PRELIMINARY HDD PRODUCTS KA3120 SPINDLE & VOICE COIL MOTOR ONE CHIP DRIVER 48-QFPH-1414 The KA3120 is an ASIC combination chip, which was designed for the HDD, includes the following functions: spindle motor drive, voice coil motor drive, retract and power management. To drive and control the spindle, the digital ASIC provides the appropriate control signals (Start up, commutation, speed control) to the KA3120. The spindle motor condition is monitored by the FG output and the motor speed control is accomplished via the PWMSP input. The ASIC controls the voice coil motor current via PWMH and PWML inputs and the power management circuit always monitors the power supply voltages. FEATURES ORDERING INFORMATION SPINDLE MOTOR DRIVE PART Device Package Operating Temperature KA3120 48-QFPH-1414 0 ~ 70°C • Soft switching • Spindle brake after retract • Adjustable brake delay time • 2.0A max. current power driver • Low output saturation voltage: 1V typical @1.6A • PWM decoder & filter for soft switching • The digital circuit (ASIC) based start-up, commutation and motor speed control VOICE COIL MOTOR DRIVE PART • Trimmed low offset current • 1.2A max. current power driver • Gain selection and adjustable gain • Automatic power down retract function • Class AB linear amplifier with no dead zone • Low output saturation voltage: 0.8V typical @1.0A • Internal full bridge with VPNP (Vertical PNP) & NPN • VCM offset monitoring Rev. B MIC-99D001 January 1999 1999 Fairchild Semiconductor Corporation 1 PRELIMINARY KA3120 HDD PRODUCTS POWER MONITORING • Power on reset with delay • Hysteresis on both power comparators • Over temperature & over current shut down • 5V and 12V power monitor threshold accuracy ±2% PACKAGE • 48QFPH (48 pin quad flat package heat-sink) APPLICATION • 2 Hard disk drive (HDD) products MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 BLOCK DIAGRAM POR Vreg Power-on Reset Interface FG U MCLK V Spindle Motor PWMSF Custom Digital ASIC PWMSP Driver W N VCM+ VCMOFFSET VCM− Gainsel Voice Coil Motor PWMH Driver 3-Phase BLDC Motor Voice Coil Motor PWML Retract Brake MIC-99D001 January 1999 3 PRELIMINARY KA3120 HDD PRODUCTS 43 42 41 40 39 38 37 PWMSF 1 36 N CFSF 2 35 SUBGND ADJ 3 34 V SENSE5 4 33 PCS VDD 5 32 W FG 6 31 SUBGND KA3120 TAB 4 U GND 44 CCOMP CNTL1 45 BRAKE CNTL2 46 CBRAKE CNTL3 47 PVCC PWMSP 48 TAB SENSE12 CFSP PIN CONFIGURATION TAB 9 28 ERRIN POR 10 27 VCM+ CDLY 11 26 PGND GAINSEL 12 25 SENSEOUT 16 17 18 FILOUT 15 VCC 14 CRET 13 TAB MIC-99D001 January 1999 19 20 21 22 23 24 RRET VCMOFF SUBGND VDD VCM− 29 PVCC 8 CRET2 MCLK SENSE ERROUT CFVCM 30 PWML 7 PWMH VREF PRELIMINARY HDD PRODUCTS KA3120 PIN DESCRIPTION Pin No. Symbol I/O Description 1 PWMSF I PWM input for spindle soft switching 2 CFSF − Capacitor for spindle PWM soft switching filter 3 ADJ − Reference voltage adjustable 4 SENSE5 I Adjustable threshold voltage to 5V 5 VDD − 5V power supply 6 FG O Frequency generation to spindle speed 7 VREF O Voltage reference output for ASIC power 8 MCLK I Clock from ASIC for switching 9 VCMOFF O VCM output offset monitoring pin 10 POR O Power On Reset 11 CDLY − Delay capacitor for power on reset 12 GAINSEL I VCM Amplifier gain selection 13 PWMH I PWM signal input (MSB) 14 PWML I PWM signal input (LSB) 15 CFVCM − Filter capacitor for VCM PWM control 16 CRET − Delay capacitor for retract 17 VCC − 12V power line 18 FILOUT O VCM PWM output 19 SENSE I VCM current sense input 20 CRET2 − Power for VCM retract 21 PVCC − 12V power line for VCM output 22 VCM(−) − VCM negative output 23 SUBGND − Ground 24 RRET I Adjustable maximum retract current 25 SENSEOUT O VCM current sense Amplifier output 26 PGND − Ground 27 VCM(+) − VCM positive output 28 ERRIN I VCM error Amplifier negative input 29 VDD − 5V power supply 30 ERROUT O VCM error Amplifier output 31 SUBGND − Ground 32 W O Spindle motor W phase output MIC-99D001 January 1999 5 PRELIMINARY KA3120 HDD PRODUCTS PIN DESCRIPTION (Continued) 6 Pin No. Symbol I/O Description 33 PCS O Spindle soutput current sensing 34 V O Spindle motor V phase output 35 SUBGND − Ground 36 N I Spindle motor neutral point 37 U O Spindle motor U phase output 38 CCOMP − Spindle output control compensation 39 BRAKE O Dynamic brake 40 CBRAKE − Back-EMF charging capacitor for brake power 41 PVCC − 12V power line for spindle 42 SENSE12 I Adjustable for threshold voltage to 12V 43 GND − Ground 44 CNTL1 I Control input for spindle and brake 45 CNTL2 I Control input for start-up clock and soft switching 46 CNTL3 I Control input for VCM Amplifier & retract 47 PWMSP I PWM input for spindle speed control 48 CFSP − Filter capacitor for spindle PWM control MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 EQUIVALENT CIRCUITS PWM decoder filter input PWM decoder filter Capacitor VDD VDD + − 22Ω #1, #47 + #2, #48 − 100µ Internal 2.5V Internal switch Regulator part SENSE input VDD VDD Internal 1.3V 27Ω + #3 − VDD 27Ω #4 #7 FG output MCLK input VDD VDD 50k 27Ω #6 27Ω 50k #8 50k MIC-99D001 January 1999 7 PRELIMINARY KA3120 HDD PRODUCTS EQUIVALENT CIRCUITS (Continued) VCM offset compensation output Power on reset part VDD VDD 27Ω VDD #11 20k 27Ω VDD #9 50k 27Ω Internal Switch 15µ + #10 − Internal 2.5V VCM gain selection input VCM PWM high input VDD 27Ω VDD 10k 27Ω #12 #13 10k 500µ 10k Internal switch VCM PWM low input VCM PWM filter Capacitor VDD + − VCC, 12V + 27Ω #14 − + #15 − 15.6µ 4k Internal switch 8 Internal 4V MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 EQUIVALENT CIRCUITS (Continued) Filtered VCM PWM command output VCM current sense input VDD VCC + #18 Internal DEC OUT − #19 Capacitor for retract power U V Max. retract current set input W VCC 30Ω VCC 27Ω #20 Spindle motor output compensation Capacitor 20k #24 Retract Block Spindle motor output and Back EMP sensing part VCC VDD VCC #32, 34, 37 VCC 60Ω #38 #33 Retract Block VCC 60Ω − #36 + + − Internal 4.2V MIC-99D001 January 1999 9 PRELIMINARY KA3120 HDD PRODUCTS EQUIVALENT CIRCUITS (Continued) Dynamic break part CNTL1, 2, 3 input VCC VCC VDD U 40Ω 2k VDD #40 27Ω #44, #45, #46 27Ω #39 VCM output and control part Sense12 input Internal 1/2 VCC VCC − #27 VCC + #30 Internal 4V VCC + + 60Ω − − 60Ω #22 #28 VCC − #25 #19 + Internal 4V 10 MIC-99D001 January 1999 #42 PRELIMINARY HDD PRODUCTS KA3120 ABSOLUTE MAXIMUM RATING (Ta=25°°C) Characteristics Symbol Value Unit Maximum signal block supply voltage for 5V line VDDMAX 6 V Maximum signal block supply voltage for 12V line VCCMAX 15 V Maximum power block supply voltage for 12V line PVCCMAX 15 V IOMAX 2 A PD 3.0 note W Storage temperature TSTG −55 ~ 125 °C Maximum junction temperature TJMAX 150 °C Operating ambient temperature TA 0 ~ 70 °C Maximum output current Power dissipation NOTE: 1. When mounted on 50mm × 50mm × 1mm PCB (Phenolic resin material) 2. Power dissipation is reduced 16mV / °C for using above Ta=25°C. 3. Do not exceed Pd and SOA. Pd[mW] 3,000 2,000 1,000 0 0 25 50 75 100 125 150 175 Ambient temperature, Ta [°C] RECOMMENDED OPERATING CONDITIONS Characteristics Supply voltage Supply voltage in logic part Symbol Min. Typ. Max. Unit VCC, PVCC2 10.8 12.0 13.2 V VDD 4.5 5.0 5.5 V MIC-99D001 January 1999 11 PRELIMINARY KA3120 HDD PRODUCTS ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit 40 50 60 mA 15 20 25 mA SUPPLY CURRENT 5V line supply current 1 IDD1 CNTL1=0V 5V line supply current 2 IDD2 5V line supply current 3 IDD3 CNTL1=CNTL3=5V 15 20 25 mA 5V line supply current 4 IDD4 CNTL3=0V 15 20 25 mA 12V line supply current 1 ICC1 CNTL1=0V 4 7 15 mA 12V line supply current 2 ICC2 4 7 15 mA 12V line supply current 3 ICC3 CNTL1=CNTL3=5V 10 30 50 mA 12V line supply current 4 ICC4 CNTL3=0V 4 7 15 mA − − POWER MONITOR Threshold voltage1 level for 12V VTH12 VCC=Sweep, VDD=5V 9.1 9.4 9.8 V Threshold voltage2 level for 12V VTH12b VCC=Sweep, VDD=5V 8.9 9.2 9.6 V Hysteresis on 12V comparator VHYS12 VCC=Sweep, VDD=5V 100 200 300 mV Adjustable pin voltage for 12V V12 VCC=12V, VDD=5V 3.0 3.2 3.4 V Threshold voltage level1 for 5V VTH5 VCC=12V, VDD=Sweep 3.9 4.1 4.4 V Threshold voltage level2 for 5V VTH5b VCC=12V, VDD=Sweep 3.8 4.0 4.3 V Hysteresis on 5V comparator VHYS5 VCC=12V, VDD=Sweep 50 100 150 mV Adjustable pin voltage for 5V V5 VCC=12V, VDD=5V 2.85 3.0 3.25 V ICPOR VCC=12V, VDD=5V −17.0 −14.0 −10.0 µA POWER ON RESET GENERATOR Charging current for POR Capacitor POR threshold voltage VTHPOR CDLY=Sweep 2.3 2.5 2.7 V Output high voltage VPOH VCC=12V, VDD=5V 4.5 − VDD V Output low voltage VPOL VCC=12V, VDD=5V 0 − 0.5 V TdPOR CDLY=220nF − 40 − ms Logic control input 1 MED voltage VCTL10 CNTL1=2.5V 2.3 2.5 2.7 V Logic control input 1 MED current ICTL1 CNTL1=2.5V −5 0 5 µA Logic control input 1 HIGH voltage VCTL1H CNTL1=Sweep 3.8 4.2 4.6 V Logic control input 1 HIGH current ICTL1H CNTL=5V 60 80 100 µA Logic control input 1 LOW voltage VCTL1L CNTL1=Sweep 0.5 0.8 1.2 V Logic control input 1 LOW current ICTL1L CNTL1=0V -100 -80 -60 µA Power on reset delay CONTROL INPUT LOGIC CONTROL INPUT2 & 3 SPEC’S ARE EQUAL TO LOGIC CONTROL INPUT1 12 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit Start-up hold check1 SHM1 − 0 0.2 0.5 V Start-up hold check2 SHM2 − 0 0.2 0.5 V Start-up mode check1 STM1 − 0 0.2 0.5 V Start-up mode check2 STM2 − 0 0.2 0.5 V BEMF threshold voltage VBTH − 65 80 95 mV FG output high voltage VFGH − 4.5 4.8 5.0 V FG output low voltage VFGL − 0 0.2 0.5 V Running mode check1 RM1 U=V=W=5V, N=100Hz 90 100 110 Hz Running mode check2 RM2 U=V=W=5V, N=100Hz 90 100 110 Hz FG U,V,W=120° shift pulse(1KHz) 2.9 3 3.1 kHz DTFG U,V,W=120° shift pulse(1KHz) 45 50 55 % PWM high level input voltage VSPMH − 3.0 − − V PWM low level input voltage VSPML − − − 2.0 V High input current at PWMSP IPSP1 PWMSP=100% duty 85 105 125 µA CFSP voltage2(100% duty of PWMSP) VSP2 PWMSP=100% duty 1.4 1.7 1.9 V Low input current at PWMSP IPSP2 PWMSP=0% duty −125 −105 −85 µA CFSP voltage1(0% duty of PWMSP) VSP1 PWMSP=0% duty 3.1 3.3 3.5 V CFSP voltage amplitude VSPD 1.5 1.6 1.8 V CFSP voltage3 (50% of PWMSP) VSP3 2.4 2.5 2.6 V START-UP HOLD CHECK START-UP MODE CHECK RUNNING MODE CHECK SPINDLE FG GENERATION FG frequency FG duty SPINDLE PWM CONTROL − PWMSP=50% duty CFSP charging current ICFSP1 PWMSP=0%, CFSP=2.5V −180 −150 −130 µA CFSP discharge current ICFSP2 SPMSP=100%, CFSP=2.5V 130 150 180 µA MIC-99D001 January 1999 13 PRELIMINARY KA3120 HDD PRODUCTS ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit PWM high level input voltage VSFMH − 3.0 − − V PWM low level input voltage VSFML − − − 2.0 V High input current at PWMSF IPFP1 PWMSF=100% duty 85 100 125 µA CFSF voltage2(100% duty of PWMSF) VSF2 PWMSF=100% duty 2.65 2.75 2.85 V Low input current at PWMSF IPSF2 PWMSF=0% duty −125 −100 −85 µA CFSF voltage1(0% duty of PWMSF) VSF1 PWMSF=0% duty 2.15 2.25 2.35 V CFSF voltage amplitude VSFD 450 500 550 mV CFSF voltage3 (50% of PWMSF) VSF3 2.4 2.5 2.6 V −110 −90 −70 µA 90 110 130 µA 11.0 11.3 11.5 V − VDD − V 0 0.2 0.5 V SPINDLE PWM SOFT SWITCHING − PWMSF=50% duty CFSF charging current ICFSF1 PWMSF=0%, CFSP=2.5V CFSF discharge current ICFSF2 SPMSF=100%, CFSP=2.5V BRAKE CBrake output voltage VBC Brake output high voltage VBH Brake output low voltage VBL − (Test only) − SPINDLE OUTPUT U saturation voltage_upper5 VSU5U RU,RV,RW=5Ω 0.2 0.3 0.5 V V saturation voltage_upper5 VSU5V RU,RV,RW=5Ω 0.2 0.3 0.5 V W saturation voltage_upper5 VSU5W RU,RV,RW=5Ω 0.2 0.3 0.5 V U saturation voltage_lower5 VSV5L RU,RV,RW=5Ω 0.2 0.3 0.5 V V saturation voltage_lower5 VSU5L RU,RV,RW=5Ω 0.2 0.3 0.5 V W saturation voltage_lower5 VSU5L RU,RV,RW=5Ω 0.2 0.3 0.5 V U output frequency FU CNTL2=12KHz 0.9 1 1.1 KHz V output frequency FV CNTL2=12KHz 0.9 1 1.1 KHz W output frequency FW CNTL2=12KHz 0.9 1 1.1 KHz 14 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit SPINDLE OUTPUT U phase high duration time TUH CNTL2=12KHz 300 333 360 µs U phase middle duration time TUM CNTL2=12KHz 600 666 720 µs V phase high duration time TVH CNTL2=12KHz 300 333 360 µs V phase middle duration time TVM CNTL2=12KHz 600 666 720 µs W phase high duration time TWH CNTL2=12KHz 300 333 360 µs W phase middle duration time TWM CNTL2=12KHz 600 666 720 µs Leakage current U upper IULQU − −1 0 1 µA Leakage current V upper IVLQU − −1 0 1 µA Leakage current W upper IWLQU − −1 0 1 µA Leakage current U lower IULQL − −1 0 1 µA Leakage current V lower IVLQL − −1 0 1 µA Leakage current W lower IWLQL − −1 0 1 µA U sourcing current 0.2V IOU02 − 3.0 4.0 5.0 µA V sourcing current 0.2V IOV02 − 3.0 4.0 5.0 µA W sourcing current 0.2V IOW02 − 3.0 4.0 5.0 µA Transconductance gain U upper GMUH PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V Transconductance gain U lower GMUL PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V Transconductance gain V upper GMVH PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V Transconductance gain V lower GMVL PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V Transconductance gain W upper GMWH PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V Transconductance gain W lower GMWL PWMSP=sweep, RU,RV,RW=5Ω 0.8 0.9 1.0 A/V CCOMP charging current1 ICOMP1 PWMSP=0% −20 0 20 µA CCOMP charging current2 ICOMP2 PWMSP=50% −200 −250 −300 µA CCOMP charging current3 ICOMP3 PWMSP=100% −400 −500 −600 µA MIC-99D001 January 1999 15 PRELIMINARY KA3120 HDD PRODUCTS ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit U stair high VUSTH − 2.85 3.0 3.15 V U stair middle VUSTM − 2.35 2.5 2.65 V U stair low VUSTL − 1.85 2.0 2.15 V U stair frequency FUST − 0.9 1.0 1.1 KHz V stair high VVSTH − 2.85 3.0 3.15 V V stair middle VVSTM − 2.35 2.5 2.65 V V stair low VVSTL − 1.85 2.0 2.15 V V stair frequency FVST − 0.9 1.0 1.1 KHz W stair high VWSTH − 2.85 3.0 3.15 V W stair middle VWSTM − 2.35 2.5 2.65 V W stair low VWSTL − 1.85 2.0 2.15 V W stair frequency FWST − 0.9 1.0 1.1 KHz Com high VCOMH − 2.6 2.75 2.9 V Com low VCOML − 2.1 2.25 2.4 V Com frequency FCOM − 2.8 3.0 3.2 KHz U stair frequency_soft FUSTSF − 0.9 1.0 1.1 KHz V stair frequency_soft FVSTSF − 0.9 1.0 1.1 KHz W stair frequency_soft FWSTSF − 0.9 1.0 1.1 KHz FCSF − 2.9 3 3.1 KHz Com high voltage_soft1 VCHSF1 − 2.65 2.75 2.85 V Com low voltage_soft1 VCLSF1 − 2.15 2.25 2.35 V Com high voltage_soft2 VCHSF1 − 2.65 2.75 2.85 V Com low voltage_soft2 VCLSF1 − 2.15 2.25 2.35 V COMUTATION CONTROL COMUTATION CONTROL SOFT Com frequency_soft REGULATOR Adjustable PIN voltage VADJ VDD=5V,R3a=15KΩ,R3b=10KΩ 1.2 1.3 1.4 V Regulator output voltage VREG VDD=5V,R3a=15KΩ,R3b=10KΩ 3.1 3.3 3.5 V Regulator line regulation RLINE VDD=sweep 0 0.5 1.0 % Regulator load regulation RLOAD VDD=5V 0 0.5 1.0 % 16 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit High threshold voltage VMH − 2.0 1.4 − V Low threshold voltage VML − − 1.4 0.8 V High input current IMH − 15 25 35 µA High input current IML − −10 0 10 µA SPINDLE MCLOCK VCM PWM CONTROL High PWMH input current IPWMH1 PWMH=100% 100 113 130 µA Low PWMH input current IPWMH2 PWMH=0% −130 −113 −100 µA High PWML input current IPWML1 PWML=100% 100 113 130 µA Low PWML input current IPWM2 PWML=0% −130 −113 −100 µA PWMH high level input voltage VPWMH1 − 3.0 − − V PWMH low level input voltage VPWMH2 − − − 2.0 V PWML high level input voltage VPWML1 − 3.0 − − V PWML low level input voltage VPWM2 − −130 −113 −100 V CFVCM voltage1 VCFVC1 PWMH=100%,PWML=100% 5.90 6.06 6.30 V CFVCM voltage2 VCFVC2 PWMH=100%,PWML=50% 5.80 6.00 6.20 V CFVCM voltage3 VCFVC3 PWMH=100%,PWML=0% 5.70 5.94 6.10 V CFVCM voltage4 VCFVC4 PWMH=50%,PWML=100% 3.90 4.06 4.30 V CFVCM voltage5 VCFVC5 PWMH=50%,PWML=50% 3.80 4.00 4.20 V CFVCM voltage6 VCFVC6 PWMH=50%,PWML=0% 3.70 3.94 4.10 V CFVCM voltage7 VCFVC7 PWMH=0%,PWML=100% 1.90 2.06 2.40 V CFVCM voltage8 VCFVC8 PWMH=0%,PWML=50% 1.80 2.00 2.30 V CFVCM voltage9 VCFVC9 PWMH=0%,PWML=0% 1.70 1.94 2.20 V PWM current ratio (VCM) RPWM − 30 32 34 PWMH current variation IVPWM − 0.8 1.0 1.2 mA PWML current variation IVPWM − 27 32.3 36 µA − − 2 deg VCM PWM FILTER Measure at 500HZ, CFVCM=10nF Maximum phase shift ∆Φ Filter cut-off frequency FCO − − 100 − µA αFILTER − − 70 − dB Filter attenuation at 1MHz MIC-99D001 January 1999 17 PRELIMINARY KA3120 HDD PRODUCTS ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit 3.8 4.0 4.2 V VCM REFERENCE VOLTAGE VCM reference voltage VREF CNTL3=5V VCM ERROR AMPLIFIER Amplifier output high VEOH − 10.8 11.2 11.5 V Amplifier output low VEOL − 0.5 0.8 1.2 V Short circuit current IESC − 10 − − mA Input offset voltage VOSE − −15 0 15 mV Errot amplifier open loop gain AVE − − 80 − dB Unit gain bandwidth BGE − − 2.3 − MHz Amplifier output high VSOH − 10.8 11.2 11.5 V Amplifier output low VSOL − 0.5 0.8 1.2 V Short circuit current ISSC − 10 − − mA Input offset voltage VOSE − −15 0 15 mV Unit gain bandwidth BGS − − 3.4 − MHz Sense amplifier voltage gain1 AVS1 Gainsel=5V − 24 − dB Sense amplifier voltage gain2 AVS2 Gainsel=5V − 6 − dB Power Amplifier gain1 APO1 − 24 24.6 25 dB Power Amplifier gain2 APO2 − 24 24.6 25 dB Power Amplifier output high voltage1 VPOH1 − 11.5 11.8 12.0 V Power Amplifier output high voltage2 VPOH2 − 11.5 11.8 12.0 V Power Amplifier output low voltage1 VPOL1 − 0 0.2 0.5 V Power Amplifier output low voltage2 VPOL2 − 0 0.2 0.5 V Input offset voltage VOSE − −15 0 15 mV Unit gain bandwidth1 BG P1 − − 2 − MHz Unit gain bandwidth2 BG P2 − − 2 − MHz Offset comparator high voltage VOCH − 4.5 4.8 5.0 V Offset comparator low voltage VOCL − 0 0.2 0.5 V Offset comparator offset voltage VOCOS − − 0 − mV Offset comparator hysteresis VOCHYS − 5 10 15 mV VCM SENSE AMPLIFIER VCM POWER AMPLIFIER VCM OFFSET COMPARATOR 18 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 ELECTRICAL CHARACTERISTICS (Continued) (Ta=25°C, unless otherwise specified) Characteristic Symbol Test conditions Min. Typ. Max. Unit VCM AMPLIFIER TOTAL VCM offset current IOSVCM PWMH=PWML=50% duty –15 0 15 mA VCM transconductance gain high GMVH Gainsel=0V 0.47 0.50 0.53 A/V VCM transconductance gain low GMVL Gainsel=5V 0.1 0.125 0.15 A/V VCM+ saturation voltage lower VVMS1 Rvcm=15Ω − − 0.5 V VCM- saturation voltage upper VVMS2 Rvcm=15Ω − − 0.5 V VCM+ saturation voltage upper VVMS3 Rvcm=15Ω − − 0.5 V VCM- saturation voltage lower VVMS4 Rvcm=15Ω − − 0.5 V VCM+ saturation voltage lower VVMS5 Rvcm=15Ω − − 0.5 V VCM- saturation voltage upper VVMS6 Rvcm=15Ω − − 0.5 V VCM+ saturation voltage upper VVMS7 Rvcm=15Ω − − 0.5 V VCM- saturation voltage lower VVMS8 Rvcm=15Ω − − 0.5 V Leakage current power Amplifier1 IVCML1 − −10 0 10 µA Leakage current power Amplifier2 IVCML2 − −10 0 10 µA − 3.0 − V RETRACT Min. operating voltage of CRET2 Source voltage VCRET2 CRET2=Sweep VSRC CRET2=5V 0.8 1.0 1.2 V VRTSAT CRET2=5V − − 0.5 V Retract sinking current1 IRCT1 Rret=8.0KΩ 40 48.2 60 mV Retract sinking current2 IRCT2 Rret=4.2KΩ 80 91.8 100 mV Retract sinking current3 IRCT3 Rret=2.7KΩ 130 143 155 mV Cret charging current1 ICRET – 90 100 110 µA Retract power Tr. leakage upper ILRET1 – –1 0 1 µA Retract power Tr. leakage lower ILRET1 – –1 0 1 µA Operating temperature TSD − 135 150 165 °C Thermal hysteresis THYS − 20 30 40 °C Sinking saturation voltage THERMAL SHUT DOWN MIC-99D001 January 1999 19 PRELIMINARY KA3120 HDD PRODUCTS APPLICATION INFORMATION SPINDLE MOTOR DRIVE PART The KA3120 is a combination chip consisting of spindle motor and voice coil motor designed for HDD system. According to the spindle conditions, the digital ASIC circuit provides optimum control signals (Start-up, commutation, speed control, and switching mode) to the KA3120. Detection of the back-EMF (BEMF) of the spindle motor has to be output to an external digital circuit via FG. The MCLK and PWM signals are used to determine the commutation timing and to control the spindle speed, respectively. SPINDLE DRIVER The spindle includes both low and high side drivers (H−bridge) for a three-phase sensorless brushless DC motor. To reduce the saturation voltage, the vertical PNP Tr is used as the high side driver. FREQUENCY GENERATION (FG) FG stands for Frequency Generation. It is the out signal toward the digital ASIC. Representing the current spindle speed frequency, it contains important information about the motor speed and motor spin. According to the FG frequency, the digital ASIC provides different motor clock signals to the motor drive IC via MCLK and checks the motor speed to send the VCM enable signal via CNTL3. FG frequency (Hz), motor speed (rpm) and pole number are directly related as shown below in the three phase motor. FG frequency = motor speed × pole number × 3 / 120 In a typical application,(8 pole motor) FG frequency = 5400 × 8 × 3 / 120 = 1080Hz FG frequency = Output frequency × 3 20 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 MCLK & MASK The MCLK is a motor clock used as the standard clock signal for the proper commutation timing of the spindle motor. It is supplied by the ASIC. As shown in table 1, it has different delay times depending on the mode of the spindle speed. Table 1. MCLK & MASK Delay Time to the Spindle Speed. Table 1. MCLK & MASK delay time to the spindle speed MCLK (Td) MASK Switching External ASIC 1ms Hard switching Acceleration mode FG(n-1) / 2 FG(n-1) / 4 Hard switching Running mode FG(n-1) / 32 344.45µs Soft switching Start-up mode After the FG_Edge signal, the MCLK occurs after a half FG_Edge delay time in the acceleration mode and 1/ 32 FG_Edge delay time in the soft switching mode. MASK When the coil current is abruptly changed in a short time interval, a spark voltage occurs. This spark voltage mixes with the FG output to give the wrong spindle information to the ASIC. To eliminate the spark voltage from the FG output, the masking block is needed. di Vcoil = – L ----dt W_BEMF V_BEMF U_ BEMF U_Comp 120° V_Comp W_Comp 60° FG FG_Edge Electrically 30° Delay MCLK Figure 1. BEM, FG, and MCLK in the acceleration mote MIC-99D001 January 1999 21 PRELIMINARY KA3120 HDD PRODUCTS Switching noise, false zero cross FG ≥ 8msec FG 2msec 2msec MCLK 1msec 1msec MASK Figure 2. MCLK vs MASK in the start-up mode FG ≤ 8msec, T1 T2 Switching noise, false zero cross FG T1/2 T2/2 MSLK T1/4 T2/4 MASK Figure 3. MCLK vs MASK in the acceleration mode 22 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 PWMDEC AND SPEED CONTROL Motor speed is measured by the ASIC via the FG output. The digital ASIC compares FG frequency with the target motor speed and sends the speed compensation signal to the PWMSP input of the KA3120. This PWM signal is internally filtered and is converted into DC voltage through the built-in PWM Decoder Filter. The analog output of the filter depends on the duty of the PWM signal. The filter is a 3rd order, low-pass filter. The first pole location of the filter is determined by the external capacitor connected to pin(48) CFSP. 0.625 Ispindle = ( D – 0.1 ) ⋅ -------------------------------R33 ( = 0.25 ) Figure 4. Spindle current vs PWMSP duty variation START-UP MODE The BEMF is used in the sensorless BLDC motor driver to determine the rotor position. The detected rotor position is a very important information to control the motor speed and the commutation timing. At standstill condition, there is no BEMF voltage and no FG output. There is no information about the motor position. However the spindle motor must be started up at standstill. To drive the spindle at the start-up mode, the digital ASIC sends the spindle enable signal via CNTL1 and supplies the HIGH or OPEN signal in turns via CNTL2 to be used as commutation signal of the spindle motor. MIC-99D001 January 1999 23 PRELIMINARY KA3120 HDD PRODUCTS The digital ASIC continuously provides HIGH or OPEN signal until the BEMF generated is enough large to produce the FG signal i.e. the spindle motor can be driven by the self commutation. During a fixed time, if the BEMF generated is too small and the spindle motor is not driven by the self commutation, the ASIC resets all signals sent and retries the spindle. Table 2. Pin setup truth table CNTL1(1) CNTL2(2) CNTL3(3) GAINSEL SPM driver Brake S/W VCM driver Retract SPM driver VCM gain High (5V) 1 0 Hard S/W 1 0 Normal 0.125 Open (Floating) 0 0 Hard S/W 0 0 x x Low (0V) 0 1 Soft S/W 0 1 up(4) Start Hold 0.5 NOTES: 1. CNTL1: Spindle motor control 2. CNTL2: Switching mode control 3. CNTL3; VCM motor control 4. Test only 5. “1”: Enable; “0”: disable; “S/W”: switching ACCELERATION MODE When the BEMF detected is enough to be used as the information of motor position, the mode is changed from start-up to acceleration. The ASIC sends the optimum commutation timing signal via MCLK according to the FG input. By using the BEMF, the spindle is self-commuted at acceleration and running modes. During the motor drive, the spindle motor is commuted at that point which is electrically 30° delayed after the FG_Edge generates. RUNNING MODE It is called to the running mode when the spindle motor speed arrives within ± 1% of the target speed. The switching mode, commutation delay time, MCLK delay time (Td) and masking time are changed at the running mode. The spindle motor speed is controlled by PWM signal within ± 0.01%. The soft switching using the current slope of the motor may reduce noise, EMI (Electromagnetic Interference) and spark voltage which is generated on the motor coil at the switching. 24 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS CNTL1 SPIN ON KA3120 High Open High Open CNTL2 Low FG +1% Target RPM −1% Rotation Speed Start-Up Hard-Switching Soft-Switching Internal Ready 10msec Internal Switching Mode Change 100msec CNTL3 VCM ON VCM Enable High Open High, 5V CASE1 : High gain Low, 0V High, 5V CASE1 : Low gain Low, 0V Figure 5. Motor start-up sequence Duty (%) 100% D% 0 F trarget FG Frequency Figure 6. FG vs PWMSP duty variation MIC-99D001 January 1999 25 PRELIMINARY KA3120 HDD PRODUCTS (1) Acceleration Mode: Hard-Switching Mode + U_BEMF 0 − + V_BEMF 0 − + W_BEMF 0 − SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK (2) Running Mode: Soft-Switching Mode SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK Figure 7. Acceleration and running the spindle motor 26 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 Start High frequency Noise Elimination Using filtered FG Generate start Counter Counting the FG duration NO Hard Switching Saturation =? NO MCLK = FG(n-1)/32 MASK = 344.45usec YES Waiting 2msec MCLK generation Running MCLK = FG(n-1)/2 MASK = 344.45usec Acceleration Retry MASK = 1msec FG polarity Check = SAME? YES Start up Keep going Waiting for FG edge Store count Value of the FG Figure 8. MCLK generation flow chart MIC-99D001 January 1999 27 PRELIMINARY KA3120 HDD PRODUCTS VOICE COIL MOTOR VCM driver The voice coil motor driver is linear, class AB, H−bridge type driver, and it includes all power transistors. After the VCM is enabled via CNTL3, the VCM current level is controlled by two PWM signals. The input voltage level at pin PWMH weighs, at a maximum, 32 times more than the input voltage at pin PWML. These PWM signals are filtered by an internal second−order low-pass filter and converted into PWMOUT (DC Voltage). The filter PWMOUT depends only on the duty factor and not on the logic level. The PWM Filter's pole is adjustable by pin CFVCM connected to the external capacitor. R1 Vin PWMH input 13 − R2 VREF(4V) Gm C1 + 1/2 VDD R1 Vin PWML input 14 + A − R2 R1 R1 C1 Gm + PWMOUT 1/2 VDD + 1/2 VDD − − 15 CFVCM Figure 9. PWM decoder & filter schematic 2 − 1/2VCC 4V R7 VCM+ R5 27 v+ + Vin + (PWMDEC OUT) vx va − L R5 + motor R5 − RL + R5 Sense − 19 Imotor R4 22 vb − R3 R3 Errin 18 Errout 28 R18 Rexif Senseout 30 25 Cexif R25 Figure 10. VCM driver schematic 28 MIC-99D001 January 1999 VCM− + − vs + Filtout R6 Rsense v− PRELIMINARY HDD PRODUCTS KA3120 The transconductance of VCM AMPLIFIER gain, Gm, is: Imotor- = ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 ⋅ Aerror ⋅ Apower ⋅ R25 Gm = ----------------2 ⋅ R18 ⋅ Rsense ⋅ As ⋅ Aerror ⋅ Apower + ( R18 + R25 ) ( Zmotor + Rsense ) Vin 1 Aloop R25 1 Gm = ------------------------- ---------- ------------------ ------ 1 + Aloop R18 Rsense As 2 ⋅ R18 ⋅ As ⋅ Aerror ⋅ Apower Aloop = -------------------------------------------------------------------------------( R18 + R25 ) ( Zmotor + Rsense ) Therefore Aloop >>1, 1 1 R25 Gm ≅ ---------- ⋅ ------------------ ⋅ -----R18 Rsense As The transconductance (Gm) can be adjusted by selecting the external components R18, R25 and sense resister Rsense. if R18 = 15k, R25 = 15k, Rsense = 1 GAINSEL = 0(0V), 1 / AS = 0.5 Gm = 0.5 GAINSEL = 1(5V), 1 / AS = 0.125 Gm = 0.125 VCM current (Imotor) is: GAINSEL = 0(0V) 1 R25 1 Imotor = 4 × ( PWMH – 0.5 ) + ------ ( PWML – 0.5 ) × ---------- × ------------------ × 0.43 32 R18 Rsense GAINSEL = 1(5V) 1 R25 1 Imotor = 4 × ( PWMH – 0.5 ) + ------ ( PWML – 0.5 ) × ---------- × ------------------ × 0.11 32 R18 Rsense Recommended value PWMH(100%) = 1 R18 = R25 = 15k PWMH(50%) = 0.5 Rsense = 1 PWMH(0%) = 0 MIC-99D001 January 1999 29 PRELIMINARY KA3120 HDD PRODUCTS RETRACT CIRCUIT The retract function is the operation where the VCM moves from the data zone to the parking zone when off normal state power and abnormal power interrupt cause the spindle to stop. From Spindle + Bandgap Reference × 320 27 VA _ Iref Iretdly Retract Enable Iret 19 2K Low side Control 16 24 Cret Rret Figure 11. Retract block schematic VA = 2.0V VA Iref = -----------------------Rext + 2k Iret = Iref × 320 Cret × 2.0V Tretdly = -----------------------------------------Iretdly ( = 100µ ) 30 Cret2 20 MIC-99D001 January 1999 Motor PRELIMINARY HDD PRODUCTS KA3120 POWER MANAGEMENT FEATURES LOW POWER INTERRUPT: The low power interrupt operation occurs when the power supply voltage (5V,12V) level drops below each threshold voltage. The threshold voltage (Vth) and time delay (Tdly) may be adjustable by the external component value. Vth Tdly = CDLY --------- ,( Vth = 2.5V , I = 14 µ A) I VDD 11 VDD VCC CDLY I = 14µA R7 R4 + 5V SENSE 4 12V SENSE 42 R8 12 + + _ Q15 _ POR R5 2.5V Figure 12. Power on reset block schematic MIC-99D001 January 1999 31 PRELIMINARY KA3120 HDD PRODUCTS POWER ON RESET The power-on reset circuit monitors the voltage level of both +5V and +12V power supplies. The power−on reset circuit disables the spindle out block, the whole VCM block, and the digital ASIC when the power supply voltage level drops below the reference voltage. VDD, VCC Vth Vhys T POR Tdly Vbe T Figure 13. Power on reset function Vhys = 4.2mV R4 + R5 VDD ;Vhys ( 5V ) = -------------------- × Vhys R5 R7 + R8 VDD ;Vhys ( 12V ) = -------------------- × Vhys R8 Default (pin4, pin42 : not connected) VDD, th ≅ 4.1V VCC ,th ≅ 9.4V 32 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 REGULATOR The KA3120 includes the regulator block which supplies power of the digital ASIC. It consists of the bias block, the band gap reference, the error amp and the external NPN power Tr. The regulator voltage can be adjusted by the external resistor, R3a, R3b. R3a Vreg = Vref 1 + ---------- , Vref = 1.3V R3b VDD Bias Block Vref Bandgap Reference + 7 VREF − VREG R3a Vadjust 3 R3b Figure 14. low drop regulator schematic if R3a = 15k, R3b = 10k R3a = 1.3 × 1 + -------15k- = 3.25V Vreg = Vref 1 + --------- R3b 10k MIC-99D001 January 1999 33 PRELIMINARY KA3120 HDD PRODUCTS STR_CLK BEMF DETECTIO N STR_MASK U_OUT FG Figure 15. Start-up mode MCLK*2 U_OUT FG Figure 16. Acceleration mode 1 34 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 T1/4 2msec T1/2 MCLK*2 T1 U_OUT FG Figure 17. Acceleration mode 2 U_OUT V_OUT W_OUT Figure 18. Output in hard-switching mode MIC-99D001 January 1999 35 PRELIMINARY KA3120 HDD PRODUCTS Switching Mode Conterting FG COM Output Figure 19. Switching mode converting U_OUT V_OUT W_OUT Figure 20. Soft-switching mode 36 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 CNTL3 Filou t Ivcm CNTL3 Filou t Ivcm PW MH Filou t Ivcm Figure 21. VCM recalibration flow MIC-99D001 January 1999 37 PRELIMINARY KA3120 HDD PRODUCTS POR CBREAK Vout Iret Figure 22. Retract & break at power off 38 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 TYPICAL APPLICATION CIRCUIT 5V R3a Q1 R3b GND C11 4 42 11 7 3 VREF ADJ SENSE15 SENSE12 CDLY Power Bandgap POR 10 Reference On & Bias Reset FG U V W Brake Brake AMP Zero Cross Detector FG Generator 6 43 36 V 39 Cbrake Brake N M39a W M39b C39 C40 40 MCLK 41 PVCC 8 CNTL1 U 44 3 State Input Control CNTL2 45 CNTL3 37 Commutation & Spindle Motor Control 46 V C38 38 PWMSP C48 R33 PWM Decoder Filter 47 33 AMP Vlimit 48 31 PWM Decoder Filter 1 C2 U V W 20 Retract PWM Decoder Filter 14 VCM+ FILOUT RRET 16 AMP VCM− VCM− AMP C16 22 Rsense AMP VDD 29 CRET 21 PVCC ERR_Amplifier SENSE Amplifier C20 VCM− VCMREF4V 15 12 CRET2 R24 C15 GAINSEL 12V SUBGND 24 Retract VCM enable 13 PCS D20 Thermal Shutdown 2 PWML W 32 CCOMP PWMSF PWMH 34 3-phase Output Driver SENSE SENSE Amplifier VCM+ AMP 19 VCM 27 SENSE VCMOFF 26 PGND 9 23, 35 SENSEOUT 25 18 ERROUT ERRIN 28 30 GND 17 VCC R25 R18 C30 5 VDD R30 MIC-99D001 January 1999 39 PRELIMINARY KA3120 HDD PRODUCTS APPLICATION CIRCUIT R42a R42b 12V 5V 5V R4a C11 R4b 5V 10 FG 6 MCLK 8 CNTL1 44 CNTL2 45 CNTL3 46 PWMSP 47 PWMSOFT 1 PWMH 13 PWML 14 Digital Custom ASIC C48 48 C2 2 C15 15 VCMOFF SENSE5 POR 17 11 42 SENSE12 4 CDLY 5, 29 VCC VDD VREF ADJ R3a BRAKE R3b 3 U v 2003 39 M39b M39a C39 12V CBRAKE 40 C40 PVCC1 41 N 36 U 37 CFSP KA3120 CFSF CFVCM V U 34 V 9 GAINSEL 12 W Rsense VREG 7 22 32 C38 CCOMP 38 VCM− PCS 33 R33 R22 19 C27 VCM SENSE PVCC2 CRET2 FILOUT 25 R18 R25 RRET ERRIN 28 GND 30 ERROUT 18 VCM+ SENSEOUT 27 W 12V 21 D20 20 C20 24 R24 23, 26, 31, 35 : option C30 R30 40 MIC-99D001 January 1999 PRELIMINARY HDD PRODUCTS KA3120 COMPONENT VALUE Part No. Value Type Part No. Value Type Part No. Value Type R18 15k 1/4W C2 10n Ceramic Q1 KSH29 D-PAK R24 2.2k 1/4W C11 47n Ceramic M39a SSD2003 8SOP R22 Option 1/4W C15 10n Ceramic M39b R25 15k 1/4W C16 1µ Ceramic D20 RB4110 Schottky Diode R30 1k 1/4W C20 224n Ceramic − − − Rsense 1 1W C27 1µ Ceramic − − − R33 0.25 1W C30 1.2n Ceramic − − − R4A Option 1/4W C38 150n Ceramic − − − R4B Option 1/4W C40 220n Ceramic − − − R42A Option 1/4W C48 10n Ceramic − − − R42B Option 1/4W C39 Option Ceramic − − − MIC-99D001 January 1999 41 PRELIMINARY KA3120 HDD PRODUCTS PACKAGE DIMENSION 42 MIC-99D001 January 1999 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ CoolFET™ CROSSVOLT™ E2CMOSTM FACT™ FACT Quiet Series™ FAST® FASTr™ GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ POP™ PowerTrench™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 TinyLogic™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.