MITSUBISHI M51660L

MITSUBISHI <CONTROL / DRIVER IC>
M51660L
SERVO MOTOR CONTROL FOR RADIO CONTROL
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M51660L is a semiconductor integrated circuit for use in servo
motor control in radio control applications.
Housed in a 14-pin molded plastic zig-zag inline package (ZIP), the
M51660L contributes to the miniaturization of the set.
The built-in voltage regulating circuit, and the differential
comparator used in the comparator circuit provide the M51660L
with extremely stable power supply voltage fluctuation
characteristics and temperature change characteristics.
Servo position voltage
1
Timing capacitor
2
3
4
Input
5
Output (1)
6
FEATURES
● Small circuit current
3.5mA typ.
(When output is off)
● Excellent power supply and temperature stability
● Simple setting of dead band
● Includes protection circuit for continuous “H” level input
7
•••••••••••••••••••••••••••••••••••••
GND
8
Error pulse output
M51660L
Timing resistor
External PNP transistor drive (1)
9
Output (2) 10
Stretcher input 11
APPLICATION
External PNP transistor drive (2) 12
Digital proportional system for radio control, and servo motor
control circuit, etc.
Regulated voltage output 13
Supply 14
RECOMMENDED OPERATING CONDITIONS
Supply voltage range • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •3.5 – 7V
Rated supply voltage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4.8V
Outline 14P5A
BLOCK DIAGRAM
Supply
(4.8V)
14
GND
7
8
VCC
Input
Control
logic
circuit
5
Output
drive
circuit
Flip-flop
4
External PNP transistor drive (1)
6
Output (1)
10 Output (2)
12 External PNP transistor drive (2)
One-shot
multivibrator
1
2
Pulse
stretcher
3
Timing
Servo position Timing
voltage input capacitance resistor
9
Error pulse
output
11
Stretcher
input
Voltage
regulating
circuit
13 Regulated voltage output
MITSUBISHI <CONTROL / DRIVER IC>
M51660L
SERVO MOTOR CONTROL FOR RADIO CONTROL
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)
Symbol
Parameter
VCC
IO SINK
IO SOURSE
Pd
Kθ
Topr
Tstg
Conditions
Supply voltage
Output sink current
Output source current
Power dissipation
Thermal derating range
Operating temperature
Storage temperature range
Ta ≥ 25°C
Ratings
Unit
7.5
500
200
550
5.5
-20 – +75
-40 – +125
V
mA
mA
mW
mW/°C
°C
°C
ELECTRICAL CHARACTERISTICS (Ta = 25°C and VCC = 4.8V, unless otherwise noted)
Symbol
Parameter
Test conditions
ICC
Circuit current
VOL
Output voltage “L”
VOH
Output voltage “H”
External PNP transistor
Drive current
Internal regulated supply voltage
Internal regulated supply output current
Minimum dead band width
IPNP
VReg
IReg
TDB
Limits
Typ.
3.5
20
0.1
0.4
3.8
Min.
When output is OFF
When output is ON
IO SINK = 100mA
IO SINK = 400mA
IO SOURCE = 100mA
3.4
Max.
5
0.2
0.7
2.45
2.6
3.0
1.5
RDB = 510Ω, CS = 0.1µF
TYPICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)
Circuit current vs. supply voltage
When output is OFF
Circuit current ICC (mA)
Internal power dissipation Pd (mW)
8
800
600
400
200
0
0
25
50
75
100
Ambient temperature Ta (°C)
125
6
4
2
0
0
2
4
V
mA
2.3
Thermal derating (maximum rating)
mA
V
30
1000
Unit
6
Supply voltage VCC (V)
8
V
mA
µs
MITSUBISHI <CONTROL / DRIVER IC>
M51660L
SERVO MOTOR CONTROL FOR RADIO CONTROL
Output voltage “L” vs. output sink
current
1000
7
5
4
Output voltage “L” VOL (mV)
Internal regulated supply voltage VReg (V)
Internal regulated supply voltage vs.
supply voltage
3
2
1
0
0
2
4
6
VCC = 4.8V
3
100
7
5
3
10
7
5
3
1
8
1
Supply voltage VCC (V)
3 5 7 10
3 5 7 100
Output sink current ISINK (mA)
Deadband width vs. deadband resistance
Deadband width TDB (µs)
Stretcher capacitance
CS = 0.1µF
10
5
0
0
1k
2k
Deadband resistance RDB (Ω)
APPLICATION EXAMPLE
Servo motor control circuit for radio-controlled
2SA695
VCC
2SA695
10µ
M
560k
0.1µ
2
4
6
8
10
14
12
M51660L
0.1µ
3
18k
5
0.03µ
1
3 5 7 1000
7
9
11
1k
13
180k
0.1µ
2.2µ
5k
Input
Unit
Resistance : Ω
Capacitance : F
MITSUBISHI <CONTROL / DRIVER IC>
M51660L
SERVO MOTOR CONTROL FOR RADIO CONTROL
TECHNICAL APPLICATION NOTES
PIN DESCRIPTION
1. Servo Position Voltage Input Pin (Pin 1 )
Connect the potentiometer terminal for position detection that
follows the output axis. Compare this voltage with the voltage
of the triangular wave of pin 2 and drive the motor. A capacitor
of approximately 0.1µF should be connected for noise
prevention.
2. Timing Capacitor Pin (Pin 2 )
Connect a capacitor that will generate a triangular wave by
constant current charging. A typical value is 0.1µF. Also
connect a feedback resistor from the output here.
3. Timing Resistor (Pin 3 )
Connect a resistor that will determine the value of the constant
current of pin 2 . A resistor of 18kΩ will yield a current of
1.0mA. A capacitor of approximately 0.03µF should be
connected in parallel with the resistor to increase stability.
4. External PNP Transistor Drive 1 (Pin 4 )
Connect to the base of the external PNP transistor.
5. Input Pin (Pin 5 )
Operate with a positive pulse of peak value 3V or greater.
6. Output 1 Pin (Pin 6 )
Connect a feedback resistor between this pin and pin 2 .
7. Ground (pins 7 and 8 )
8. Error Pulse Output pin (Pin 9 )
Connect a resistor between this pin and pin 11 . The dead band
will change according to the value of this resistor.
9. Output 2 pin (Pin 10 )
This is the output 2 pin.
10. Stretcher Input Pin (Pin 11 )
Connect the capacitor and resistor of the pulse stretcher
section.
11. External PNP Transistor Drive 2 (Pin 12 )
Connect to the base of the external PNP transistor.
12. Regulated Voltage Output Pin (Pin 13 )
This is the output of the internal regulated supply voltage.
Make connections from this pin to a potentiometer or pulse
stretcher resistor. Connect a capacitor of approximately 2.2µF
for stability.
13. Supply Voltage (Pin 14 )
The supply voltage exhibits uniform characteristics from 3.5V
to 7V. Connect a capacitor of approximately 10µF.