Machine Model (Note 3) ...................................... 200V
Temperature Range
(TMIN ≤ TA ≤ TMAX) .......................... –40°C ≤ TA ≤ +85°C
Reverse Current
LM4040-2.5 .......................................... 60µA to 15mA
LM4040-4.1 .......................................... 68µA to 15mA
LM4040-5.0 .......................................... 74µA to 15mA
LM4041-1.2 .......................................... 60µA to 12mA
LM4041-ADJ ........................................ 60µA to 12mA
Output Voltage Range
LM4041-ADJ .......................................... 1.24V to 10V
January 2000
3
LM4040/4041
LM4040/4041
Micrel
LM4040-2.5 Electrical Characteristics
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A, B, C, and D designate initial Reverse
Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ±1.0 respectively.
LM4040AIM3 LM4040BIM3 LM4040CIM3
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
Limits
(Note 5)
Limits
(Note 5)
Limits
(Note 5)
2.500
IRMIN
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown
Voltage Temperature
Coefficient
IR = 10mA
IR = 1mA
IR = 100µA
20
15
15
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.3
1mA ≤ IR 15mA
2.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.3
V
±2.5
±19
±5.0
±21
±12
±29
mV (max)
mV (max)
60
65
60
65
60
65
µA
µA (max)
µA (max)
100
100
100
0.8
1.0
0.8
1.0
0.8
1.0
mV
mV (max)
mV (max)
0.6
8.0
0.6
8.0
0.6
8.0
mV
mV (max)
mV (max)
0.8
0.8
0.9
Ω
Ω (max)
45
ZR
Reverse Dynamic Impedance
eN
Wideband Noise
∆VR
Reverse Breakdown Voltage
Long Term Stability
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
Symbol
Parameter
Conditions
IR = 100µA
10Hz ≤ f ≤ 10kHz
Units
(Limit)
ppm/°C
ppm/°C (max)
ppm/°C (max)
35
µVRMS
120
ppm
LM4040DIM3
VR
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
2.500
IRMIN
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown
Voltage Temperature
Coefficient
IR = 10mA
IR = 1mA
IR = 100µA
20
15
15
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.3
1mA ≤ IR 15mA
2.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.3
ZR
Reverse Dynamic Impedance
eN
Wideband Noise
∆VR
Reverse Breakdown Voltage
Long Term Stability
LM4040/4041
Limits
(Note 5)
V
±25
±49
mV (max)
mV (max)
65
70
µA
µA (max)
µA (max)
45
IR = 100µA
10Hz ≤ f ≤ 10kHz
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
4
Units
(Limit)
150
ppm/°C
ppm/°C (max)
ppm/°C (max)
1.0
1.2
mV
mV (max)
mV (max)
8.0
10.0
mV
mV (max)
mV (max)
1.1
Ω
Ω (max)
35
µVRMS
120
ppm
January 2000
LM4040/4041
Micrel
LM4040-4.1 Electrical Characteristics
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A, B, C, and D designate initial Reverse
Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0% respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown
Voltage Temperature
Coefficient
IR = 10mA
IR = 1mA
IR = 100µA
30
20
20
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.5
1mA ≤ IR 15mA
3.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.5
Reverse Dynamic Impedance
eN
Wideband Noise
∆VR
Reverse Breakdown Voltage
Long Term Stability
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
Symbol
Parameter
Conditions
IR = 100µA
10Hz ≤ f ≤ 10kHz
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
30
20
20
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.5
1mA ≤ IR 15mA
3.0
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.5
January 2000
±8.2
±35
mV (max)
mV (max)
68
73
68
73
µA
µA (max)
µA (max)
100
100
0.9
1.2
0.9
1.2
mV
mV (max)
mV (max)
7.0
10.0
7.0
10.0
mV
mV (max)
mV (max)
1.0
1.0
Ω
Ω (max)
LM4040CIM3
LM4040DIM3
Limits
(Note 5)
Limits
(Note 5)
4.096
IR = 10mA
IR = 1mA
IR = 100µA
Reverse Breakdown Voltage
Long Term Stability
±4.1
±31
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
5
Units
(Limits)
V
±20
±47
±41
±81
mV (max)
mV (max)
68
73
73
78
µA
µA (max)
µA (max)
100
150
0.9
1.2
1.2
1.5
mV
mV (max)
mV (max)
7.0
10.0
9.0
13.0
mV
mV (max)
mV (max)
1.0
1.3
Ω
Ω (max)
50
IR = 100µA
10Hz ≤ f ≤ 10kHz
ppm/°C
ppm/°C (max)
ppm/°C (max)
ppm
Average Reverse Breakdown
Voltage Temperature
Coefficient
∆VR
V
120
∆VR/∆T
Wideband Noise
Units
(Limit)
µVRMS
Minimum Operating Current
eN
Limits
(Note 5)
80
IRMIN
Reverse Dynamic Impedance
Limits
(Note 5)
50
ZR
ZR
LM4040BIM3
4.096
IRMIN
VR
LM4040AIM3
ppm/°C
ppm/°C (max)
ppm/°C (max)
80
µVRMS
120
ppm
LM4040/4041
LM4040/4041
Micrel
LM4040-5.0 Electrical Characteristics
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A, B, C, and D designate initial Reverse
Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0% respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown
Voltage Temperature
Coefficient
IR = 10mA
IR = 1mA
IR = 100µA
30
20
20
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.5
1mA ≤ IR 15mA
3.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.5
Reverse Dynamic Impedance
eN
Wideband Noise
∆VR
Reverse Breakdown Voltage
Long Term Stability
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
Symbol
Parameter
Conditions
IR = 100µA
10Hz ≤ f ≤ 10kHz
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
30
20
20
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.5
1mA ≤ IR 15mA
3.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.5
LM4040/4041
±43
±10
mV (max)
mV (max)
74
80
74
80
µA
µA (max)
µA (max)
100
100
1.0
1.4
1.0
1.4
mV
mV (max)
mV (max)
8.0
12.0
8.0
12.0
mV
mV (max)
mV (max)
1.1
1.1
Ω
Ω (max)
LM4040CIM3
LM4040DIM3
Limits
(Note 5)
Limits
(Note 5)
5.000
IR = 10mA
IR = 1mA
IR = 100µA
Reverse Breakdown Voltage
Long Term Stability
±5.0
±38
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
6
Units
(Limits)
V
±25
±58
±50
±99
mV (max)
mV (max)
74
80
79
85
µA
µA (max)
µA (max)
100
150
1.0
1.3
1.3
1.8
mV
mV (max)
mV (max)
8.0
12.0
10.0
15.0
mV
mV (max)
mV (max)
1.1
1.5
Ω
Ω (max)
54
IR = 100µA
10Hz ≤ f ≤ 10kHz
ppm/°C
ppm/°C (max)
ppm/°C (max)
ppm
Average Reverse Breakdown
Voltage Temperature
Coefficient
∆VR
V
120
∆VR/∆T
Wideband Noise
Units
(Limit)
µVRMS
Minimum Operating Current
eN
Limits
(Note 5)
80
IRMIN
Reverse Dynamic Impedance
Limits
(Note 5)
54
ZR
ZR
LM4040BIM3
5.000
IRMIN
VR
LM4040AIM3
ppm/°C
ppm/°C (max)
ppm/°C (max)
80
µVRMS
120
ppm
January 2000
LM4040/4041
Micrel
LM4040 Typical Characteristics
Output Impedance
vs. Frequency
Temperature Drift for Different
Average Temperature Coefficient
1k
+0.5
IR = 150µA
+0.4
+0.3
+0.2
12ppm/°C
+0.1
0
-0.1
-0.2
-22ppm/°C
-0.3
-51ppm/°C
-0.4
-0.5
-40 -20 0 20 40 60 80 100
Output Impedance
vs. Frequency
1k
IR = IRMIN + 100 µA
IMPEDANCE (Ω)
100
IMPEDANCE (Ω)
VR CHANGE (%)
TJ = 25 °C, ∆ IR = 0.1 IR
CL = 0
VR = 5V
2.5V
10
CL = 1µF
TANTALUM
1
100
1k
10k
100k
FREQUENCY (Hz)
VR = 5V
CL= 1µF
TANTALUM
2.5V
1
0.1
100
1M
80
•
•
ical
Typ
40
100k
1M
IR = 200µA
TJ = 25°C
5.0
•
60
10k
Noise Voltage
vs. Frequency
Noise (µV/ √Hz )
ed
nte
ara
Gu uffix fix
S
N
uf
I
D
,S
I RM
,C
,B
•A
1k
FREQUENCY (Hz)
10.0
4.1V
5V
2.5V
REVERSE CURRENT (µA)
CL= 0
10
0.1
Reverse Characteristics and
Minimum Operating Current
100
100
XCL
TEMPERATURE (°C)
120
IR= 1mA
TJ = 25 °C, ∆IR = IR
TJ = 25°C
2.0
5V
1.0
2.5V
0.5
0.2
20
0.1
1
0
0
2
4
6
8
10
10
REVERSE VOLTAGE (V)
100
1k
10k
100k
FREQUENCY (Hz)
RS
VIN
1Hz rate
VR
LM4040
Test Circuit
RS = 30k
LM4040-5.0
VIN (V)
VIN (V)
LM4040-2.5
5
0
0
6
4
4
2
0
TJ = 25°C
2
0
0
January 2000
10
6
VR (V)
VR (V)
IJ = 25°C
RS = 30k
20
40
60
RESPONSE TIME (µs)
0
80
100
200
300
400
RESPONSE TIME (µs)
7
LM4040/4041
LM4040/4041
Micrel
LM4041-1.2 Electrical Characteristics
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A, B, C, and D designate initial Reverse
Breakdown Voltage tolerance of ±0.1%, ±0.2%, ±0.5%, and ± 1.0%, respectively.
LM4041AIM3 LM4041BIM3 LM4041CIM3
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown
Voltage Temperature
Coefficient
IR = 10mA
IR = 1mA
IR = 100µA
20
15
15
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.7
1mA ≤ IR 15mA
4.0
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.5
Reverse Dynamic Impedance
eN
Wideband Noise
∆VR
Reverse Breakdown Voltage
Long Term Stability
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
Symbol
Parameter
Conditions
IR = 100µA
10Hz ≤ f ≤ 10kHz
Reverse Breakdown Voltage
IR = 100µA
Reverse Breakdown Voltage
Tolerance
IR = 100µA
Typical
(Note 4)
20
15
15
∆VR/∆IR
Reverse Breakdown Voltage
Change with Operating
Current Change
IRMIN ≤ IR 1mA
0.3
1mA ≤ IR 15mA
2.5
IR = 1mA, f = 120Hz
IAC = 0.1 IR
0.3
LM4040/4041
±2.4
±14
±6
mV (max)
mV (max)
60
65
60
65
60
65
µA
µA (max)
µA (max)
±100
±100
±100
1.5
2.0
1.5
2.0
1.5
2.0
mV
mV (max)
mV (max)
6.0
8.0
6.0
8.0
6.0
8.0
mV
mV (max)
mV (max)
1.5
1.5
1.5
Ω
Ω (max)
LM4041DIM3
LM4041EIM3
Limits
(Note 5)
Limits
(Note 5)
1.225
IR = 10mA
IR = 1mA
IR = 100µA
Reverse Breakdown Voltage
Long Term Stability
±10.4
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
8
Units
(Limit)
V
±12
±24
±25
±36
mV (max)
mV (max)
65
70
65
70
µA
µA (max)
µA (max)
±150
±150
2.0
2.5
2.0
2.5
mV
mV (max)
mV (max)
8.0
10.0
8.0
10.0
mV
mV (max)
mV (max)
2.0
2.0
Ω
Ω (max)
45
IR = 100µA
10Hz ≤ f ≤ 10kHz
ppm/°C
ppm/°C (max)
ppm/°C (max)
ppm
Average Reverse Breakdown
Voltage Temperature
Coefficient
∆VR
±1.2
±9.2
120
∆VR/∆T
Wideband Noise
V
µVRMS
Minimum Operating Current
eN
Units
(Limit)
20
IRMIN
Reverse Dynamic Impedance
Limits
(Note 5)
45
ZR
ZR
Limits
(Note 5)
1.225
IRMIN
VR
Limits
(Note 5)
ppm/°C
ppm/°C (max)
ppm/°C (max)
35
µVRMS
120
ppm
January 2000
LM4040/4041
Micrel
LM4041-Adjustable Electrical Characteristics
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TJ = 25°C unless otherwise specified (SOT-23, see Note 7),
IRMIN ≤ IR < 12mA, VREF ≤ VOUT ≤ 10V. The grades C and D designate initial Reverse Breakdown Voltage tolerance of ±0.5% and
±1%, respectively for VOUT = 5V.
Symbol
VREF
Parameter
Conditions
Reference Breakdown Voltage
IR = 100µA
VOUT = 5V
Reference Breakdown Voltage
Tolerance (Note 8)
IR = 100µA
IRMIN
Minimum Operating Current
∆VREF
/∆IR
Reference Voltage
Change with Operating
Current Change
Typical
(Note 4)
LM4041CIM3
LM4041DIM3
Limits
(Note 5)
Limits
(Note 5)
1.233
V
±6.2
±14
±24
±12
mV (max)
mV (max)
60
65
65
70
µA
µA (max)
µA (max)
1.5
2.0
2.0
2.5
mV
mV (max)
mV (max)
4
6
6
8
mV
mV (max)
mV (max)
–2.0
–2.5
–2.5
–3.0
mV/V
mV/V (max)
mV/V (max)
100
120
150
200
nA
nA (max)
nA (max)
±100
±150
45
IRMIN ≤ IR 1mA
SOT-23:
VOUT ≥ 1.6V
(Note 7)
0.7
1mA ≤ IR 15mA
SOT-23:
VOUT ≥ 1.6V
(Note 7)
2
Units
(Limit)
∆VREF
/∆VO
Reference Voltage Change
with Output Voltage Change
IFB
Feedback Current
∆VREF
/∆T
Average Reference
Voltage Temperature
Coefficient
(Note 8)
VOUT = 5V
IR = 10mA
IR = 1mA
IR = 100µA
20
15
15
ZOUT
Dynamic Output Impedance
IR = 1mA, f = 120Hz
IAC = 0.1 IR
VOUT = VREF
VOUT = 10V
0.3
2
Ω
Ω (max)
IR = 100µA
10Hz ≤ f ≤ 10kHz
20
µVRMS
120
ppm
eN
Wideband Noise
∆VREF
Reference Voltage
Long Term Stability
January 2000
IR = 1mA
–1.3
60
t = 1000hrs
T = 25°C ±0.1°C
IR = 100µA
9
ppm/°C
ppm/°C (max)
ppm/°C (max)
LM4040/4041
LM4040/4041
Micrel
LM4040 and LM4041 Electrical Characteristic Notes
Note 1.
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the
device is functional, but do not guarantee specific performance limits. For guaranteed specification and test conditions, see the Electrical
Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when
the device is not operated under the listed test conditions.
Note 2.
The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX (maximum junction temperature), θJA
(junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is
PDMAX = (TJMAX – TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040 and LM4041,
TJMAX = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package.
Note 3.
The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor
discharged directly into each pin.
Note 4.
Typicals are at TJ = 25°C and represent most likely parametric norm.
Note 5.
Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)
methods.
Note 6.
The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown
Voltage Tolerance ±[(∆VR/∆T)(65°C)(VR)]. ∆VR/∆T is the VR temperature coefficient, 65°C is the temperature range from –40°C to the
reference point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:
A-grade: ±0.75% = ±0.1% ±100ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C
Example: The A-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 0.75% = ±19mV.
Note 7.
When VOUT ≤ 1.6V, the LM4041-ADJ must operate at reduced IR. This is caused by the series resistance of the die attach between the die (–)
output and the package (–) output pin. See the Output Saturation curve in the Typical Performance Characteristics section.
Note 8.
Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.
LM4041 Typical Characteristics
1k
IMPEDANCE (Ω)
VR CHANGE (%)
+0.5
IR = 150µA
+0.4
LM4041-1.2
+0.3
+0.2
12ppm/°C
+0.1
0
-0.1
-0.2
-22ppm/°C
-0.3
-51ppm/°C
-0.4
-0.5
-40 -20 0 20 40 60 80 100
Output Impedence
vs. Frequency
10
1000
CL= 0
CL= 1µF
IR = 150µA
TANTALUM
1 I = 1mA
R
800
IR = 200µA
TJ = 25°C
LM4041-1.2
LM4041-ADJ: VOUT = VREF
600
400
200
XC
100
TEMPERATURE (°C)
1k
10k
100k
FREQUENCY (Hz)
Reverse Characteristics and
Minimum Operating Current
Reverse Characteristics and
Minimum Operating Current
1M
0
1
10
100
1k
10k
100k
FREQUENCY (Hz)
100
80
60
40
Typical
TJ = 25°C
LM4041-1.2
20
0
0.4
0.8
1.2
1.6
REVERSE VOLTAGE (V)
LM4040/4041
2.0
REVERSE CURRENT (µA)
REVERSE CURRENT (µA)
100
0.1
100
0
TJ = 25° C
∆IR = 0.1IR
LM4041-1.2
Voltage Impedance
NOISE (nV/ √Hz )
Temperature Drift for Different
Average Temperature Coefficient
RS 30k
80
VIN
1Hz rate
60
V
R
LM4041-1.2
40
Typical
TJ = 25°C
LM4041-1.2
20
0
0
0.4
0.8
1.2
1.6
Test Circuit
2.0
REVERSE VOLTAGE (V)
10
January 2000
LM4040/4041
Micrel
LM4041 Typical Characteristics
Reference Voltage vs. Output
Voltage and Temperature
85°C
1.240
1.240
1.232
1.232
-40°C
VOUT = 5V
1.228
1.228
85°C
1.224
1.220
0
2
4
6
8
OUTPUT VOLTAGE (V)
VOUT = 10V
1.224
10
1.220
-40 -20
Output Saturation
1.7
1K
1.5
100
IMPEDANCE (Ω)
LM4041-ADJ
1.6 VADJ = VREF + 5µV
-40°C
1.4
85°C
1.3
1.2
25°C
0
20
40
TEMPERATURE (°C)
2
4
6
8
OUTPUT VOLTAGE (V)
Output Impedence
vs. Frequency *
Output Impedence
vs. Frequency *
CL = 0
VOUT = 10V
CL=1µF
5V
2.5V
1.23V
0
2
4
6
8
10
12
0
100
OUTPUT CURRENT (mA)
1k
10k
0
1K
100k
LM4041-ADJ
TJ = 25 °C
IR = 1mA
∆IR = 0.1 IR
100
10
CL = 0
VOUT = 10V
10
5V
2.5V
1.23V
CL=1µF
1
XC
XC
1.0
TJ = 25°C, -40°C
40
0
60 80 100
10
1.1
TJ = 85°C
60
20
LM4041-ADJ
TJ = 25 °C
IR = 1mA
∆IR = 0.1IR
1
LM4041-ADJ
80
VOUT = VREF
1.236
1.236 -40°C
OUTPUT SATURATION (V)
100
LM4041-ADJ
IR = 1mA
FEEDBACK (nA)
LM4041-ADJ
REFERENCE VOLTAGE (V)
REFERENCE VOLTAGE (V)
25°C
IMPEDANCE (Ω)
1.244
1.244
Feedback Current vs.
Output Voltage and Temperature
Reference Voltage vs.
Temperature and Output Voltage
1M
FREQUENCY (Hz)
0
100
1k
10k
100k
1M
FREQUENCY (Hz)
Reverse Characteristics †
FB STEPS (V)
2
4
6
0
IR
8
REVERSE CURRENT (µA)
100
80
(+)
60
40
V
20
0
TJ = 25°C
LM4041-ADJ
0
2
4
6
8
10
†
OUTPUT VOLTAGE (V)
Reverse Characteristics
Test Circuit
Large Signal Response ‡
-40°C
VOLTAGE (V)
10
8
LM4041-ADJ
TJ = -40°C
OUTPUT
25°C
85°C
INPUT
-40°C
IR
FB
V OUT
( – ) 2V / step
LM4041-ADJ
+
CL
120k
FB
–
* Output Impedance vs. Freq.
Test Circuit
+ 15V
5.1k
INPUT
6
(+)
FB
LM4041 - ADJ
VOUT
(-)
100k
4
2
0
0
January 2000
10
20
30
40
RESPONSE TIME (µs)
‡
Large Signal Response
Test Circuit
11
LM4040/4041
LM4040/4041
Micrel
Adjustable Regulator
The LM4041-ADJ’s output voltage can be adjusted to any
value in the range of 1.24V through 10V. It is a function of the
internal reference voltage (VREF) and the ratio of the external
feedback resistors as shown in Figure 2. The output is found
using the equation
(1)
VO = VREF´ [ (R2/R1) + 1 ]
where VO is the desired output voltage. The actual value of
the internal VREF is a function of VO. The “corrected” VREF is
determined by
(2)
VREF´ = VO (∆VREF / ∆VO) + VY
where VO is the desired output voltage. ∆VREF / ∆VO is found
in the Electrical Characteristics and is typically –1.3mV/V and
VY is equal to 1.233V. Replace the value of VREF´ in equation
(1) with the value found using equation (2).
Note that actual output voltage can deviate from that predicted using the typical ∆VREF / ∆VO in equation (2); for Cgrade parts, the worst-case ∆VREF / ∆VO is –2.5mV/V and
VY = 1.248V.
The following example shows the difference in output voltage
resulting from the typical and worst case values of
∆VREF / ∆VO:
Let VO = +9V. Using the typical values of ∆VREF /∆VO , VREF
is 1.223V. Choosing a value of R1 = 10kΩ, R2 = 63.272kΩ.
Using the worst case ∆VREF / ∆VO for the C-grade and Dgrade parts, the output voltage is actually 8.965V and 8.946V
respectively. This results in possible errors as large as 0.39%
for the C-grade parts and 0.59% for the D-grade parts. Once
again, resistor values found using the typical value of
∆VREF / ∆VO will work in most cases, requiring no further
adjustment.
Applications Information
The LM4040 and LM4041 have been designed for stable
operation without the need of an external capacitor connected between the (+) and (–) pins. If a bypass capacitor is
used, the references remain stable.
Schottky Diode
LM4040-x.x and LM4041-1.2 in the SOT-23 package have a
parasitic Schottky diode between pin 2 (–) and pin 3 (die
attach interface connect). Pin 3 of the SOT-23 package must
float or be connected to pin 1. LM4041-ADJs use pin 3 as the
(–) output.
Conventional Shunt Regulator
In a conventional shunt regulator application (see Figure 1),
an external series resistor (RS) is connected between the
supply voltage and the LM4040-x.x or LM4041-1.2 reference.
RS determines the current that flows through the load (IL) and
the reference (IQ). Since load current and supply voltage may
vary, RS should be small enough to supply at least the
minimum acceptable IQ to the reference even when the
supply voltage is at its minimum and the load current is at its
maximum value. When the supply voltage is at its maximum
and IL is at its minimum, RS should be large enough so that
the current flowing through the LM4040-x.x is less than
15mA, and the current flowing through the LM4041-1.2 or
LM4041-ADJ is less than 12mA.
RS is determined by the supply voltage (VS), the load and
operating current, (IL and IQ), and the reference’s reverse
breakdown voltage (VR).
Rs = (Vs – VR) / (IL + IQ)
R1
+ FB 120k
LM4041-ADJ
D1
λ
FB
D1
–
R2
1M
LM4041–
ADJ
λ
< –12V
R3
LED ON
200
R1
120k
R2
1M
> –12V
R3
LED ON
330
–5V
–5V
Figure 3. Voltage Level Detector
LM4040/4041
+
Figure 4. Voltage Level Detector
12
January 2000
LM4040/4041
Micrel
VIN
R1
I
VOUT
D1
1N914
R2
50µA
VIN
I
R1
D2
1N914
+
LM4041-ADJ
FB
R3
240k
–
D1
1N457
+
R3
510k
+
LM4041-ADJ
–
FB
R2
510k –
FB
R4
240k
Figure 5. Fast Positive Clamp
2.4V + ∆VD1
LM4041-ADJ
Figure 6. Bidirectional Clamp
±2.4V
VIN
I
VOUT
D2
1N457
VIN
R1
I
R1
VOUT
R2
390k
+
LM4041-ADJ
R3
500k
VOUT
D2
1N457
FB –
+
LM4041-ADJ
LM4041-ADJ
+
R2
330k
D2
1N457
FB
–
FB
R3
1M
FB –
–
D1
1N457
R4
390k
D1
1N457
Figure 7. Bidirectional Adjustable Clamp
±18V to ±2.4V
R4
330k
LM4041-ADJ
+
Figure 8. Bidirectional Adjustable Clamp
±2.4 to ±6V
0 to 20mA
+ 5V
1N4002
D2
R1
390Ω
± 2%
D1*
+
FB
LM4041-ADJ
λ
N.C.
I THRESHOLD =
R2
470k
–
1
6
2
5
3
4N28
N.C.
CMOS
4
1.24V
5µA
+
= 3.2mA
R1 4N28 GAIN
Figure 9. Floating Current Detector
January 2000
13
LM4040/4041
LM4040/4041
Micrel
+15V
R1
+
LM4041-ADJ
FB
–
2N2905
2N
3964
R2
120k
1µA < IOUT = 100mA
1.24V
I OUT =
R1
Figure 10. Current Source
0 to 20 mA
R1
332Ω
±1%
D2
1N4002
+5V
+
FB
LM4041-ADJ
–
1N914
R3
100k
2N2222
R2
22k
D1*
λ
1
6
2
5
3
N.C.
1.24V
I THRESHOLD =
= 3.7mA ± 2%
R1
4
4N28
CMOS
R4
10M
Figure 11. Precision Floating Current Detector
* D1 can be any LED, VF = 1.5V to 2.2V at 3mA. D1 may act as an indicator. D1 will
be on if ITHRESHOLD falls below the threshold current, except with I = O.
LM4040/4041
14
January 2000
LM4040/4041
Micrel
Package Information
1.40 (0.055) 2.50 (0.098)
1.19 (0.047) 2.10 (0.083)
C
L
2.36 (0.093)
2.28 (0.090)
C
L
3.05 (0.120)
2.67 (0.105)
0.445 (0.0175) TYP 3 PLACES
DIMENSIONS:
MM (INCH)
1.15 (0.045)
0.76 (0.030)
0.10 (0.004)
0.013 (0.0005)
8°
0°
0.15 (0.006)
0.076 (0.0030)
0.41 (0.016)
0.13 (0.005)
SOT-23 (M3)
January 2000
15
LM4040/4041
LM4040/4041
Micrel
MICREL INC.
TEL
1849 FORTUNE DRIVE SAN JOSE, CA 95131
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
LM4040/4041
16
January 2000