MICREL MIC2145BML

MIC2145
Micrel
MIC2145
High Efficiency 2.5W Boost Converter
Final
General Description
Features
The MIC2145 is a small size boost switching regulator that
can provide over 2.5W of output power. The input voltage
range is between 2.4V to 16V, making the device suitable for
one-cell Li-Ion and 3- to 4-cell alkaline/NiCad/NiMH applications. The output voltage of the MIC2145 can be adjusted up
to 16V.
The MIC2145 is well suited for portable, space-sensitive
applications. Its typical 450kHz operation allows small surface mount external components to be used. The MIC2145
has a low quiescent current of 200µA, and a typical shutdown
current of 0.5µA. The MIC2145 is capable of high efficiencies
in a small board area.
The MIC2145 features a low-on resistance internal switch
that allows it to provide over 2.5W of output power. The peak
switch current can be programmed through an external
resistor. This allows the user to set the peak switch current at
the level where maximum efficiency occurs. It also allows the
user to further optimize for efficiency and inductor size by
setting the peak current below the level of inductor saturation.
The MIC2145 is available in an MSOP-8 and 3mm×3mm
MLF™-10L package with an ambient operating temperature
range from –40°C to +85°C.
•
•
•
•
•
•
•
•
•
•
2.4V to 16V input voltage
Output adjustable to 16V
Programmable peak current limit
Soft start
Up to 450kHz switching frequency
0.5µA shutdown current
200µA quiescent current
Capable of 5V/ 500mA output with 3.3V input
Achieves over 85% efficiency
Implements low power BOOST, SEPIC, and FLYBACK
topologies
• MSOP-8 and 3mm×3mm MLF™-10L
Applications
•
•
•
•
•
Flash LED driver
LCD bias supply
White LED driver
DSL bias supply
Local 3V to 5V conversion
Ordering Information
Part Number
Voltage
Ambient Temp. Range
Package
MIC2145BMM
Adj
–40°C to +85°C
8-lead MSOP
MIC2145BML
Adj
–40°C to +85°C
3×3 MLF™-10L
Typical Application
L1
VIN
3.0V to 5.0V
10V Output
Efficiency
10 H
90
D1
1
4
EN
PGND
SW
VDD
VOUT
10V/150mA
5
6
COUT
10 F/16V
MIC2145BMM
3
2
RSET
SS
FB
7
SGND
8
85
EFFICIENCY (%)
CIN
10 F/6.3V
80
75
70
65
I Limit
60
10
VIN = 3.0V
100
1000
OUTPUT CURRENT (mA)
Adjustable Output Boost Converter with Programmable Peak Switch Current
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
May 2003
1
MIC2145
MIC2145
Micrel
Pin Configuration
EN 1
8 SGND
SS 2
7 FB
RSET 3
6 VDD
PGND 4
5 SW
EN 1
SS 2
RSET 3
PGND 4
PGND 5
10 SGND
9 FB
8 VDD
7 SW
6 SW
3mm×
×3mm MLF-10L (ML)
8-Lead MSOP (MM)
Pin Description
Pin Number
MSOP
Pin Number
MLF
Pin Name
1
1
EN
Enable (Input): Logic high (≥1.5V) enables regulator. Logic low (≤0.7V)
shuts down regulator. Do not float.
2
2
SS
Soft Start Capacitor (External Component): Connect external capacitor to
ground to control the rise time of the output voltage.
3
3
RSET
Current Limit (External Component): Sets peak current limit of the internal
power MOSFET using an external resistor.
4
4, 5
PGND
Power Ground (Return): Internal power MOSFET source.
5
6, 7
SW
Switch Node (Input): Internal power MOSFET drain.
6
8
VDD
Supply (Input): +2.4V to +16V for internal circuitry.
7
9
FB
8
10
SGND
MIC2145
Pin Function
Feedback (Input): Output voltage sense node.
Small Signal Ground (Return): Ground
2
May 2003
MIC2145
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VDD) .................................................... 18V
Switch Voltage (VSW) .................................................... 18V
Feedback Voltage (VFB) ................................................ 18V
Switch Current (ISW) ........................................................ 2A
Enable Voltage(VEN), Note 5 ........................................ 18V
RSET Voltage (VRSET) .................................................... 6V
ESD Rating, Note 3 ...................................................... 2kV
Ambient Storage Temperature(TS) .......... –65°C to +150°C
Supply Voltage (VDD) ....................................... 2.4V to 16V
Switch Voltage (VSW) .................................................... 16V
Ambient Temperature (TA) ......................... –40°C to +85°C
Junction Temperature (TJ) ....................... –40°C to +125°C
Package Thermal Resistance MSOP
θJA (MSOP-8) .................................................... 206°C/W
θJA (3mm×3mm MLF-10) .................................... 60°C/W
Electrical Characteristics (Note 6)
VDD = 10V, VOUT = 10V, IOUT = 100mA; TJ =25°C, unless otherwise noted, bold values indicate –40°C ≤ TJ ≤ 125°C.
Parameter
Condition
Min
Supply Voltage
Typ
2.4
Max
Units
16
V
Shutdown Current
EN = 0.3V, VDD = 10V, VFB=1.35V
0.5
5
µA
Quiescent Current
EN = VDD, VDD = 10V, VFB = 1.35V
200
300
µA
Feedback Voltage Reference
(±2%)
1.058
1.08
1.102
V
(±3%)
1.048
1.112
V
Comparator Hysteresis
18
mV
Feedback Input Current
VFB=1.35V
40
nA
Peak Current Limit
RSET=200Ω, VDD = 3.6V, Note 4
0.8
A
RSET=1kΩ, VDD = 10V, Note 4
0.9
A
500
ns
Current Limit Comparator
Propagation Delay
Switch On-Resistance
ISW = 150mA, VDD = 3.0V
500
750
mΩ
ISW = 1.2A, VDD = 10V
250
400
mΩ
Maximum Off Time
Enable Input Voltage
Enable Input Current
Soft Start Current
1000
Logic Low (turn-off)
1.1
ns
0.7
Logic High (turn-on)
1.5
1.1
V
VEN = 0V
–1
0.01
1
µA
VEN = 2V
–1
0.01
1
µA
VEN = 2V, VDD=3.0V
–8
–12
–16
µA
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5KΩ in series with 100pF.
Note 4.
The current is measured in a DC mode. Actual peak switching current will be higher due to internal propagation delay of the circuit.
Note 5.
VEN ≤ VDD.
Note 6.
Specification for packaged product only.
May 2003
V
3
MIC2145
MIC2145
Micrel
Typical Characteristics
Efficiency-Bootstrapped
Configuration
90
10.0
8 10 12
VDD (V)
14
FEEDBACK VOLTAGE (V)
0.25
0.20
0.15
0.10
4
6
VOUT (V)
0.5
0.4
0.3
0.2
0.1
0.0
0
0.6
0.5
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
8 10 12 14 16 18
VDD (V)
Feedback Current
vs. Temperature
0.10
1.09
0.09
0.08
1.08
1.07
1.06
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Quiescent Current
vs. Temperature
0.50
SHUTDOWN CURRENT (µA)
0.8
0.7
0.8
Shutdown Current
vs. Temperature
1.5
1.0
0.9
6
0.9
1.1
Off Time
vs. Temperature
1.2
1.1
4
1.05
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
8 10 12 14 16 18
VDD (V)
1.4
1.3
2
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0
0.01
0.08
0.07
0.04
0.03
0.7
0.6
1.0
Feedback Voltage
vs. Temperature
Quiescent Current
vs. VDD
0.35
0.30
SWITCH ON-RESISTANCE (Ω)
SWITCH ON-RESISTANCE (Ω)
16
0.9
0.8
FEEDBACK CURRENT (µA)
6
1.0
0.50
QUIESCENT CURRENT (mA)
4
0.45
0.40
MIC2145
0.02
Switch On-Resistance
vs. Temperature
L = 10µH
2
0.01
Switch On-Resistance
vs. VDD
14.6
14.4
QUIESCENT CURRENT (Ω)
0
Line Regulation
IOUT = 10mA
0
9.2
VIN = 3.6V
L = 10µH
OUTPUT CURRENT (A)
15.0
14.8
0.05
0.00
9.4
OUTPUT CURRENT (A)
15.4
15.2
0.50
9.6
OUTPUT CURRENT (A)
15.8
15.6
2
50
9.8
VIN = 3.3V
VOUT = 10V
L = 10µH
60
16.0
14.2
14.0
70
0.08
0.07
0.04
0.03
0.02
0.01
0
50
0.06
VIN = 3.3V
VOUT = 10V
L = 10µH
0.06
70
80
0.05
80
VOUT (V)
90
EFFICIENCY (%)
10.2
60
OFF TIME (µs)
Load Regulation
100
0.05
EFFICIENCY (%)
Efficiency-Basic
Configuration
100
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
4
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
VIN = 3.6V
0.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
May 2003
MIC2145
Micrel
Peak Current Limit
vs. Temperature
12
10
8
6
4
2
VIN = 3.6V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
May 2003
PEAK CURRENT LIMIT (A)
SOFT START CURRENT (µA)
14
1.4
RSET = 200
1.3
1.2
1.1 R
= 500
1.0 SET
RSET = 1k
0.9
0.8
0.7
0.6
0.5
0.4 V = 3.6V
RSET = 10k
0.3 IN
0.2 VOUT = 10V
0.1 L = 10µH
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
5
Peak Current Limit
vs. RSET
2000
PEAK CURRENT LIMIT (mA)
Soft Start Current
vs. Temperature
VIN =
1800
15V
1600
12V
1400
10V
1200
8.0V
1000
800
600
L = 10µH
400 VOUT/VIN > 1.25
100
1000
10000
RSET(Ω)
5.0V
4.2V
3.6V
3.3V
3.0V
2.4V
100000
MIC2145
MIC2145
Micrel
Functional Diagram
10µH
VIN
L1
CIN
D1
VDD
6
SW
VOUT
5
R1
RSET
3
Thermal
Shutdown
COUT
R2
Current Limit
Comparator
RSET
CFF
Soft
Start
One Shot
800nS
POWER
MOSFET
SGND
8
PGND
4
Feedback
Comparator
FB
7
/S
/Q
EN
VREF
/R
On(/Off)
 R1
VOUT = 1.08 1 + 
 R2
1
SS
2
CSS
Figure 1. Block Diagram
MIC2145
6
May 2003
MIC2145
Micrel
Output
The maximum output voltage is limited by the voltage capability of the output switch. Output voltages of up to 16V can be
achieved with the boost circuit. Higher output voltages require a flyback configuration.
Peak Current Limit
The peak current limit is externally set with a resistor. The
peak current range is from 420mA to 2A. There is a minimum
resistor value for RSET at lower VDD voltages. For resistor
value selections, see the “Typical Characteristics: Peak
Current Limit vs. RSET”.
Soft Start
The MIC2145 has a built in soft start that controls the rise time
of the output voltage and the peak current limit threshold
during start up.
Functional Description
See “Application Information” for component selection and
pre-designed circuits.
Overview
The MIC2145 is a 2.5W boost regulator with programmable
peak current limit and a constant off time. Quiescent current
for the MIC2145 is typically 200µA when the switch is in the
off state. Efficiencies above 80% throughout most operating
conditions can be realized.
Regulation
Regulation is achieved by both of the comparators, which
regulate the inductor current and the output voltage by gating
the power MOSFET. Initially, power is applied to the SW and
VDD pins. When the part is enabled, the power MOSFET
turns on and current flows. When the current exceeds the
peak current limit threshold, the current limit comparator fires
the one-shot to turn off the power MOSFET for 1000ns and
resets the SR flip-fop. The current limit comparator continues
to cycle the power MOSFET on and off until the output voltage
trips the upper threshold of the feedback comparator, which
terminates the cycle. The cycle will begin again when the
output voltage drops below the lower hysteresis threshold of
the feedback comparator. The feedback comparator has a
typical hysteresis of 18mV. Due to the gain of the feedback
resistor divider, the voltage at VOUT experiences a typical
167mV of hysteresis for 10V output at 2.4V VDD. This can be
reduced by adding a feed-forward capacitor, CFF (See
“Output Voltage” section).
VEN
(2V/div)
VIN = 3V
VOUT = 10V
RSET = 10k
CSS = 0.01µF
VOUT
(5V/div)
VSW
(5V/div)
IINDUCTOR
(500mA/div)
Time 200µs
Figure 3. Typical Soft Start Waveforms
Thermal Shutdown
Built-in thermal protection circuitry turns off the power MOSFET
when the junction temperature exceeds about 150°C.
VOUT
AC Couple
(100mV/div)
VSW
(5V/div)
IINDUCTOR
(500mA/div)
Time 20µs
Figure 2. Typical Regulator Waveforms
May 2003
7
MIC2145
MIC2145
Micrel
Application Information
A value of 1MΩ is recommended for R1 to minimize the
quiescent current when the part is off. Then, R2 can be solved
using the above equation. A feed-forward capacitor, CFF,
ranging from 5pF to 100pF can be used in parallel with R1 to
reduce the peak-to-peak output voltage ripple, which is
shown in Figures 4 and 5.
Pre-designed circuit information is at the end of this section.
Output Voltage
The output voltage of the regulator can be set between 2.4V
and 16V by connecting a resistor divider at the FB pin. The
resistor values are selected by the following equations:
R 2=
1.08V • R1
VOUT − 1.08V
VOUT
AC Couple
(100mV/div)
VOUT
AC Couple
(100mV/div)
VSW
(5V/div)
VSW
(5V/div)
Time 4µs
Time 20µs
Figure 5. With Feed-Forward Capacitor (100pF)
Figure 4. Without Feed-Forward Capacitor
MIC2145
8
May 2003
MIC2145
Micrel
Bootstrap
A bootstrapped configuration is recommended for applications that require high efficiency at heavy loads (>70mA).
This is achieved by connecting the VDD pin to VOUT (see
Figure 7). For applications that require high efficiency at light
loads (<70mA), the VDD pin is connected to the input voltage
(VIN); this is referred to as the basic configuration (see Figure
6).
L1
10µH
Sumida
CR43-100
VIN
3.6V
D1
On Semiconductor
MBR0530T1
C1
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
VDD
EN
SW
PGND
MIC2145
FB
RSET
SS
R1
100k
R2
10k
R4
1M
SGND
C3
100pF
VOUT
5V/250mA
C4
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
R3
274k
C2
0.01µF
Figure 6. Basic Configuration
L1
10µH
Sumida
CR43-100
VIN
3.6V
D1
On Semiconductor
MBR0530T1
C1
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
PGND
SW
SGND
VDD
MIC2145
R2
10k
C3
100pF
RSET
EN
SS
R1
FB 100k
VOUT
5V/350mA
C4
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
R4
1M
C2
0.01µF
R3
274k
Figure 7. Bootstrap Configuration
May 2003
9
MIC2145
MIC2145
Micrel
Inductor
The MIC2145 has a programmable peak current to allow the
usage of small surface mount inductors. A 10µH or 4.7µH
inductor is recommended for most portable applications such
as powering white LEDs and biasing LCD panels. The
inductor should have a saturation current rating higher than
the peak current during circuit operation. A low ESR (Equivalent Series Resistance) inductor is also desirable for high
efficiency. Below are tables that list the maximum output
current at minimum input voltage with efficiencies greater
than 80%.
VIN(min)
VIN(max)
RSET
IOUT(max)
VOUT
VIN(min)
VIN(max)
RSET
IOUT(max)
VOUT
(V)
(V)
(Ω)
(mA)
(V)
(V)
(V)
(Ω )
(mA)
(V)
80
5
160
5
25
10
100
10
11.5
20
12
11.5
90
12
14.5
15
15
14.5
70
15
4.5
150
5
4.5
250
5
50
10
150
10
11.5
40
12
11.5
120
12
14.5
30
15
14.5
100
15
4.5
250
5
4.5
350
5
70
10
170
10
11.5
50
12
11.5
150
12
14.5
40
15
14.5
120
15
9.5
190
10
9.5
300
10
130
12
250
12
90
15
200
15
4.5
9.5
2.4
9.5
2.4
10k
9.5
3.0
9.5
9.5
10k
14.5
9.5
5.0
10k
11.5
10k
14.5
Table 2. Typical Application for 10µH Inductor in
Bootstrap Configuration
Table 1. Typical Application for 10µH Inductor in
Basic Configuration
VIN(min)
VIN(max)
RSET
IOUT(max)
VOUT
VIN(min)
VIN(max)
RSET
IOUT(max)
VOUT
(V)
(V)
(Ω)
(mA)
(V)
(V)
(V)
(Ω)
(mA)
(V)
250
5
500
5
80
10
225
10
4.5
9.5
3.0
4.5
4.5
3.0
400
200
9.5
60
12
4.5
150
12
9.5
50
15
4.5
130
15
Table 4. Typical Application for 4.7µH Inductor in
Bootstrap Configuration
Table 3. Typical Application for 4.7µH Inductor in
Basic Configuration
MIC2145
10k
3.6
10k
11.5
10k
3.0
10k
3.6
5.0
4.5
10
May 2003
MIC2145
Micrel
Diode
A Schottky diode should be used for the output diode. Most
of the application circuits on this data sheet specify the
Motorola MBR0530 surface mount Schottky diode. It has a
forward current of 0.5A and a low forward voltage drop. For
applications that are cost driven, the 1N4148 or equivalent
can be used but the efficiency will suffer due to higher forward
voltage drop.
Output Capacitor
Low ESR capacitors should be used at the output of the
MIC2145 to minimize the switching output ripple voltage.
Selection of the capacitor value will depend upon the peak
inductor current, inductor size, and the load. MuRata offers
the GRM43-2 series with up to 10µF at 25V, with a X5R
temperature coefficient in a 1812 surface-mount package.
For lower output voltage applications, the GRM42-2 (1210
package/10µF/16V) and GRM42-6 (1206 package/10µF/
6.3V) series can be used. Typically, values ranging from
10µF to 47µF can be used for the output capacitor.
May 2003
Reducing Peak Current
If lower than 400mA peak current is required then the soft
start pin may be shorted to ground. This changes the reference of the current limit comparator. With the soft start pin
shorted to ground, the maximum current will approximately
reduce to half. The peak current should always be set at least
50% higher than the maximum load current.
11
MIC2145
MIC2145
Micrel
Pre-designed Application Circuits
L1
4.7µH
Murata
LQH3C4R7M24
VIN
3.0V-4.2V
C1
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
D1
On Semiconductor
MBR0530T1
VDD
JP1
EN
FB
LED1
LED2
LEDn
R
R
R
R3
274k
SGND
SS
R2
10k
C4
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
R4
C3
1M 100pF
PGND
MIC2145
RSET
R1
100k
VOUT
5V
SW
C2
0.01µF
VIN
VOUT
Load
Ripple Voltage
Efficiency
V
V
mA
mV(peak-peak)
%
3.6
5.0
40
<100
85
5V Output
Efficiency
90
EFFICIENCY (%)
85
80
75
70
65
VIN = 3.6V
60
1
10
100
1000
OUTPUT CURRENT (mA)
Figure 8. White LED Driver Application (Drives 1 to 10 LEDs in Parallel)
MIC2145
12
May 2003
MIC2145
Micrel
L1
10µH
Sumida
CR32-100
VIN
3.0V-5.0V
C1
10µF/6.3V
Murata
GRM42-6 X5R 106K 6.3
D1
On Semiconductor
MBR0530T1
PGND
JP1
EN
VDD
MIC2145
RSET
SS
R1
100k
R2
10k
VOUT
10.0V
SW
R4
1M
C3
100pF
FB
C4
10µF/16V
Murata
GRM42-2 X5R 106K 16
R3
121k
SGND
C2
0.01µF
VIN
VOUT
Load
Ripple Voltage
Efficiency
V
V
mA
mV(peak-peak)
%
3.0
10.0
150
<200
83
10V Output
Efficiency
90
EFFICIENCY (%)
85
80
75
70
65
60
10
VIN = 3.0V
100
1000
OUTPUT CURRENT (mA)
Figure 9. LCD Application — Bootstrap Configuration
May 2003
13
MIC2145
MIC2145
Micrel
L1
10 H
Sumida
CR32-100
VIN
3.0V-5.0V
C1
10 F/6.3V
Murata
GRM42-6 X5R 106K 6.3
D1
On Semiconductor
MBR0530T1
PGND
JP1
EN
VDD
MIC2145
R1
100k
R2
10k
R4
1M
LED1 LED2 LED3 LED4
C4
10 F/16V
Murata
GRM42-2 X5R 106K 16
C3
100pF
FB
RSET
SS
VOUT
15.0V
SW
R
R3
78.7k
SGND
C2
0.01 F
VIN
VOUT
Load
Ripple Voltage
Efficiency
V
V
mA
mV(peak-peak)
%
3.6
15.0
40
<100
85
15V Output
Efficiency
90
EFFICIENCY (%)
85
80
75
70
65
VIN = 3.6V
60
1
10
100
OUTPUT CURRENT (mA)
Figure 10. Series White LED Driver Application
MIC2145
14
May 2003
MIC2145
Micrel
Package Information
0.199 (5.05)
0.187 (4.74)
0.122 (3.10)
0.112 (2.84)
DIMENSIONS:
INCH (MM)
0.120 (3.05)
0.116 (2.95)
0.036 (0.90)
0.032 (0.81)
0.043 (1.09)
0.038 (0.97)
0.007 (0.18)
0.005 (0.13)
0.012 (0.30) R
0.008 (0.20)
0.004 (0.10)
0.012 (0.3)
0.0256 (0.65) TYP
5° MAX
0° MIN
0.012 (0.03) R
0.039 (0.99)
0.035 (0.89)
0.021 (0.53)
8-Pin MSOP (MM)
0.85 +0.15
—0.05
1.60 +0.15
—0.15
3.00 BSC.
0.80 +0.15
—0.15
1.50 BSC.
0.01 +0.04
—0.01
0.48 typ.
PIN 1 ID
0.23 +0.07
—0.05
1
1
1.50 BSC.
+0.15
2 1.15 —0.15
2
3.00 BSC.
3
2.30 +0.15
—0.15
3
0.20 dia
0.50 BSC.
0.40 +0.15
—0.05
TOP
SEATING PLANE
TERMINAL TIP
BOTTOM
0.23 +0.07
—0.05
0.50 BSC.
0.01 +0.04
—0.01
0.50 BSC.
TERMINAL TIP
ODD TERMINAL SIDE
EVEN TERMINAL SIDE
10-Pin MLF (ML)
MICREL, INC.
TEL
1849 FORTUNE DRIVE SAN JOSE, CA 95131
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.
May 2003
15
MIC2145