MICREL MIC2142BM5

MIC2142
Micrel
MIC2142
Micropower Boost Converter
Preliminary Information
General Description
Features
The MIC2142 is a micropower boost switching regulator
housed in a SOT23-5 package. The input voltage range is
between 2.2V to 16V, making the device suitable for one-cell
Li Ion and 3 to 4-cell alkaline/NiCad/NiMH applications. The
output voltage of the MIC2142 can be adjusted up to 22V.
The MIC2142 is well suited for portable, space-sensitive
applications. It features a low quiescent current of 85µA, and
a typical shutdown current of 0.1µA. It’s 330kHz operation
allows small surface mount external components to be used.
The MIC2142 is capable of efficiences over 85% in a small
board area.
The MIC2142 can be configured to efficiently power a variety
of loads. It is capable of providing a few mA output for
supplying low power bias voltages; it is also capable of
providing the 80mA needed to drive 4 white LEDs.
The MIC2142 is available in a SOT23-5 package with an
ambient operating temperature range from –40°C to +85°C
•
•
•
•
•
•
•
2.2V to 16V input voltage
Up to 22V output voltage
330kHz switching frequency
0.1µA shutdown current
85µA quiescent current
Implements low-power boost, SEPIC, or flyback
SOT23-5 package
Applications
•
•
•
•
LCD bias supply
White LED driver
12V Flash memory supply
Local 3V to 5V conversion
Typical Application
Efficiency
vs. Output Current
2.8V to 4.7V
VIN
L1
33µH
1
CIN
10µF
5
D1
MIC2142
VCC SW
3
FB
4
EN GND
2
EFFICIENCY (%)
0.90
0.85
+5V @60mA
R2
365k
R1
124k
0.80
0.75
0.70
0.65
0.60
0.55
VIN = 4.2V
VIN = 3.0V
0.50
0.45
COUT
22µF
0.40
0
Typical Configuration
10 20 30 40 50 60 70
OUTPUT CURRENT (mA)
Efficiency vs. Output Current
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
December 2000
1
MIC2142
MIC2142
Micrel
Ordering Information
Part Number
Voltage
Ambient Temp. Range
Package
MIC2142BM5
Adj
–40°C to +85°C
SOT23-5
Pin Configuration
SW GND VCC
3
2
1
SBAA
4
Part
Identification
5
FB
EN
SOT23-5 (BM5)
Pin Description
Pin Number
Pin Name
1
VCC
Chip Supply: +2.2V to +16V
2
GND
Ground: Return for internal circuitry and internal MOSFET (switch) source.
3
SW
Switch Node (Input): Internal MOSFET drain; 22V maximum.
4
FB
Feedback (Input): Output voltage sense node.
5
EN
Shutdown: Device shuts down to 0.1µA typical supply current.
MIC2142
Pin Function
2
December 2000
MIC2142
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply voltage (VCC) ..................................................... 18V
Switch voltage (VSW) .................................................... 24V
Enable pin voltage (VEN) Note 3 ................................... 18V
Feedback Voltage (VFB)
Adjustable version ....................................................... 8V
Ambient Storage Temperature (TS) ......... –65°C to +150°C
Supply Voltage (VCC) ....................................... 2.2V to 16V
Enable pin voltage (VEN) Note 3 ......................... 0V to 16V
Switch Voltage (VSW) .................................................... 22V
Ambient Temperature (TA) ......................... –40°C to +85°C
Junction Temperature Range (TJ) ........... –40°C to +125°C
Package Thermal Impedance
θJA SOT23-5 ..................................................... 220°C/W
Electrical Characteristics
VCC =3.6V, VOUT = 5V, IOUT = 20mA, TA=25°C; unless otherwise specified. Bold values indicate 25°C ≤ TJ ≤ 125°C.
Parameter
Condition
Min
Input Voltage
Quiescent Current
Feedback Voltage (VFB)
Typ
2.2
Max
Units
16
V
VEN = ON , VFB = 2.2V
85
125
µA
VEN = OFF (shutdown)
0.1
2
µA
1.28
1.306
V
1.312
V
(±2%)
1.254
(±3%)
1.241
Comparator Hysteresis
18
mV
Feedback Input Bias Current
Note 4
30
nA
Enable Input Voltage
VIH (turn on)
0.6VCC 0.55VCC
1.1
VIL (turn off)
Enable Input Current
–1
0.01
V
0.8
V
1
µA
Load Regulation
200µA ≤ IOUT ≤ 20mA
0.2
%VOUT
Line Regulation
2.2V ≤ VCC ≤ 16V; IOUT = 4mA
0.25
%/V
SW on Resistance
ISW = 100mA, VCC = 2.5V
5
Ω
ISW = 100mA, VCC = 12V
2
Ω
Switch Leakage Current
VEN = OFF, VSW = 12V
0.05
1
µA
Oscillator Frequency
295
330
365
kHz
Duty Cycle
50
57
65
%
Note 1:
Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when
operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction
temperature, TJ(Max), the junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. The maximum allowable power
dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The θJA of the power SOT23-5 is 220°C/W
mounted on a PC board.
Note 2:
The device is not guaranteed to function outside its operating rating.
Note 3:
VEN must be ≤ VIN
Note 4:
The maximum suggested value of the programming resistor, whose series resistance is measured from feedback to ground, is 124kΩ. Use of
larger resistor values can cause errors in the output voltage due to the feedback input bias current.
Note 5:
Devices are ESD sensitive, handling precautions required.
December 2000
3
MIC2142
MIC2142
Micrel
Typical Characteristics
Quiescent Current
vs. Input Voltage
600
VOUT = 5V
400
4
300
3
200
2
100
100
50
2
0
0
4 6 8 10 12 14 16
INPUT VOLTAGE (V)
1
ISW = 100mA
2
4
6
8 10 12
INPUT VOLTAGE (V)
IL = 2mA
L = 220µH
200
65
4
6
8 10 12
INPUT VOLTAGE (V)
14
60
2
350
100 V = 15V
O
50 IO = 100µA
L= 220µH
0
0
2
4
6
8 10 12
INPUT VOLTAGE (V)
0.45
0.40
14
tON vs.
Temperature
tON (µsec)
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
MIC2142
10
L = 22µH
8 VIN = 5V
6
4
0
0
80
78
76
74
72
VIN = 3.6V
70
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
VIN = 3.6V
15.15 IO = 100µA
L = 22µH
15.10
15.00
330
325
320
315
310
305
300
295
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
4
1.290
1.285
15.05
1.280
VOUT
1.275
14.95
VREF
14.90
1.270
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
Frequency vs.
Temperature
335
5
10 15 20 25 30
OUTPUT CURRENT (mA)
VOUT and VREF
Over Temperature
15.20
82
VREF
2
14
340
FREQUENCY (kHz)
2
0.50
QUIESCENT CURRENT (µA)
Duty Cycle
DUTY CYCLE
0.55
150
12
VOUT = 15V
84
0.60
250
200
IL = 7mA
L = 22µH
6
8
10 12
INPUT VOLTAGE (V)
14
VOUT
14
Quiescent Current
vs. Temperature
0.65
Frequency
IL = 2mA
L = 220µH
4
6
8
10 12
INPUT VOLTAGE (V)
16
OUTPUT VOLTAGE (V)
2
4
MIC2142 Load
Regulation
70
Oscillator Characteristics
vs. Input Voltage
300
14
2
Timing Characteristics
Over Temperature
OSCILLATOR CHARACTERISTICS
400
0
0
14.5
OUTPUT VOLTAGE (V)
EFFICIENCY (%)
VOUT = 15V
IL = 2mA
L = 220µH
15
0
14
80
75
L = 22µH
15.5
85
IL = 7mA
L = 22µH
800
600
16
Efficiency
vs. Input Voltage
1200
1000
I = 7mA
REFERENCE VOLTAGE (V)
150
5
OUTPUT VOLTAGE (V)
200
500
Output Ripple
vs. Input Voltage
OUTPUT RIPPLE (mV)
16.5
RDS(ON)
250
0
0
FREQUENCY (kHz)
Line Regulation
6
L
VDS (V)
QUIESCENT CURENT (µA)
350
300
VDS and RDS(ON)
vs. Input Voltage
3.5
3.0 T (µsec)
2.5
2.0
1.5 t (µsec)
ON
1.0
0.5
Duty Cycle
0
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
December 2000
MIC2142
Micrel
6
Timing Characteristics
Over Temperature
RDS(ON) vs.
Temperature
0.6
VCC=3.3V
DUTY CYCLE (%)
7
RDS(ON) (Ω)
5
4
3
VCC = 4.5V
2
1
0.54
0.52
0.5
0.48
0.46
0.44
0.42
0.4
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
0
-50 -30 -10 10 30 50 70 90 110
TEMPERATURE (°C)
December 2000
0.58
0.56
5
MIC2142
MIC2142
Micrel
Functional Diagram
VCC
Bandgap
Reference
SW
Oscillator
330kHz
FIXED DUTY CYCLE
EN
Shutdown
FB
MIC2142
GND
Functional Description
output. Once the feedback input to the comparator exceeds
the control voltage by 18mV, the high frequency oscillator
drive is removed from the output switch. As the feedback
input to the comparator returns to the reference voltage level,
the comparator is reset and the high frequency oscillator is
again gated to the output switch. The 18mV of hysteresis
seen at the comparator will be multiplied by the ratio of the
output voltage to the reference voltage. For a five volt output
this ratio would be 4, corresponding to a ripple voltage of
72mV at the output.
The maximum output voltage is limited by the voltage capability of the output switch. Output voltages up to 22V can be
achieved with a standard boost circuit. Higher output voltages can be realized with a flyback configuration.
This MIC2142 is a fixed duty cycle, constant frequency, gated
oscillator, micropower, switch-mode power supply controller.
Quiescent current for the MIC2142 is only 85µA in the switch
off state, and since a MOSFET output switch is used, additional switch drive current is minimized. Efficiencies above
85% throughout most operating conditions can be realized.
A functional block diagram is shown above and typical
schematic is shown on page 1. Regulation is performed by a
hysteretic comparator, which regulates the output voltage by
gating the internal oscillator. The internal oscillator operates
at a fixed 57% duty cycle and 330kHz frequency. For the fixed
output versions, the output is divided down internally and then
compared to the internal VREF input. An external resistive
divider is use for the adjustable version.
The comparator has hysteresis built into it, which determines
the amount of low frequency ripple that will be present on the
MIC2142
6
December 2000
MIC2142
Micrel
recommmended. Table 6 lists minimum inductor sizes versus
input and output voltage. In low-cost, low-peak-current applications, RF-type leaded inductors may sufficient. All inductors listed in Table 5 can be found within the selection of
CR32- or LQH4C-series inductors from either Sumida or
muRata.
Application Information
Predesigned circuit information is at the end of this section.
Component Selection
Resistive Divider (Adjustable Version)
The external resistive divider should divide the output voltage
down to the nominal reference voltage. Current drawn through
this resistor string should be limited in order to limit the effect
on the overall efficiency. The maximum value of the resistor
string is limited by the feedback input bias current and the
potential for noise being coupled into the feedback pin. A
resistor string on the order of 2MΩ limits the additional load
on the output to 20µA for a 20V output. In addition, the
feedback input bias current error would add a nominal 60mV
error to the expected output. Equation 1 can be used for
determining the values for R2 and R1.
(1)
(2)
2LMAX TS
eff
(3)
IPK =
− VIN(min)
t ON(max ) VIN(max )
LMIN
Table 1 lists common inductors suitable for most applications. Due to the internal transistor peak current limitation at
low input voltages, inductor values less than 10µH are not
December 2000
LQH1C/3C/4C
surface mount
Sumida
CR32
surface mount
J.W. Miller
78F
axial leaded
Coilcraft
90
axial leaded
Diode
75°C
VFWD
at
100mA
25°C
Room
75°C
VFWD
Temp.
Leakage Package
at
Leakage
at 15V
100mA at 15V
MBR0530
0.275V
0.325V
2.5µA
90µA
SOD123
SMT
1N4148
0.6V
(175°C)
0.95V
25nA
(20V)
0.2µA
(20V)
leaded
and SMT
BAT54
0.4V
(85°C)
0.45V
10nA
(25V)
1µA
(20V)
SMT
BAT85
0.54
(85°C)
0.56V
0.4µA
2µA
(85°C)
DO-34
leaded
Output Capacitor
Due to the limited availability of tantalum capacitors, ceramic
capacitors and inexpensive electrolyics may be preferred.
Selection of the capacitor value will depend upon the peak
inductor current and inductor size. MuRata offers the GRM
series with up to 10uF @ 25V with a Y5V temperature
coefficient in a 1210 surface mount package. Low cost
applications can use the M series leaded electrolytic capacitor from Panasonic. In general, ceramic, electrolytic, or
tantalum values ranging from 1µF to 22µF can be used for the
output capacitor.
1
VO
MuRata
Table 2. Diode Examples
2
×
Device Type
Boost Output Diode
Speed, forward voltage, and reverse current are very important in selecting the output diode. In the boost configuration
the average diode current is the same as the average load
current and the peak is the same as the inductor and switch
current. The peak current is the same as the peak inductor
current and can be derived from Equation 3 or the graph in
Figure 13. Care must be taken to make sure that the peak
current is evaluated at the maximum input voltage.
The BAT54 and BAT85 series are low current Shottky diodes
available from “On Semiconductor” and “Phillips” respectively. They are suitable for peak repetitive currents of 300mA
or less with good reverse current characteristics. For applications that are cost driven, the 1N4148 or equivalent will
provide sufficient switching speed with greater forward drop
and reduced cost. Other acceptable diodes are On
Semiconductor’s MBR0530 or Vishay’s B0530, although
they can have reverse currents that exceed 1 mA at very high
junction temperatures. Table 2 summarizes some typical
performance characteristics of various suitable diodes.
Boost Inductor
Maximum power is delivered to the load when the oscillator
is gated on 100% of the time. Total output power and circuit
efficiency must be considered when determining the maximum inductor value. The largest inductor possible is preferable in order to minimize the peak current and output ripple.
Efficiency can vary from 80% to 90% depending upon input
voltage, output voltage, load current, inductor, and output
diode.
Equation 2 solves for the output current capability for a given
inductor value and expected efficiency. Figures 7 through 12
show estimates for maximum output current assuming the
minimum duty and maximum frequency and 80% efficiency.
To determine the necessary inductance, find the intersection
between the output voltage and current, and then select the
value of the inductor curve just above the intersection. If the
efficiency is expected to be different than the 85% used for the
graph, Equation 2 can then be used to better determine the
maximum output capability.
The peak inductor/switch current can be calculated from
Equation 3 or read from the graph in Figure 13. The peak
current shown in the graph in Figure 13 is derived assuming
a max duty cycle and a minimum frequency. The selected
inductor and diode peak current capability must be greater
than this. The peak current seen by the inductor is calculated
at the maximum input voltage. A wide ranging input voltage
will result in a higher worst case peak current in the inductor
than a narrow input range.
(VIN(min) tON )
Series
Table 1. Inductor Examples
 R1 + R2 
VOUT = 
V
 R1  REF
IO(max) =
Manufacturer
7
MIC2142
MIC2142
Micrel
Manufacturer
Series
Type
Package
MuRata
GRM
ceramic Y5V
surface mount
Vishay
594
tantalum
surface mount
Panasonic
M-series
electrolytic
leaded
Bootstrap Configuration
For input voltages below 4.5V the bootstrap configuration can
increase the output power capability of the MIC2142. Figure
2 shows the bootstrap configuration where the output voltage
is used to bias the MIC2142. This impoves the power capability of the MIC2142 by increasing the gate drive voltage
hence the peak current capability of the internal switch. This
allows the use of a smaller inductor which increases the
output power capability. Table 4 also summarizes the various
configurations and power capabilities using the booststrap
configuration. This bootstrap configuration is limited to output
voltage of 16V or less.
Figure 1 shows how a resistor (R3) can be added to reduce
the ripple seen at the VCC pin when in the bootstrap configuration. Reducing the ripple at the VCC pin can improve output
ripple in some applications.
Table 3. Capacitor Examples
Design Example
Given a design requirement of 12V output and 1mA load with
an miniumum input voltage of 2.5V, Equation 2 can be used
to calculate to maximum inductance or it can be read from the
graph in Figure 7. Once the maximum inductance has been
determined the peak current can be determined using Equation 3 or the graph in Figure 13.
VOUT = 12V
IOUT = 5mA
VIN = 2.5V to 4.7V
Fmax = 360kHz
η = 0.8 = efficiency
Dnom = 0.55
L1
33µH
CR1
MBR0530
R3
100
1
= 2.78µsec
Fmax 360kHz
D
0.55
t ON(min)= nom =
1.53µsec
fmax
360kHz
TS(min)=
1
+3.0V to +4.2V
VIN
+5V @80mA
R2
36.5k
C3
270pF
=
C2
10µF
VIN(min) × t ON(min)
1
Lmax =
×
V
IO(max) × 2 × TS(min)
O
− VIN(min)
η
2.5 2 × 1.53µsec 2
1
Lmax =
×
= 42µH
5mA × 2 × 2.78µsec 12 − 2.5
0.8
2
U1 MIC2142
FB SW 3
R1
12.4k
4
GND
2
EN VCC
1
C1
22µF
2
5
C4
1µF
GND
GND
Figure 1. Bootstrap VCC with VCC Low Pass Filter
Select 39µH ±10%.
1.1× Dnom 1.1× 0.55
=
= 2µsec
Fmin
300kHz
t ON(max) × VIN(max) 2.0µsec × 4.7V
=
= 270mA
Ipeak =
Lmin
35µH
t ON(max)=
MIC2142
8
December 2000
MIC2142
Micrel
L1
47µH
VIN
CR1
MBR0530
+5V @16mA
R2
36.5k
R1
12.4k
U1 MIC2142
SW 3
4 FB
C2
10µF
5
GND
2
EN VCC
1
C3
270pF
C1
22µF
GND
GND
Figure 2. Booststrap Configuration
For additional predesigned circuits, see Table 4.
L1
10µH
CR1
MBR0530
VIN
+15V @15mA
CR5
LWT673
CR7
LWT673
U1 MIC2142
FB SW 3
CR6
LWT673
4
(from µcontroller)
PWM
GND
2
EN VCC
1
C2
10µF
5
C1
1µF
25V
Rprogram
82Ω
GND
GND
Figure 3. Series White LED Driver with PWM Dimming Control
L1
10µH
CR1
MBR0530
VIN
+15V @15mA
CR5
LWT673
CR7
LWT673
U1 MIC2142
FB SW 3
CR6
LWT673
4
C2
10µF
SHTDWN
5
GND
2
EN VCC
1
C1
1µF
25V
Rprogram
82Ω
GND
GND
DAC
R4
R3
Figure 4. Series White LED Driver with Analog Dimming Control
December 2000
9
MIC2142
MIC2142
Micrel
L1
10µH
CR3
MBR0530
VIN
+5.0V @50mA
U1 MIC2142
FB SW 3
CR1
LWT673
4
GND
C2
10µF
EN
5
EN VCC
CR2
LWT673
CR3
LWT673
C1
1µF
25V
2
1
R1
120Ω
R2
120Ω
R3
120Ω
GND
GND
DAC
R4
R3
Figure 5. Parallel White LED Driver with Analog Dimming Control
VIN
L1
10µH
CR1
BAT54HT1
+20V @0.5mA
R2
1.8M
C2
10µF
U1 MIC2142
FB SW 3
R1
120k
4
5
GND
2
EN VCC
1
C1
1µF
25V
C1
1µF
25V
VINRTN
GND
Figure 6. Handheld LCD Supply
MIC2142
10
December 2000
MIC2142
Micrel
Predesigned Circuit Values
VIN(min)
VIN(max)
VOUT
IOUT(max)
L1
IPK @ VIN(max)
CR1
2.5V
3.0V
3.3V
40mA
23mA
10mA
47µH
85µH
180µH
129mA
74mA
34VmA
BAT54
BAT54
BAT54
2.5V
4.5V
5V
16.5mA
7.8mA
51
77
47µH
100µH
15
10
193mA
91mA
605
908
BAT54
BAT54
MBR0530
MBR
4.8
2.25
15
22
47
100
15
10
493
232
632
950
MBR
BAT
MBR
MBR
47
100
10
22
622
292
950
430
MBR
BAT
MBR
MBR
boot strapped
boot strapped
2.5
11.5
12
4.7
boot strapped
boot strapped
14.5
15
4.7
boot strapped
boot strapped
3.7
1.7
17.4
8
2.5
2.5
4.7
4.7
20
20
2.7
1.5
47
82
202
110
BAT
BAT
3.0
4.7
5
boot strapped
boot strapped
40
70
100
33
18
12
287
525
800
BAT
MBR
MBR
3.0
8.5
4.7
4.7
9
boot strapped
boot strapped
15
28
40
33
18
12
520
525
800
MBR
MBR
MBR
3.0
3.0
3.0
14.5
4.7
4.7
15
boot strapped
boot strapped
7.8
14
21
33
18
12
886
525
800
MBR
MBR
MBR
3.0
4.7
20
5.6
33
287
BAT
5.0
8.5
9
70
23
10
27
82
180
635
209
95
MBR
BAT
BAT
5.0
11.5
12
43
14
6
27
82
180
860
283
129
MBR
BAT
BAT
5.0
14.5
15
30
10
30
27
82
27
1083
357
672
MBR
MBR
MBR
2.5
9
5.0
8.0
20
8
68
237
BAT
9
11.5
12
118
66
30
56
100
220
414
232
105
MBR
BAT
BAT
9
14
15
70
40
18
56
100
220
504
282
128
MBR
BAT
BAT
9
14
20
20
10
6
120
220
390
235
128
72
BAT
BAT
BAT
12
14
15
156
71
27
68
150
390
415
182
72
MBR
BAT
BAT
12
14
20
35
150
188
BAT
Table 4. Typical Maximum Power Configuration
December 2000
11
MIC2142
MIC2142
Micrel
VIN
VOUT
IOUT
L1
CR1
IPEAK
3.3V±5%
5V
9V
12V
15V
20V
70mA
30mA
20mA
15mA
6mA
18µ H
18µH
18µH
18µ H
33µH
MBR0530
MBR0530
MBR0530
MBR0530
BAT54
5V±5%
9V
12V
15V
20V
70mA
40mA
30mA
8.0mA
27µH
27µ H
27µH
68µ H
MBR0530 370
MBR0530 370
MBR0530 370
BAT54
148
12V±5%
15V
20V
158
35
68
150
MBR0350 350
BAT54
160
15V±5%
20V
50
220
BAT54
400
400
400
400
214
Configuration
Bootstrap
Bootstrap
Bootstrap
Bootstrap
1140
Table 5. Typical Maximum Power Configurations for Regulated Inputs
VOUT = 16V to 22V
VOUT < 16V (boostraped)
VOUT < 16 (boostraped)
85C
85C
40C
VIN (V)
LMIN (µH)
LMIN (µH)
LMIN (µH)
2.5
47
47 (15)
47 (10)
3
33
33 (18)
33 (12)
3.5
47
27 (22)
27 (15)
4
56
27 (22)
22 (18)
5
68
27
22
6
82
33
22
7
100
39
27
8
100
47
33
9
120
56
33
10
150
56
39
11
150
68
47
12
150
68
47
13
180
82
56
14
180
82
56
15
220
82
56
16
220
100
68
Table 6. Minimum Inductance
Manufacturer
Web Address
MuRata
www.MuRata.com
Sumida
www.sumida.com
Coilcraft
www.coilcraft.com
J. W. Miller
www.jwmiller.com
Micrel
www.micrel.com
Vishay
www.vishay.com
Panasonic
www.panasonic.com
Table 7. Component Supplier Websites
MIC2142
12
December 2000
MIC2142
Micrel
Inductor Selection Guides
1000
1000
VIN = 2.5V
VIN = 3.0V
12µH
15µH
18µH
22µH
10µH
12µH
27µH
33µH
15µH
100
18µH
100
MAX. OUTPUT CURRENT (mA)
MAX. OUTPUT CURRENT (mA)
22µH
33µH
39µH
47µH
56µH
68µH
82µH
100µH
120µH
10
150µ
H
180µH
39µH
47µH
56µH
68µH
82µH
100µH
120µH
150µH
180µH
220µH
10
220µH
1
0
2
4
6
8
10
12
14
16
OUTPUT VOLTAGE (V)
18
20
1
0
22
Figure 7. Inductor Selection for VIN = 2.5V
December 2000
2
4
6
8
10 12 14 16
OUTPUT VOLTAGE (V)
18
20
22
24
Figure 8. Inductor Selection for VIN = 3.0V
13
MIC2142
MIC2142
Micrel
1000
1000
VIN = 5.0V
18µH
VIN = 9.0V
22µH
27µH
33µH
39µH
39µH
47µH
47µH
56µH
56µH
68µH
68µH
100 120µH
100 120µH
150µH
150µH
MAX. OUTPUT CURRENT (mA)
82µH
100µH
MAX. OUTPUT CURRENT (mA)
82µH
100µH
180µH
220µH
10
1
2
220µH
270µH
330µH
390µH
470µH
10
4
6
8
10
12
14
16
18
OUTPUT VOLTAGE (V)
20
22
1
8
24
Figure 9. Inductor Selection for VIN = 5V
MIC2142
180µH
10
12
14
16
18
OUTPUT VOLTAGE (V)
20
22
24
Figure 10. Inductor Selection for VIN = 9V
14
December 2000
MIC2142
Micrel
1000
1000
VIN = 15V
VIN = 12.0V
47µH
56µH
68µH
82µH
100µH
120µH
150µH
180µH
220µH
100
270µH
MAX. OUTPUT CURRENT (mA)
MAX. OUTPUT CURRENT (mA)
330µH
390µH
470µH
56µH
100
68µH
82µH
100µH
120µH
10
150µH
180µH
220µH
270µH
330µH
390µH
470µH
1
10
12
14
16
18
20
OUTPUT VOLTAGE (V)
22
10
14
24
Figure 11. Inductor Selection for VIN = 12V
December 2000
16
18
20
OUTPUT VOLTAGE (V)
22
24
Figure 12. Inductor Selection for VIN = 15V
15
MIC2142
68µH
56µH
47µH
39µH
33µH
27µH
22µH
15µH
600
18µH
Micrel
10µH
12µH
MIC2142
82µH
4.5V to 15VCC Limit
500
100µH
400
PEAK CURRENT (mA)
120µH
300
150µH
3.5VCC Limit
180µH
220µH
200
16V to 20VOUT Limit
8.2µH
2.5VCC Limit
100
0
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
INPUT VOLTAGE (V)
Figure 13. Peak Inductor Current vs. Input Voltage
MIC2142
16
December 2000
MIC2142
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
1.30 (0.051)
0.90 (0.035)
3.02 (0.119)
2.80 (0.110)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.50 (0.020)
0.35 (0.014)
0.60 (0.024)
0.10 (0.004)
SOT23-5 (M3)
MICREL INC.
TEL
1849 FORTUNE DRIVE SAN JOSE, CA 95131
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
December 2000
17
MIC2142