FAIRCHILD KA3120

PRELIMINARY
HDD PRODUCTS
KA3120
SPINDLE & VOICE COIL MOTOR ONE CHIP DRIVER
48-QFPH-1414
The KA3120 is an ASIC combination chip, which was
designed for the HDD, includes the following functions:
spindle motor drive, voice coil motor drive, retract and
power management.
To drive and control the spindle, the digital ASIC provides
the appropriate control signals (Start up, commutation,
speed control) to the KA3120. The spindle motor condition
is monitored by the FG output and the motor speed control
is accomplished via the PWMSP input. The ASIC controls
the voice coil motor current via PWMH and PWML inputs
and the power management circuit always monitors the
power supply voltages.
FEATURES
ORDERING INFORMATION
SPINDLE MOTOR DRIVE PART
Device
Package
Operating Temperature
KA3120
48-QFPH-1414
0 ~ 70°C
•
Soft switching
•
Spindle brake after retract
•
Adjustable brake delay time
•
2.0A max. current power driver
•
Low output saturation voltage: 1V typical @1.6A
•
PWM decoder & filter for soft switching
•
The digital circuit (ASIC) based start-up, commutation and motor speed control
VOICE COIL MOTOR DRIVE PART
•
Trimmed low offset current
•
1.2A max. current power driver
•
Gain selection and adjustable gain
•
Automatic power down retract function
•
Class AB linear amplifier with no dead zone
•
Low output saturation voltage: 0.8V typical @1.0A
•
Internal full bridge with VPNP (Vertical PNP) & NPN
•
VCM offset monitoring
Rev. B
MIC-99D001
January 1999
 1999 Fairchild Semiconductor Corporation
1
PRELIMINARY
KA3120
HDD PRODUCTS
POWER MONITORING
•
Power on reset with delay
•
Hysteresis on both power comparators
•
Over temperature & over current shut down
•
5V and 12V power monitor threshold accuracy ±2%
PACKAGE
•
48QFPH (48 pin quad flat package heat-sink)
APPLICATION
•
2
Hard disk drive (HDD) products
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
BLOCK DIAGRAM
POR
Vreg
Power-on
Reset
Interface
FG
U
MCLK
V
Spindle Motor
PWMSF
Custom
Digital
ASIC
PWMSP
Driver
W
N
VCM+
VCMOFFSET
VCM−
Gainsel
Voice Coil Motor
PWMH
Driver
3-Phase
BLDC
Motor
Voice
Coil
Motor
PWML
Retract
Brake
MIC-99D001
January 1999
3
PRELIMINARY
KA3120
HDD PRODUCTS
43
42
41
40
39
38
37
PWMSF
1
36
N
CFSF
2
35
SUBGND
ADJ
3
34
V
SENSE5
4
33
PCS
VDD
5
32
W
FG
6
31
SUBGND
KA3120
TAB
4
U
GND
44
CCOMP
CNTL1
45
BRAKE
CNTL2
46
CBRAKE
CNTL3
47
PVCC
PWMSP
48
TAB
SENSE12
CFSP
PIN CONFIGURATION
TAB
9
28
ERRIN
POR
10
27
VCM+
CDLY
11
26
PGND
GAINSEL
12
25
SENSEOUT
16
17
18
FILOUT
15
VCC
14
CRET
13
TAB
MIC-99D001
January 1999
19
20
21
22
23
24
RRET
VCMOFF
SUBGND
VDD
VCM−
29
PVCC
8
CRET2
MCLK
SENSE
ERROUT
CFVCM
30
PWML
7
PWMH
VREF
PRELIMINARY
HDD PRODUCTS
KA3120
PIN DESCRIPTION
Pin No.
Symbol
I/O
Description
1
PWMSF
I
PWM input for spindle soft switching
2
CFSF
−
Capacitor for spindle PWM soft switching filter
3
ADJ
−
Reference voltage adjustable
4
SENSE5
I
Adjustable threshold voltage to 5V
5
VDD
−
5V power supply
6
FG
O
Frequency generation to spindle speed
7
VREF
O
Voltage reference output for ASIC power
8
MCLK
I
Clock from ASIC for switching
9
VCMOFF
O
VCM output offset monitoring pin
10
POR
O
Power On Reset
11
CDLY
−
Delay capacitor for power on reset
12
GAINSEL
I
VCM Amplifier gain selection
13
PWMH
I
PWM signal input (MSB)
14
PWML
I
PWM signal input (LSB)
15
CFVCM
−
Filter capacitor for VCM PWM control
16
CRET
−
Delay capacitor for retract
17
VCC
−
12V power line
18
FILOUT
O
VCM PWM output
19
SENSE
I
VCM current sense input
20
CRET2
−
Power for VCM retract
21
PVCC
−
12V power line for VCM output
22
VCM(−)
−
VCM negative output
23
SUBGND
−
Ground
24
RRET
I
Adjustable maximum retract current
25
SENSEOUT
O
VCM current sense Amplifier output
26
PGND
−
Ground
27
VCM(+)
−
VCM positive output
28
ERRIN
I
VCM error Amplifier negative input
29
VDD
−
5V power supply
30
ERROUT
O
VCM error Amplifier output
31
SUBGND
−
Ground
32
W
O
Spindle motor W phase output
MIC-99D001
January 1999
5
PRELIMINARY
KA3120
HDD PRODUCTS
PIN DESCRIPTION (Continued)
6
Pin No.
Symbol
I/O
Description
33
PCS
O
Spindle soutput current sensing
34
V
O
Spindle motor V phase output
35
SUBGND
−
Ground
36
N
I
Spindle motor neutral point
37
U
O
Spindle motor U phase output
38
CCOMP
−
Spindle output control compensation
39
BRAKE
O
Dynamic brake
40
CBRAKE
−
Back-EMF charging capacitor for brake power
41
PVCC
−
12V power line for spindle
42
SENSE12
I
Adjustable for threshold voltage to 12V
43
GND
−
Ground
44
CNTL1
I
Control input for spindle and brake
45
CNTL2
I
Control input for start-up clock and soft switching
46
CNTL3
I
Control input for VCM Amplifier & retract
47
PWMSP
I
PWM input for spindle speed control
48
CFSP
−
Filter capacitor for spindle PWM control
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
EQUIVALENT CIRCUITS
PWM decoder filter input
PWM decoder filter Capacitor
VDD
VDD
+
−
22Ω
#1, #47
+
#2, #48
−
100µ
Internal 2.5V
Internal switch
Regulator part
SENSE input
VDD
VDD
Internal 1.3V
27Ω
+
#3
−
VDD
27Ω
#4
#7
FG output
MCLK input
VDD
VDD
50k
27Ω
#6
27Ω
50k
#8
50k
MIC-99D001
January 1999
7
PRELIMINARY
KA3120
HDD PRODUCTS
EQUIVALENT CIRCUITS (Continued)
VCM offset compensation output
Power on reset part
VDD
VDD
27Ω
VDD
#11
20k
27Ω
VDD
#9
50k
27Ω
Internal
Switch
15µ
+
#10
−
Internal
2.5V
VCM gain selection input
VCM PWM high input
VDD
27Ω
VDD
10k
27Ω
#12
#13
10k
500µ
10k
Internal switch
VCM PWM low input
VCM PWM filter Capacitor
VDD
+
−
VCC, 12V
+
27Ω
#14
−
+
#15
−
15.6µ
4k
Internal switch
8
Internal 4V
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
EQUIVALENT CIRCUITS (Continued)
Filtered VCM PWM command output
VCM current sense input
VDD
VCC
+
#18
Internal
DEC OUT
−
#19
Capacitor for retract power
U
V
Max. retract current set input
W
VCC
30Ω
VCC
27Ω
#20
Spindle motor output compensation Capacitor
20k
#24
Retract
Block
Spindle motor output and Back EMP sensing part
VCC
VDD
VCC
#32, 34, 37
VCC
60Ω
#38
#33
Retract
Block
VCC
60Ω
−
#36
+
+
−
Internal 4.2V
MIC-99D001
January 1999
9
PRELIMINARY
KA3120
HDD PRODUCTS
EQUIVALENT CIRCUITS (Continued)
Dynamic break part
CNTL1, 2, 3 input
VCC
VCC
VDD
U
40Ω
2k
VDD
#40
27Ω
#44, #45, #46
27Ω
#39
VCM output and control part
Sense12 input
Internal
1/2 VCC
VCC
−
#27
VCC
+
#30
Internal
4V
VCC
+
+
60Ω
−
−
60Ω
#22
#28
VCC
−
#25
#19
+
Internal
4V
10
MIC-99D001
January 1999
#42
PRELIMINARY
HDD PRODUCTS
KA3120
ABSOLUTE MAXIMUM RATING (Ta=25°°C)
Characteristics
Symbol
Value
Unit
Maximum signal block supply voltage for 5V line
VDDMAX
6
V
Maximum signal block supply voltage for 12V line
VCCMAX
15
V
Maximum power block supply voltage for 12V line
PVCCMAX
15
V
IOMAX
2
A
PD
3.0 note
W
Storage temperature
TSTG
−55 ~ 125
°C
Maximum junction temperature
TJMAX
150
°C
Operating ambient temperature
TA
0 ~ 70
°C
Maximum output current
Power dissipation
NOTE:
1. When mounted on 50mm × 50mm × 1mm PCB (Phenolic resin material)
2. Power dissipation is reduced 16mV / °C for using above Ta=25°C.
3. Do not exceed Pd and SOA.
Pd[mW]
3,000
2,000
1,000
0
0
25
50
75
100
125
150
175
Ambient temperature, Ta [°C]
RECOMMENDED OPERATING CONDITIONS
Characteristics
Supply voltage
Supply voltage in logic part
Symbol
Min.
Typ.
Max.
Unit
VCC, PVCC2
10.8
12.0
13.2
V
VDD
4.5
5.0
5.5
V
MIC-99D001
January 1999
11
PRELIMINARY
KA3120
HDD PRODUCTS
ELECTRICAL CHARACTERISTICS
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
40
50
60
mA
15
20
25
mA
SUPPLY CURRENT
5V line supply current 1
IDD1
CNTL1=0V
5V line supply current 2
IDD2
5V line supply current 3
IDD3
CNTL1=CNTL3=5V
15
20
25
mA
5V line supply current 4
IDD4
CNTL3=0V
15
20
25
mA
12V line supply current 1
ICC1
CNTL1=0V
4
7
15
mA
12V line supply current 2
ICC2
4
7
15
mA
12V line supply current 3
ICC3
CNTL1=CNTL3=5V
10
30
50
mA
12V line supply current 4
ICC4
CNTL3=0V
4
7
15
mA
−
−
POWER MONITOR
Threshold voltage1 level for 12V
VTH12
VCC=Sweep, VDD=5V
9.1
9.4
9.8
V
Threshold voltage2 level for 12V
VTH12b
VCC=Sweep, VDD=5V
8.9
9.2
9.6
V
Hysteresis on 12V comparator
VHYS12
VCC=Sweep, VDD=5V
100
200
300
mV
Adjustable pin voltage for 12V
V12
VCC=12V, VDD=5V
3.0
3.2
3.4
V
Threshold voltage level1 for 5V
VTH5
VCC=12V, VDD=Sweep
3.9
4.1
4.4
V
Threshold voltage level2 for 5V
VTH5b
VCC=12V, VDD=Sweep
3.8
4.0
4.3
V
Hysteresis on 5V comparator
VHYS5
VCC=12V, VDD=Sweep
50
100
150
mV
Adjustable pin voltage for 5V
V5
VCC=12V, VDD=5V
2.85
3.0
3.25
V
ICPOR
VCC=12V, VDD=5V
−17.0 −14.0 −10.0
µA
POWER ON RESET GENERATOR
Charging current for POR Capacitor
POR threshold voltage
VTHPOR
CDLY=Sweep
2.3
2.5
2.7
V
Output high voltage
VPOH
VCC=12V, VDD=5V
4.5
−
VDD
V
Output low voltage
VPOL
VCC=12V, VDD=5V
0
−
0.5
V
TdPOR
CDLY=220nF
−
40
−
ms
Logic control input 1 MED voltage
VCTL10
CNTL1=2.5V
2.3
2.5
2.7
V
Logic control input 1 MED current
ICTL1
CNTL1=2.5V
−5
0
5
µA
Logic control input 1 HIGH voltage
VCTL1H
CNTL1=Sweep
3.8
4.2
4.6
V
Logic control input 1 HIGH current
ICTL1H
CNTL=5V
60
80
100
µA
Logic control input 1 LOW voltage
VCTL1L
CNTL1=Sweep
0.5
0.8
1.2
V
Logic control input 1 LOW current
ICTL1L
CNTL1=0V
-100
-80
-60
µA
Power on reset delay
CONTROL INPUT
LOGIC CONTROL INPUT2 & 3 SPEC’S ARE EQUAL TO LOGIC CONTROL INPUT1
12
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
Start-up hold check1
SHM1
−
0
0.2
0.5
V
Start-up hold check2
SHM2
−
0
0.2
0.5
V
Start-up mode check1
STM1
−
0
0.2
0.5
V
Start-up mode check2
STM2
−
0
0.2
0.5
V
BEMF threshold voltage
VBTH
−
65
80
95
mV
FG output high voltage
VFGH
−
4.5
4.8
5.0
V
FG output low voltage
VFGL
−
0
0.2
0.5
V
Running mode check1
RM1
U=V=W=5V, N=100Hz
90
100
110
Hz
Running mode check2
RM2
U=V=W=5V, N=100Hz
90
100
110
Hz
FG
U,V,W=120° shift pulse(1KHz)
2.9
3
3.1
kHz
DTFG
U,V,W=120° shift pulse(1KHz)
45
50
55
%
PWM high level input voltage
VSPMH
−
3.0
−
−
V
PWM low level input voltage
VSPML
−
−
−
2.0
V
High input current at PWMSP
IPSP1
PWMSP=100% duty
85
105
125
µA
CFSP voltage2(100% duty of PWMSP)
VSP2
PWMSP=100% duty
1.4
1.7
1.9
V
Low input current at PWMSP
IPSP2
PWMSP=0% duty
−125
−105
−85
µA
CFSP voltage1(0% duty of PWMSP)
VSP1
PWMSP=0% duty
3.1
3.3
3.5
V
CFSP voltage amplitude
VSPD
1.5
1.6
1.8
V
CFSP voltage3 (50% of PWMSP)
VSP3
2.4
2.5
2.6
V
START-UP HOLD CHECK
START-UP MODE CHECK
RUNNING MODE CHECK
SPINDLE FG GENERATION
FG frequency
FG duty
SPINDLE PWM CONTROL
−
PWMSP=50% duty
CFSP charging current
ICFSP1
PWMSP=0%, CFSP=2.5V
−180
−150
−130
µA
CFSP discharge current
ICFSP2
SPMSP=100%, CFSP=2.5V
130
150
180
µA
MIC-99D001
January 1999
13
PRELIMINARY
KA3120
HDD PRODUCTS
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
PWM high level input voltage
VSFMH
−
3.0
−
−
V
PWM low level input voltage
VSFML
−
−
−
2.0
V
High input current at PWMSF
IPFP1
PWMSF=100% duty
85
100
125
µA
CFSF voltage2(100% duty of PWMSF)
VSF2
PWMSF=100% duty
2.65
2.75
2.85
V
Low input current at PWMSF
IPSF2
PWMSF=0% duty
−125
−100
−85
µA
CFSF voltage1(0% duty of PWMSF)
VSF1
PWMSF=0% duty
2.15
2.25
2.35
V
CFSF voltage amplitude
VSFD
450
500
550
mV
CFSF voltage3 (50% of PWMSF)
VSF3
2.4
2.5
2.6
V
−110
−90
−70
µA
90
110
130
µA
11.0
11.3
11.5
V
−
VDD
−
V
0
0.2
0.5
V
SPINDLE PWM SOFT SWITCHING
−
PWMSF=50% duty
CFSF charging current
ICFSF1
PWMSF=0%, CFSP=2.5V
CFSF discharge current
ICFSF2
SPMSF=100%, CFSP=2.5V
BRAKE
CBrake output voltage
VBC
Brake output high voltage
VBH
Brake output low voltage
VBL
−
(Test only)
−
SPINDLE OUTPUT
U saturation voltage_upper5
VSU5U
RU,RV,RW=5Ω
0.2
0.3
0.5
V
V saturation voltage_upper5
VSU5V
RU,RV,RW=5Ω
0.2
0.3
0.5
V
W saturation voltage_upper5
VSU5W
RU,RV,RW=5Ω
0.2
0.3
0.5
V
U saturation voltage_lower5
VSV5L
RU,RV,RW=5Ω
0.2
0.3
0.5
V
V saturation voltage_lower5
VSU5L
RU,RV,RW=5Ω
0.2
0.3
0.5
V
W saturation voltage_lower5
VSU5L
RU,RV,RW=5Ω
0.2
0.3
0.5
V
U output frequency
FU
CNTL2=12KHz
0.9
1
1.1
KHz
V output frequency
FV
CNTL2=12KHz
0.9
1
1.1
KHz
W output frequency
FW
CNTL2=12KHz
0.9
1
1.1
KHz
14
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
SPINDLE OUTPUT
U phase high duration time
TUH
CNTL2=12KHz
300
333
360
µs
U phase middle duration time
TUM
CNTL2=12KHz
600
666
720
µs
V phase high duration time
TVH
CNTL2=12KHz
300
333
360
µs
V phase middle duration time
TVM
CNTL2=12KHz
600
666
720
µs
W phase high duration time
TWH
CNTL2=12KHz
300
333
360
µs
W phase middle duration time
TWM
CNTL2=12KHz
600
666
720
µs
Leakage current U upper
IULQU
−
−1
0
1
µA
Leakage current V upper
IVLQU
−
−1
0
1
µA
Leakage current W upper
IWLQU
−
−1
0
1
µA
Leakage current U lower
IULQL
−
−1
0
1
µA
Leakage current V lower
IVLQL
−
−1
0
1
µA
Leakage current W lower
IWLQL
−
−1
0
1
µA
U sourcing current 0.2V
IOU02
−
3.0
4.0
5.0
µA
V sourcing current 0.2V
IOV02
−
3.0
4.0
5.0
µA
W sourcing current 0.2V
IOW02
−
3.0
4.0
5.0
µA
Transconductance gain U upper
GMUH
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
Transconductance gain U lower
GMUL
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
Transconductance gain V upper
GMVH
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
Transconductance gain V lower
GMVL
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
Transconductance gain W upper
GMWH
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
Transconductance gain W lower
GMWL
PWMSP=sweep, RU,RV,RW=5Ω
0.8
0.9
1.0
A/V
CCOMP charging current1
ICOMP1
PWMSP=0%
−20
0
20
µA
CCOMP charging current2
ICOMP2
PWMSP=50%
−200
−250
−300
µA
CCOMP charging current3
ICOMP3
PWMSP=100%
−400
−500
−600
µA
MIC-99D001
January 1999
15
PRELIMINARY
KA3120
HDD PRODUCTS
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
U stair high
VUSTH
−
2.85
3.0
3.15
V
U stair middle
VUSTM
−
2.35
2.5
2.65
V
U stair low
VUSTL
−
1.85
2.0
2.15
V
U stair frequency
FUST
−
0.9
1.0
1.1
KHz
V stair high
VVSTH
−
2.85
3.0
3.15
V
V stair middle
VVSTM
−
2.35
2.5
2.65
V
V stair low
VVSTL
−
1.85
2.0
2.15
V
V stair frequency
FVST
−
0.9
1.0
1.1
KHz
W stair high
VWSTH
−
2.85
3.0
3.15
V
W stair middle
VWSTM
−
2.35
2.5
2.65
V
W stair low
VWSTL
−
1.85
2.0
2.15
V
W stair frequency
FWST
−
0.9
1.0
1.1
KHz
Com high
VCOMH
−
2.6
2.75
2.9
V
Com low
VCOML
−
2.1
2.25
2.4
V
Com frequency
FCOM
−
2.8
3.0
3.2
KHz
U stair frequency_soft
FUSTSF
−
0.9
1.0
1.1
KHz
V stair frequency_soft
FVSTSF
−
0.9
1.0
1.1
KHz
W stair frequency_soft
FWSTSF
−
0.9
1.0
1.1
KHz
FCSF
−
2.9
3
3.1
KHz
Com high voltage_soft1
VCHSF1
−
2.65
2.75
2.85
V
Com low voltage_soft1
VCLSF1
−
2.15
2.25
2.35
V
Com high voltage_soft2
VCHSF1
−
2.65
2.75
2.85
V
Com low voltage_soft2
VCLSF1
−
2.15
2.25
2.35
V
COMUTATION CONTROL
COMUTATION CONTROL SOFT
Com frequency_soft
REGULATOR
Adjustable PIN voltage
VADJ
VDD=5V,R3a=15KΩ,R3b=10KΩ
1.2
1.3
1.4
V
Regulator output voltage
VREG
VDD=5V,R3a=15KΩ,R3b=10KΩ
3.1
3.3
3.5
V
Regulator line regulation
RLINE
VDD=sweep
0
0.5
1.0
%
Regulator load regulation
RLOAD
VDD=5V
0
0.5
1.0
%
16
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
High threshold voltage
VMH
−
2.0
1.4
−
V
Low threshold voltage
VML
−
−
1.4
0.8
V
High input current
IMH
−
15
25
35
µA
High input current
IML
−
−10
0
10
µA
SPINDLE MCLOCK
VCM PWM CONTROL
High PWMH input current
IPWMH1
PWMH=100%
100
113
130
µA
Low PWMH input current
IPWMH2
PWMH=0%
−130
−113
−100
µA
High PWML input current
IPWML1
PWML=100%
100
113
130
µA
Low PWML input current
IPWM2
PWML=0%
−130
−113
−100
µA
PWMH high level input voltage
VPWMH1
−
3.0
−
−
V
PWMH low level input voltage
VPWMH2
−
−
−
2.0
V
PWML high level input voltage
VPWML1
−
3.0
−
−
V
PWML low level input voltage
VPWM2
−
−130
−113
−100
V
CFVCM voltage1
VCFVC1
PWMH=100%,PWML=100%
5.90
6.06
6.30
V
CFVCM voltage2
VCFVC2
PWMH=100%,PWML=50%
5.80
6.00
6.20
V
CFVCM voltage3
VCFVC3
PWMH=100%,PWML=0%
5.70
5.94
6.10
V
CFVCM voltage4
VCFVC4
PWMH=50%,PWML=100%
3.90
4.06
4.30
V
CFVCM voltage5
VCFVC5
PWMH=50%,PWML=50%
3.80
4.00
4.20
V
CFVCM voltage6
VCFVC6
PWMH=50%,PWML=0%
3.70
3.94
4.10
V
CFVCM voltage7
VCFVC7
PWMH=0%,PWML=100%
1.90
2.06
2.40
V
CFVCM voltage8
VCFVC8
PWMH=0%,PWML=50%
1.80
2.00
2.30
V
CFVCM voltage9
VCFVC9
PWMH=0%,PWML=0%
1.70
1.94
2.20
V
PWM current ratio (VCM)
RPWM
−
30
32
34
PWMH current variation
IVPWM
−
0.8
1.0
1.2
mA
PWML current variation
IVPWM
−
27
32.3
36
µA
−
−
2
deg
VCM PWM FILTER
Measure at 500HZ,
CFVCM=10nF
Maximum phase shift
∆Φ
Filter cut-off frequency
FCO
−
−
100
−
µA
αFILTER
−
−
70
−
dB
Filter attenuation at 1MHz
MIC-99D001
January 1999
17
PRELIMINARY
KA3120
HDD PRODUCTS
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
3.8
4.0
4.2
V
VCM REFERENCE VOLTAGE
VCM reference voltage
VREF
CNTL3=5V
VCM ERROR AMPLIFIER
Amplifier output high
VEOH
−
10.8
11.2
11.5
V
Amplifier output low
VEOL
−
0.5
0.8
1.2
V
Short circuit current
IESC
−
10
−
−
mA
Input offset voltage
VOSE
−
−15
0
15
mV
Errot amplifier open loop gain
AVE
−
−
80
−
dB
Unit gain bandwidth
BGE
−
−
2.3
−
MHz
Amplifier output high
VSOH
−
10.8
11.2
11.5
V
Amplifier output low
VSOL
−
0.5
0.8
1.2
V
Short circuit current
ISSC
−
10
−
−
mA
Input offset voltage
VOSE
−
−15
0
15
mV
Unit gain bandwidth
BGS
−
−
3.4
−
MHz
Sense amplifier voltage gain1
AVS1
Gainsel=5V
−
24
−
dB
Sense amplifier voltage gain2
AVS2
Gainsel=5V
−
6
−
dB
Power Amplifier gain1
APO1
−
24
24.6
25
dB
Power Amplifier gain2
APO2
−
24
24.6
25
dB
Power Amplifier output high voltage1
VPOH1
−
11.5
11.8
12.0
V
Power Amplifier output high voltage2
VPOH2
−
11.5
11.8
12.0
V
Power Amplifier output low voltage1
VPOL1
−
0
0.2
0.5
V
Power Amplifier output low voltage2
VPOL2
−
0
0.2
0.5
V
Input offset voltage
VOSE
−
−15
0
15
mV
Unit gain bandwidth1
BG P1
−
−
2
−
MHz
Unit gain bandwidth2
BG P2
−
−
2
−
MHz
Offset comparator high voltage
VOCH
−
4.5
4.8
5.0
V
Offset comparator low voltage
VOCL
−
0
0.2
0.5
V
Offset comparator offset voltage
VOCOS
−
−
0
−
mV
Offset comparator hysteresis
VOCHYS
−
5
10
15
mV
VCM SENSE AMPLIFIER
VCM POWER AMPLIFIER
VCM OFFSET COMPARATOR
18
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
ELECTRICAL CHARACTERISTICS (Continued)
(Ta=25°C, unless otherwise specified)
Characteristic
Symbol
Test conditions
Min.
Typ.
Max.
Unit
VCM AMPLIFIER TOTAL
VCM offset current
IOSVCM
PWMH=PWML=50% duty
–15
0
15
mA
VCM transconductance gain high
GMVH
Gainsel=0V
0.47
0.50
0.53
A/V
VCM transconductance gain low
GMVL
Gainsel=5V
0.1
0.125
0.15
A/V
VCM+ saturation voltage lower
VVMS1
Rvcm=15Ω
−
−
0.5
V
VCM- saturation voltage upper
VVMS2
Rvcm=15Ω
−
−
0.5
V
VCM+ saturation voltage upper
VVMS3
Rvcm=15Ω
−
−
0.5
V
VCM- saturation voltage lower
VVMS4
Rvcm=15Ω
−
−
0.5
V
VCM+ saturation voltage lower
VVMS5
Rvcm=15Ω
−
−
0.5
V
VCM- saturation voltage upper
VVMS6
Rvcm=15Ω
−
−
0.5
V
VCM+ saturation voltage upper
VVMS7
Rvcm=15Ω
−
−
0.5
V
VCM- saturation voltage lower
VVMS8
Rvcm=15Ω
−
−
0.5
V
Leakage current power Amplifier1
IVCML1
−
−10
0
10
µA
Leakage current power Amplifier2
IVCML2
−
−10
0
10
µA
−
3.0
−
V
RETRACT
Min. operating voltage of CRET2
Source voltage
VCRET2
CRET2=Sweep
VSRC
CRET2=5V
0.8
1.0
1.2
V
VRTSAT
CRET2=5V
−
−
0.5
V
Retract sinking current1
IRCT1
Rret=8.0KΩ
40
48.2
60
mV
Retract sinking current2
IRCT2
Rret=4.2KΩ
80
91.8
100
mV
Retract sinking current3
IRCT3
Rret=2.7KΩ
130
143
155
mV
Cret charging current1
ICRET
–
90
100
110
µA
Retract power Tr. leakage upper
ILRET1
–
–1
0
1
µA
Retract power Tr. leakage lower
ILRET1
–
–1
0
1
µA
Operating temperature
TSD
−
135
150
165
°C
Thermal hysteresis
THYS
−
20
30
40
°C
Sinking saturation voltage
THERMAL SHUT DOWN
MIC-99D001
January 1999
19
PRELIMINARY
KA3120
HDD PRODUCTS
APPLICATION INFORMATION
SPINDLE MOTOR DRIVE PART
The KA3120 is a combination chip consisting of spindle motor and voice coil motor designed for HDD system.
According to the spindle conditions, the digital ASIC circuit provides optimum control signals (Start-up,
commutation, speed control, and switching mode) to the KA3120.
Detection of the back-EMF (BEMF) of the spindle motor has to be output to an external digital circuit via FG. The
MCLK and PWM signals are used to determine the commutation timing and to control the spindle speed,
respectively.
SPINDLE DRIVER
The spindle includes both low and high side drivers (H−bridge) for a three-phase sensorless brushless DC motor.
To reduce the saturation voltage, the vertical PNP Tr is used as the high side driver.
FREQUENCY GENERATION (FG)
FG stands for Frequency Generation. It is the out signal toward the digital ASIC.
Representing the current spindle speed frequency, it contains important information about the motor speed and
motor spin.
According to the FG frequency, the digital ASIC provides different motor clock signals to the motor drive IC via
MCLK and checks the motor speed to send the VCM enable signal via CNTL3.
FG frequency (Hz), motor speed (rpm) and pole number are directly related as shown below in the three phase
motor.
FG frequency = motor speed × pole number × 3 / 120
In a typical application,(8 pole motor)
FG frequency = 5400 × 8 × 3 / 120 = 1080Hz
FG frequency = Output frequency × 3
20
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
MCLK & MASK
The MCLK is a motor clock used as the standard clock signal for the proper commutation timing of the spindle
motor. It is supplied by the ASIC.
As shown in table 1, it has different delay times depending on the mode of the spindle speed. Table 1. MCLK &
MASK Delay Time to the Spindle Speed.
Table 1. MCLK & MASK delay time to the spindle speed
MCLK (Td)
MASK
Switching
External ASIC
1ms
Hard switching
Acceleration mode
FG(n-1) / 2
FG(n-1) / 4
Hard switching
Running mode
FG(n-1) / 32
344.45µs
Soft switching
Start-up mode
After the FG_Edge signal, the MCLK occurs after a half FG_Edge delay time in the acceleration mode and 1/ 32
FG_Edge delay time in the soft switching mode.
MASK
When the coil current is abruptly changed in a short time interval, a spark voltage occurs. This spark voltage mixes
with the FG output to give the wrong spindle information to the ASIC. To eliminate the spark voltage from the FG
output, the masking block is needed.
di
Vcoil = – L ----dt
W_BEMF
V_BEMF
U_ BEMF
U_Comp
120°
V_Comp
W_Comp
60°
FG
FG_Edge
Electrically 30° Delay
MCLK
Figure 1. BEM, FG, and MCLK in the acceleration mote
MIC-99D001
January 1999
21
PRELIMINARY
KA3120
HDD PRODUCTS
Switching noise, false zero cross
FG ≥ 8msec
FG
2msec
2msec
MCLK
1msec
1msec
MASK
Figure 2. MCLK vs MASK in the start-up mode
FG ≤ 8msec, T1
T2
Switching noise, false zero cross
FG
T1/2
T2/2
MSLK
T1/4
T2/4
MASK
Figure 3. MCLK vs MASK in the acceleration mode
22
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
PWMDEC AND SPEED CONTROL
Motor speed is measured by the ASIC via the FG output. The digital ASIC compares FG frequency with the target
motor speed and sends the speed compensation signal to the PWMSP input of the KA3120. This PWM signal is
internally filtered and is converted into DC voltage through the built-in PWM Decoder Filter. The analog output of
the filter depends on the duty of the PWM signal. The filter is a 3rd order, low-pass filter. The first pole location of
the filter is determined by the external capacitor connected to pin(48) CFSP.
0.625
Ispindle = ( D – 0.1 ) ⋅ -------------------------------R33 ( = 0.25 )
Figure 4. Spindle current vs PWMSP duty variation
START-UP MODE
The BEMF is used in the sensorless BLDC motor driver to determine the rotor position. The detected rotor position
is a very important information to control the motor speed and the commutation timing.
At standstill condition, there is no BEMF voltage and no FG output. There is no information about the motor
position. However the spindle motor must be started up at standstill.
To drive the spindle at the start-up mode, the digital ASIC sends the spindle enable signal via CNTL1 and supplies
the HIGH or OPEN signal in turns via CNTL2 to be used as commutation signal of the spindle motor.
MIC-99D001
January 1999
23
PRELIMINARY
KA3120
HDD PRODUCTS
The digital ASIC continuously provides HIGH or OPEN signal until the BEMF generated is enough large to produce
the FG signal i.e. the spindle motor can be driven by the self commutation. During a fixed time, if the BEMF
generated is too small and the spindle motor is not driven by the self commutation, the ASIC resets all signals sent
and retries the spindle.
Table 2. Pin setup truth table
CNTL1(1)
CNTL2(2)
CNTL3(3)
GAINSEL
SPM driver
Brake
S/W
VCM driver
Retract
SPM driver
VCM gain
High (5V)
1
0
Hard S/W
1
0
Normal
0.125
Open (Floating)
0
0
Hard S/W
0
0
x
x
Low (0V)
0
1
Soft S/W
0
1
up(4)
Start
Hold
0.5
NOTES:
1. CNTL1: Spindle motor control
2. CNTL2: Switching mode control
3. CNTL3; VCM motor control
4. Test only
5. “1”: Enable; “0”: disable; “S/W”: switching
ACCELERATION MODE
When the BEMF detected is enough to be used as the information of motor position, the mode is changed from
start-up to acceleration. The ASIC sends the optimum commutation timing signal via MCLK according to the FG
input.
By using the BEMF, the spindle is self-commuted at acceleration and running modes. During the motor drive, the
spindle motor is commuted at that point which is electrically 30° delayed after the FG_Edge generates.
RUNNING MODE
It is called to the running mode when the spindle motor speed arrives within ± 1% of the target speed. The
switching mode, commutation delay time, MCLK delay time (Td) and masking time are changed at the running
mode.
The spindle motor speed is controlled by PWM signal within ± 0.01%.
The soft switching using the current slope of the motor may reduce noise, EMI (Electromagnetic Interference) and
spark voltage which is generated on the motor coil at the switching.
24
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
CNTL1
SPIN ON
KA3120
High
Open
High
Open
CNTL2
Low
FG
+1%
Target RPM
−1%
Rotation
Speed
Start-Up
Hard-Switching
Soft-Switching
Internal
Ready
10msec
Internal
Switching Mode
Change
100msec
CNTL3
VCM ON
VCM Enable
High
Open
High, 5V
CASE1
: High gain
Low, 0V
High, 5V
CASE1
: Low gain
Low, 0V
Figure 5. Motor start-up sequence
Duty (%)
100%
D%
0
F trarget
FG
Frequency
Figure 6. FG vs PWMSP duty variation
MIC-99D001
January 1999
25
PRELIMINARY
KA3120
HDD PRODUCTS
(1) Acceleration Mode: Hard-Switching Mode
+
U_BEMF
0
−
+
V_BEMF
0
−
+
W_BEMF
0
−
SOURCE
Iu
SINK
SOURCE
Iv
SINK
SOURCE
Iw
SINK
(2) Running Mode: Soft-Switching Mode
SOURCE
Iu
SINK
SOURCE
Iv
SINK
SOURCE
Iw
SINK
Figure 7. Acceleration and running the spindle motor
26
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
Start
High frequency
Noise
Elimination
Using filtered FG
Generate start
Counter
Counting
the FG duration
NO
Hard
Switching
Saturation
=?
NO
MCLK = FG(n-1)/32
MASK = 344.45usec
YES
Waiting 2msec
MCLK generation
Running
MCLK = FG(n-1)/2
MASK = 344.45usec
Acceleration
Retry
MASK = 1msec
FG polarity
Check = SAME?
YES
Start up
Keep going
Waiting for FG edge
Store count
Value of the FG
Figure 8. MCLK generation flow chart
MIC-99D001
January 1999
27
PRELIMINARY
KA3120
HDD PRODUCTS
VOICE COIL MOTOR
VCM driver
The voice coil motor driver is linear, class AB, H−bridge type driver, and it includes all power transistors. After the
VCM is enabled via CNTL3, the VCM current level is controlled by two PWM signals. The input voltage level at pin
PWMH weighs, at a maximum, 32 times more than the input voltage at pin PWML. These PWM signals are filtered
by an internal second−order low-pass filter and converted into PWMOUT (DC Voltage). The filter PWMOUT
depends only on the duty factor and not on the logic level. The PWM Filter's pole is adjustable by pin CFVCM
connected to the external capacitor.
R1
Vin
PWMH input 13
−
R2
VREF(4V)
Gm
C1
+
1/2 VDD
R1
Vin
PWML input 14
+
A
−
R2
R1
R1
C1
Gm
+
PWMOUT
1/2 VDD
+
1/2 VDD
−
−
15
CFVCM
Figure 9. PWM decoder & filter schematic 2
−
1/2VCC
4V
R7
VCM+
R5
27
v+
+
Vin
+
(PWMDEC OUT)
vx
va
−
L
R5
+
motor
R5
−
RL
+
R5
Sense
−
19
Imotor
R4
22
vb
−
R3
R3
Errin
18
Errout
28
R18
Rexif
Senseout
30
25
Cexif
R25
Figure 10. VCM driver schematic
28
MIC-99D001
January 1999
VCM−
+
− vs
+
Filtout
R6
Rsense
v−
PRELIMINARY
HDD PRODUCTS
KA3120
The transconductance of VCM AMPLIFIER gain, Gm, is:
Imotor- = ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 ⋅ Aerror ⋅ Apower ⋅ R25
Gm = ----------------2 ⋅ R18 ⋅ Rsense ⋅ As ⋅ Aerror ⋅ Apower + ( R18 + R25 ) ( Zmotor + Rsense )
Vin
1
Aloop R25 1
Gm = -------------------------  ---------- ------------------ ------
1 + Aloop R18 Rsense As
2 ⋅ R18 ⋅ As ⋅ Aerror ⋅ Apower
Aloop = -------------------------------------------------------------------------------( R18 + R25 ) ( Zmotor + Rsense )
Therefore Aloop >>1,
1
1
R25
Gm ≅ ---------- ⋅ ------------------ ⋅ -----R18 Rsense As
The transconductance (Gm) can be adjusted by selecting the external components R18, R25 and sense resister
Rsense.
if R18 = 15k, R25 = 15k, Rsense = 1
GAINSEL = 0(0V), 1 / AS = 0.5
Gm = 0.5
GAINSEL = 1(5V), 1 / AS = 0.125
Gm = 0.125
VCM current (Imotor) is:
GAINSEL = 0(0V)
1
R25
1
Imotor = 4 × ( PWMH – 0.5 ) + ------ ( PWML – 0.5 ) × ---------- × ------------------ × 0.43
32
R18 Rsense
GAINSEL = 1(5V)
1
R25
1
Imotor = 4 × ( PWMH – 0.5 ) + ------ ( PWML – 0.5 ) × ---------- × ------------------ × 0.11
32
R18 Rsense
Recommended value PWMH(100%) = 1
R18 = R25 = 15k
PWMH(50%) = 0.5
Rsense = 1
PWMH(0%) = 0
MIC-99D001
January 1999
29
PRELIMINARY
KA3120
HDD PRODUCTS
RETRACT CIRCUIT
The retract function is the operation where the VCM moves from the data zone to the parking zone when off normal
state power and abnormal power interrupt cause the spindle to stop.
From
Spindle
+
Bandgap
Reference
× 320
27
VA
_
Iref
Iretdly
Retract
Enable
Iret
19
2K
Low side
Control
16
24
Cret
Rret
Figure 11. Retract block schematic
VA = 2.0V
VA
Iref = -----------------------Rext + 2k
Iret = Iref × 320
Cret × 2.0V
Tretdly = -----------------------------------------Iretdly ( = 100µ )
30
Cret2
20
MIC-99D001
January 1999
Motor
PRELIMINARY
HDD PRODUCTS
KA3120
POWER MANAGEMENT FEATURES
LOW POWER INTERRUPT:
The low power interrupt operation occurs when the power supply voltage (5V,12V) level drops below each
threshold voltage. The threshold voltage (Vth) and time delay (Tdly) may be adjustable by the external component
value.
Vth
Tdly = CDLY --------- ,( Vth = 2.5V , I = 14 µ A)
I
VDD
11
VDD
VCC
CDLY
I = 14µA
R7
R4
+
5V SENSE
4
12V SENSE
42
R8
12
+
+
_
Q15
_
POR
R5
2.5V
Figure 12. Power on reset block schematic
MIC-99D001
January 1999
31
PRELIMINARY
KA3120
HDD PRODUCTS
POWER ON RESET
The power-on reset circuit monitors the voltage level of both +5V and +12V power supplies. The power−on reset
circuit disables the spindle out block, the whole VCM block, and the digital ASIC when the power supply voltage
level drops below the reference voltage.
VDD, VCC
Vth
Vhys
T
POR
Tdly
Vbe
T
Figure 13. Power on reset function
Vhys = 4.2mV
R4 + R5
VDD ;Vhys ( 5V ) = -------------------- × Vhys
R5
R7 + R8
VDD ;Vhys ( 12V ) = -------------------- × Vhys
R8
Default (pin4, pin42 : not connected)
VDD, th ≅ 4.1V
VCC ,th ≅ 9.4V
32
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
REGULATOR
The KA3120 includes the regulator block which supplies power of the digital ASIC. It consists of the bias block, the
band gap reference, the error amp and the external NPN power Tr. The regulator voltage can be adjusted by the
external resistor, R3a, R3b.
R3a
Vreg = Vref  1 + ---------- , Vref = 1.3V

R3b
VDD
Bias
Block
Vref
Bandgap
Reference
+
7
VREF
−
VREG
R3a
Vadjust
3
R3b
Figure 14. low drop regulator schematic
if R3a = 15k, R3b = 10k
R3a = 1.3 ×  1 + -------15k- = 3.25V
Vreg = Vref  1 + ---------

R3b
10k
MIC-99D001
January 1999
33
PRELIMINARY
KA3120
HDD PRODUCTS
STR_CLK
BEMF
DETECTIO N
STR_MASK
U_OUT
FG
Figure 15. Start-up mode
MCLK*2
U_OUT
FG
Figure 16. Acceleration mode 1
34
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
T1/4
2msec
T1/2
MCLK*2
T1
U_OUT
FG
Figure 17. Acceleration mode 2
U_OUT
V_OUT
W_OUT
Figure 18. Output in hard-switching mode
MIC-99D001
January 1999
35
PRELIMINARY
KA3120
HDD PRODUCTS
Switching Mode Conterting
FG
COM
Output
Figure 19. Switching mode converting
U_OUT
V_OUT
W_OUT
Figure 20. Soft-switching mode
36
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
CNTL3
Filou t
Ivcm
CNTL3
Filou t
Ivcm
PW MH
Filou t
Ivcm
Figure 21. VCM recalibration flow
MIC-99D001
January 1999
37
PRELIMINARY
KA3120
HDD PRODUCTS
POR
CBREAK
Vout
Iret
Figure 22. Retract & break at power off
38
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
TYPICAL APPLICATION CIRCUIT
5V
R3a
Q1
R3b
GND
C11
4
42
11
7
3
VREF ADJ
SENSE15 SENSE12 CDLY
Power
Bandgap
POR
10
Reference
On
& Bias
Reset
FG
U
V
W
Brake
Brake
AMP
Zero
Cross
Detector
FG
Generator
6
43
36
V
39
Cbrake
Brake
N
M39a
W
M39b
C39
C40
40
MCLK
41 PVCC
8
CNTL1
U
44
3 State
Input
Control
CNTL2
45
CNTL3
37
Commutation
&
Spindle Motor
Control
46
V
C38
38
PWMSP
C48
R33
PWM
Decoder
Filter
47
33
AMP
Vlimit
48
31
PWM
Decoder
Filter
1
C2
U
V
W
20
Retract
PWM
Decoder
Filter
14
VCM+
FILOUT
RRET
16
AMP
VCM−
VCM−
AMP
C16
22
Rsense
AMP
VDD 29
CRET
21 PVCC
ERR_Amplifier
SENSE
Amplifier
C20
VCM−
VCMREF4V
15
12
CRET2
R24
C15
GAINSEL
12V
SUBGND
24
Retract
VCM enable
13
PCS
D20
Thermal
Shutdown
2
PWML
W
32
CCOMP
PWMSF
PWMH
34
3-phase
Output
Driver
SENSE
SENSE
Amplifier
VCM+
AMP
19
VCM
27
SENSE
VCMOFF
26 PGND
9
23, 35
SENSEOUT
25
18
ERROUT
ERRIN
28
30
GND
17
VCC
R25
R18
C30
5
VDD
R30
MIC-99D001
January 1999
39
PRELIMINARY
KA3120
HDD PRODUCTS
APPLICATION CIRCUIT
R42a
R42b
12V
5V
5V
R4a
C11
R4b
5V
10
FG
6
MCLK
8
CNTL1
44
CNTL2
45
CNTL3
46
PWMSP
47
PWMSOFT
1
PWMH
13
PWML
14
Digital
Custom
ASIC
C48
48
C2
2
C15 15
VCMOFF
SENSE5
POR
17
11
42
SENSE12
4
CDLY
5, 29
VCC
VDD
VREF
ADJ
R3a
BRAKE
R3b
3
U
v
2003
39
M39b
M39a
C39
12V
CBRAKE 40
C40
PVCC1 41
N 36
U 37
CFSP
KA3120
CFSF
CFVCM
V
U
34
V
9
GAINSEL 12
W
Rsense
VREG
7
22
32
C38
CCOMP 38
VCM−
PCS
33
R33
R22
19
C27
VCM
SENSE
PVCC2
CRET2
FILOUT
25
R18
R25
RRET
ERRIN
28
GND
30
ERROUT
18
VCM+
SENSEOUT
27
W
12V
21
D20
20
C20
24
R24
23, 26, 31, 35
: option
C30 R30
40
MIC-99D001
January 1999
PRELIMINARY
HDD PRODUCTS
KA3120
COMPONENT VALUE
Part No.
Value
Type
Part No.
Value
Type
Part No.
Value
Type
R18
15k
1/4W
C2
10n
Ceramic
Q1
KSH29
D-PAK
R24
2.2k
1/4W
C11
47n
Ceramic
M39a
SSD2003
8SOP
R22
Option
1/4W
C15
10n
Ceramic
M39b
R25
15k
1/4W
C16
1µ
Ceramic
D20
RB4110
Schottky
Diode
R30
1k
1/4W
C20
224n
Ceramic
−
−
−
Rsense
1
1W
C27
1µ
Ceramic
−
−
−
R33
0.25
1W
C30
1.2n
Ceramic
−
−
−
R4A
Option
1/4W
C38
150n
Ceramic
−
−
−
R4B
Option
1/4W
C40
220n
Ceramic
−
−
−
R42A
Option
1/4W
C48
10n
Ceramic
−
−
−
R42B
Option
1/4W
C39
Option
Ceramic
−
−
−
MIC-99D001
January 1999
41
PRELIMINARY
KA3120
HDD PRODUCTS
PACKAGE DIMENSION
42
MIC-99D001
January 1999
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
CoolFET™
CROSSVOLT™
E2CMOSTM
FACT™
FACT Quiet Series™
FAST®
FASTr™
GTO™
HiSeC™
ISOPLANAR™
MICROWIRE™
POP™
PowerTrench™
QS™
Quiet Series™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
TinyLogic™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.