MICREL MIC4043BM4

MIC4043
Micrel
MIC4043
Low-Voltage Secondary-Side Shunt Regulator
General Description
Features
The MIC4043 is a shunt regulator optimized for secondaryside regulation in low-voltage power supplies. Featuring an
output stage guaranteed to swing within 400mV of ground,
the MIC4043 can be used in power supplies operating down
to 1.8V, even with optoisolators requiring greater than 1.2V of
headroom.
In power supply applications, the MIC4043 normally drives
the LED of an optically isolated feedback circuit. The MIC4043
monitors a resistively-divided output voltage and sinks error
current through the optoisolator’s LED (secondary side); the
optoisolator’s transistor (primary side) provides this signal to
the controller’s feedback input. The MIC4043 is also practical
for other voltage-monitoring applications requiring an opencollector output.
The MIC4043 replaces conventional ’431-type shunt regulators to allow low-voltage applications where there is inadequate headroom for a 2.5V regulator in series with an
optoisolator. Replacing ’431-type devices requires only a
minor change to the way that the resistive-divider values are
calculated.
• Ideal for 1.8V switching converters
• Low-voltage operation
400mV maximum saturation over
operating temperature range
• Easy to use
voltage in, current out
• 2% voltage tolerance over operating temperature range
Applications
• Optically isolated low-volage power supplies
• Low-voltage discrete regulator control
Typical Application
COMPENSATION
OPTICAL
ISOLATION
MIC4043
MIC4043
Low-Side Feedback
Control
VIN
IN SNK
GND FB
VOUT
1
7
R1
R2
2
6
MIC38HC43BN
COMP
VREF
8
2
FB
VDD
7
3
ISNS
VOUT
6
GND
5
RT/CT
3
 R2 
VOUT = 1.245V 
+ 1
 R1 
PRIMARY SIDE
4
Return
4
SECONDARY SIDE
1
200kHz DC-DC Flyback Converter
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
May 2000
1
MIC4043
MIC4043
Micrel
Ordering Information
Part Number
Marking
Voltage
Tolerance
Configuration
Temperature Range
Package
MIC4043BM4
RBAD
1.245V
1%
Open Collector
–40°C to +85°C
SOT-143
Pin Configuration
FB
4
GND
3
Part
Identification
RBxx
1
2
SNK
IN
MIC4043
Pin Description
Pin Number
Pin Name
Pin Function
1
IN
2
SNK
Sink (Output): NPN open collector output.
3
GND
Ground
4
FB
Input: Supply voltage input.
Feedback (Input): 1.245V feedback input from external voltage-divider
network.
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Input Voltage (VIN) ...................................................... +15V
Output Voltage (VSNK) ................................................ +15V
Storage Temperature (TS) ....................... –65°C to +150°C
ESD Rating, Note 3
human body model .................................................... 2kV
machine model ........................................................ 200V
Input Voltage (VIN) ...................................................... +10V
Output Voltage (VSNK) ................................................ +10V
Maximum Output Current (ISNK) ................................ 15mA
Temperature Range (TA) ........................... –40°C to +85°C
MIC4043
2
May 2000
MIC4043
Micrel
Electrical Characteristics
TA = 25°C, bold values indicate –40°C ≤ TA ≤ +85°C; unless noted
Parameter
Condition
Min
Reference Voltage
Typ
Max
Units
1.245
Reference Voltage Tolerance
Supply Current
ISNK = 0mA
Transconductance
∆ISINK/∆VIN
1mA < ISNK < 15mA
Output Transistor
Saturation Voltage
ISNK = 15mA
Output Leakage
VSNK = 5V, output transistor off
35
3.5
2
V
±2
±1
%
%
65
70
µA
µA
150
160
S
S
250
400
mV
mV
0.5
1
µA
µA
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Machine model, 200pF.
Test Circuits
Floating
Bench
Supply
R1
MIC4043
IN SNK
1k
OUT
RETURN
R
GND FB
A
Analyzer
R
CFB
2700pF
Do Not Ground!
R2
33k
R
R
* Compensation element
50Ω
OUTPUT
A
VOUT
R1
R2
1.8V
72k
33k
2.5V
33k
33k
3.3V
20k
33k
A
A
Test Circuit 1. Compensation (Bode Plot) Circuit
Supply
OUT
RETURN
1k
MIC4043
IN SNK
R3
2k
R1
C2*
2700pF
R2
33k
GND FB
C1*
1000pF
* Compensation components
Test Circuit 2. Transient Response Circuit
May 2000
3
MIC4043
MIC4043
Micrel
Transient Response 1b.
1.8V Output With Compensation
VOUT
VOUT
VREG
VREG
VIN
VIN
Transient Response 1a.
1.8V Output Without Compensation
Transient Response 2b.
2.5V Output With Compensation
VOUT
VOUT
VREG
VREG
VIN
VIN
Transient Response 2a.
2.5V Output Without Compensation
Transient Response 3b.
3.3V Output With Compensation
VOUT
VOUT
VREG
VREG
VIN
VIN
Transient Response 3a.
3.3V Output Without Compensation
MIC4043
4
May 2000
MIC4043
Micrel
Functional Diagram
IN
VREF
1.245V
SNK
FB
MIC4043
GND
Reference
The MIC4043 uses a high-side reference. External voltage
dividers providing feedback to the MIC4043 will be inverted
when compared to those used with ’431-equivalent devices.
Behavior
The external feedback voltage is compared to the internal
high-side 1.245V reference.
If the feedback voltage, VFB, is less than VIN – VREF, the
amplifier provides no drive to the sink transistor. If the
feedback voltages is greater than VIN – VREF, the amplifier
drives the pass transistor which sinks current to ground.
Functional Description
The MIC4043 combines a Gm amplifier, precision 1.245V
reference, and a pass transistor in a single package.
The operation of the MIC4043 is similar to conventional shunt
regulators such as the industry standard ’431. In a closed
loop system, the MIC4043 maintains the desired feedback
voltage at the FB pin by sinking current onto the SNK pin
proportional to the error voltage at the FB pin. The ratio of sink
current to error voltage is the transconductance of the device.
May 2000
5
MIC4043
MIC4043
Micrel
Applications Information
Voltage Detector
Replacement of ’431-Type Devices
Since the MIC4043 uses a high-side reference, external
voltage dividers providing the feedback voltage will be
inverted when compared to those used with ’431-equivalent devices.
The industry-standard ’431 is also typically used in series with
an opto-isolator LED. This configuration has a voltage drop of
at least 2.5V for the ’431 plus 1.4V for the LED (3.9V). More
recent lower-voltage shunt regulators require at least 1.25V
of headroom in addition to the 1.4V for the opto isolator, for
a total of 2.65V.
The MIC4043 effectively puts the regulator reference voltage
in parallel with the LED and drives the LED with a single,
series NPN transistor. The headroom required by this transistor is its saturation voltage of 400mV over it’s operating
temperature range, reducing the overall headroom requirement to 1.4V + 0.4V = 1.8V.
Compensation
The noninverting side of the error amplifier is connected to the
high-side reference; the reference is connected to the IN pin.
The inverting side of the error amplifier is brought out to the
FB pin. For some applications, no compensation is needed,
but for most, some small value of capacitance is necessary
between the FB pin and SNK pin. The value of the feedback
capacitance is application specific, but for most applications
100pF to 3000pF is all that is needed. Changing the feedback
capacitor changes the loop response; that is, phase and gain
margin. An empirical way to check overall system loop
response, if a network analyzer is not available, is to step load
the output of the systems from 10% to 100% of nominal load.
The resultant small signal response at the output of the
systems will provide an idea of which direction to go based on
the overshoot and settling time of VOUT.
MIC4043
 R2 
VTRIP = 1.245V 
+ 1
 R1 
VOUT
(FROM
POWER
SUPPLY)
MIC4043
IN SNK
R1
RPULL-UP
Logic
Output
GND FB
R2
33k
DISABLED
ENABLED
Figure 1. Voltage Detector
Figure 1 shows a simple voltage threshold detector with a
logic output.
High-Current Regulator
VIN
IBIAS
≥500µA
VOUT = 2.5V
RBIAS
MIC4043
IN SNK
Q1
 R2 
VOUT = 1.245V 
+ 1
 R1 
∴ R1 = 33k, R2 = 33k
R1
33k
GND FB
R2
33k
Figure 2. High-Current Regulator
For the high-current regulator shown in Figure 2, headroom
is equal to the saturation voltage of Q1 plus the saturation
voltage of the MIC4043 (VSAT(min) = 200mV).
6
May 2000
MIC4043
Micrel
Off-Line 1.8V/2A Power Supply
U2b
2501
85 to 264Vac
50/60Hz
BR1
DBR1
F1
Hot
L1
Ground
C14
R10
3000pF 72k
50V
1%
1A
C1
0.1µF
250V
Neutral
20mH
C3
2200pF
400V
C2
2200pF
400V
U3
MIC4043
C4
47µF
400V
IN SNK
GND FB
D4
12CTQ045
C10
U2a
0.1µF
50/63V
2501
U1
MIC38HC43BN
R5
1
COMP
VREF
1.21k 1%
2
FB
VDD
R6
3
1.21k
ISNS
VOUT
1%
4
R7
14k 1%
C6
470pF
63V
RT/CT
GND
R3
332k
1%
8
D2
18V
6
5
10Ω 1%
C7
1k 1%
470pF
63V
C5
0.1µF
50/
63V
Q1
IRFIBE30G
R8
1.9Ω
1/4W
1%
R11
33k
1%
C11
1200µF
10V
6
D1
1N4448
C8
22µF
25V
C13
1000pF
50/63V
VOUT
+1.8V/2A
5µH
3T
2
R4
34Ω
1%
R12
90Ω
L2
7
80T
4
7
R13
R1
1
R2
332k
1%
R15
47.5k
1%
C12
220µF
10V
R14
200Ω
1%
Return
T1
10T
 R2 
VTRIP = 1.245V 
+ 1
 R1 
3
C9
100pF
1kV
R9
470Ω
1/2W
D3
UF4005
Figure 3. Off-Line 1.8V/2A Power Supply
Figure 3a. 1.8V/1A Bode Plot
(θ margin = 69°)
May 2000
Figure 3b. 1.8V/2A Bode Plot
(θ margin = 79°)
7
MIC4043
MIC4043
Micrel
Off-Line 2.5V/2A Power Supply
U2b
2501
85 to 264Vac
50/60Hz
BR1
DBR1
F1
Hot
L1
Ground
C14
R10
3000pF 33k
50V
1%
C1
0.1µF
250V
1A
Neutral
20mH
C2
2200pF
400V
C3
2200pF
400V
U3
MIC4043
C4
47µF
400V
IN SNK
GND FB
D4
12CTQ045
C10
U2a
0.1µF
50/63V
2501
U1
MIC38HC43BN
R5
1
VREF
COMP
1.21k 1%
2
FB
VDD
R6
3
1.21k
ISNS
VOUT
1%
4
R7
14k 1%
C6
470pF
63V
RT/CT
GND
R3
332k
1%
8
D2
18V
6
5
10Ω 1%
C7
1k 1%
470pF
63V
C5
0.1µF
50/
63V
Q1
IRFIBE30G
R8
1.2Ω
1/4W
1%
R11
33k
1%
C11
1200µF
10V
6
D1
1N4448
C8
22µF
25V
C13
1000pF
50/63V
VOUT
+2.5V/2A
5µH
3T
2
R4
34Ω
1%
R12
90Ω
L2
7
75T
4
7
R13
R1
1
R2
332k
1%
R15
47.5k
1%
C12
220µF
10V
R14
200Ω
1%
Return
T1
9T
 R2 
VTRIP = 1.245V 
+ 1
 R1 
3
C9
100pF
1kV
R9
470Ω
1/2W
D3
UF4005
Figure 4. Off-Line 2.5V/2A Power Supply
Figure 4a. 2.5V/1A Bode Plot
(θ margin = 73°)
MIC4043
Figure 4b. 2.5V/2A Bode Plot
(θ margin = 65°)
8
May 2000
MIC4043
Micrel
Off-Line 3.3V/2A Power Supply
BR1
DBR1
F1
Hot
L1
Ground
C1
0.1µF
250V
1A
Neutral
20mH
C2
2200pF
400V
C3
2200pF
400V
C14
R10
3000pF 20k
50V
1%
U2b
2501
85 to 264Vac
50/60Hz
U3
MIC4043
C4
47µF
400V
IN SNK
GND FB
D4
12CTQ045
C10
U2a
0.1µF
50/63V
2501
U1
MIC38HC43BN
R5
1
VREF
COMP
1.21k 1%
2
FB
VDD
R6
3
1.21k
ISNS
VOUT
1%
4
R7
14k 1%
C6
470pF
63V
RT/CT
GND
R3
332k
1%
8
6
D2
18V
5
10Ω 1%
C7
1k 1%
470pF
63V
3T
2
R4
34Ω
1%
C5
0.1µF
50/
63V
6
D1
1N4448
C8
22µF
25V
Q1
IRFIBE30G
R12
90Ω
C13
1000pF
50/63V
R11
33k
1%
VOUT
+3.3V/2A
L2
5µH
7
77T
4
7
R13
R1
1
R2
332k
1%
R15
47.5k
1%
C11
1200µF
10V
C12
220µF
10V
R14
200Ω
1%
Return
T1
10T
 R2 
VTRIP = 1.245V 
+ 1
 R1 
3
C9
100pF
1kV
R8
1.0Ω
1/4W
1%
R9
470Ω
1/2W
D3
UF4005
Figure 5. Off-Line 3.3V/2A Power Supply
Figure 5a. 3.3V/1A Bode Plot
(θ margin = 76°)
May 2000
Figure 5b. 3.3V/2A Bode Plot
(θ margin = 74°)
9
MIC4043
MIC4043
Micrel
Off-Line 5V/2A Power Supply
BR1
DBR1
F1
Hot
L1
Ground
C1
0.1µF
250V
1A
Neutral
20mH
C2
2200pF
400V
C3
2200pF
400V
C14
R10
3000pF 11k
50V
1%
U2b
2501
85 to 264Vac
50/60Hz
U3
MIC4043
C4
47µF
400V
IN SNK
GND FB
D4
12CTQ045
C10
U2a
0.1µF
50/63V
2501
U1
MIC38HC43BN
R5
1
COMP
VREF
1.21k 1%
2
FB
VDD
R6
3
1.21k
ISNS
VOUT
1%
4
R7
14k 1%
C6
470pF
63V
RT/CT
GND
R3
332k
1%
8
6
D2
18V
5
R13
R1
C5
0.1µF
50/
63V
Q1
IRFIBE30G
6T
R11
33k
1%
C11
1200µF
10V
6
D1
1N4448
C8
22µF
25V
C13
1000pF
50/63V
VOUT
+5V/2A
5µH
3T
2
R4
34Ω
1%
R12
90Ω
L2
7
45T
4
7
10Ω 1%
C7
1k 1%
470pF
63V
1
R2
332k
1%
R15
47.5k
1%
C12
220µF
10V
R14
200Ω
1%
Return
T1
Coiltronics
561-241-7876
 R2 
VTRIP = 1.245V 
+ 1
 R1 
3
C9
100pF
1kV
R8
0.68Ω
1/4W
1%
R9
470Ω
1/2W
D3
UF4005
Figure 6. Off-Line 5V/2A Power Supply
Figure 6a. Off-Line 12V Input, 5V/2A Output Bode Plot
(θ margin = 83°)
MIC4043
10
May 2000
MIC4043
Micrel
Package Information
0.950 (0.0374) TYP
1.40 (0.055) 2.50 (0.098)
1.20 (0.047) 2.10 (0.083)
CL
CL
3.05 (0.120)
2.67 (0.105)
0.800 (0.031) TYP
0.400 (0.016) TYP 3 PLACES
DIMENSIONS:
MM (INCH)
1.12 (0.044)
0.81 (0.032)
0.10 (0.004)
0.013 (0.0005)
8°
0°
0.150 (0.0059)
0.089 (0.0035)
0.41 (0.016)
0.13 (0.005)
SOT-143 (M4)
May 2000
11
MIC4043
MIC4043
Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
MIC4043
12
May 2000