www.fairchildsemi.com FAN8620B 12V Spindle Motor and Voice Coil Motor Driver Features Description Spindle Motor Driver The FAN8620B is an ASIC combination chip, designed for the HDD application, it includes the following functions: spindle motor drive, voice coil motor drive, retract and power management. To drive and control the spindle, the external ASIC provides the appropriate control signals (Start up, commutation, speed control) to the FAN8620B. The spindle motor condition is monitored by the FG output and the motor speed control is accomplished via the PWMSP input. The ASIC controls the voice coil motor current via PWMH and PWML inputs and the power management circuit always monitors the power supply voltages. • • • • • • • Soft commutation Spindle brake after retract Adjustable brake delay time 1.5A max. current power driver Low output saturation voltage: 1V typical @1.2A PWM decoder & filter for soft commutation The external circuit (ASIC) based start-up, commutation and motor speed control Voice Coil Motor Driver • • • • • • • Trimmed low offset current 1.2A max. current power driver Gain selection and adjustable gain Automatic power failure retract function Class AB linear amplifier with no dead zone Low output saturation voltage: 0.8V typical @1.0A Internal full bridge with VPNP (Vertical PNP) & NPN transistors 48-QFPH-1414 Power Monitoring • • • • Power on reset with delay Hysteresis on both power comparators Over temperature & over current shut down 5V and 12V power monitor threshold accuracy ±2% Others • Can be used with 5Volt and 3.3Volt control signals(CNTL1,CNTL2 & CNTL3) for ASIC Interface Package • 48QFPH (48 pin quad flat package heat-sink) Typical Application Ordering Information • Hard disk drive (HDD) Device Package Operating Temp. FAN8620B 48-QFPH-1414 0 ~ 70°C Rev. 1.0.0 May. 2000. ©2000 Fairchild Semiconductor International 1 FAN8620B 43 U GND 44 CCOMP CNTL1 45 BRAKE CNTL2 46 CBRAKE CNTL3 47 PVCC1 PWMSP 48 TAB SENSE12 CFSP Pin Assignments 42 41 40 39 38 37 PWMSF 1 36 N CFSF 2 35 SUBGND ADJ 3 34 V SENSE5 4 33 PCS VDD 5 32 W FG 6 31 SUBGND FAN8620B TAB TAB POR 10 27 VCM+ CDLY 11 26 PGND GAINSEL 12 25 SENSEOUT 13 14 15 16 17 18 TAB 2 19 20 21 22 23 24 RRET ERRIN SUBGND 28 VCM- 9 PVCC2 HALFVCC CRET2 VDD SENSE 29 FILOUT 8 VCC MCLK CRET ERROUT CFVCM 30 PWML 7 PWMH VREF FAN8620B Pin Definitions Pine Number Pin Name I/O Pin Function Description 1 PWMSF I PWM input for spindle soft commutation 2 CFSF - Capacitor for spindle PWM soft commutation filter 3 ADJ - Reference voltage adjustable 4 SENSE5 - Adjustable threshold voltage to 5V 5 VDD - 5V power supply 6 FG O Frequency generation to spindle speed 7 VREF O Voltage reference output for ASIC power 8 MCLK I Clock from ASIC for commutation 9 HALFVCC O 1/2 VCC pin 10 POR O Fault output(Power On Reset & Thermal Shut Down) 11 CDLY - Delay capacitor for power on reset 12 GAINSEL I VCM current Amplifier gain selection 13 PWMH I PWM signal input (MSB) 14 PWML I PWM signal input (LSB) 15 CFVCM - Filter capacitor for VCM PWM control 16 CRET - Delay capacitor for retract 17 VCC - 12V power line 18 FILOUT O VCM PWM output 19 SENSE I VCM current sense Amplifier input 20 CRET2 - Power for VCM retract 21 PVCC2 - 12V power line for VCM output 22 VCM(-) O VCM negative output 23 SUBGND - Ground 24 RRET - Adjustable maximum retract current 25 SENSEOUT O VCM current sense Amplifier output 26 PGND - Ground 27 VCM(+) O VCM positive output 28 ERRIN I VCM error Amplifier negative input 29 VDD - 5V power supply 30 ERROUT O VCM error Amplifier output 31 SUBGND - Ground 32 W O Spindle motor W phase output 3 FAN8620B Pin Definitions (Continued) Pine Number Pin Name I/O Pin Function Description 33 PCS O Spindle output current sensing 34 V O Spindle motor V phase output 35 SUBGND - Ground 36 N - Spindle motor neutral point 37 U O Spindle motor U phase output 38 CCOMP - Spindle output control compensation 39 BRAKE O Dynamic brake 40 CBRAKE - Back-EMF charging capacitor for brake power 41 PVCC1 - 12V power line for spindle 42 SENSE12 - Adjustable for threshold voltage to 12V 43 GND - Ground 44 CNTL1 I Control input for spindle and brake 45 CNTL2 I Control input for start-up clock and soft commutation 46 CNTL3 I Control input for VCM Amplifier & retract 47 PWMSP I PWM input for spindle speed control 48 CFSP - Filter capacitor for spindle PWM control 4 FAN8620B Internal Block Diagram POR Vreg CNTL 1,2,3 Power-on Reset Interface U FG MCLK PWMSF Custom Digital ASIC V Spindle Motor W Driver PWMSP N VCM+ VCM- GAINSEL PWMH 3-Phase BLDC Motor Voice Coil Motor Driver PWML Retract Brake FAN8620B 5 Voice Coil Motor FAN8620B Equivalent Circuits PWM decoder filter input of Spindle part PWM decoder filter Capacitor of Spindle part VDD VDD + - 22Ω #1, #47 + #2, #48 - 100µ Internal Referecnce Voltage Internal switch Regulator part Sense5 input VDD VDD Internal 1.3V 27Ω + #3 VDD 27Ω #4 #7 FG output MCLK input VDD VDD 50k 27Ω 27Ω #6 50k #8 50k 6 FAN8620B Equivalent Circuits (Continued) VCM power amplifier reference Power on reset part VDD #17 27Ω VDD #11 12.6k VDD #9 12.6k 15µ 50k 27Ω + #10 Internal 2.5V TSD VCM gain selection input VCM PWM high input VDD 27Ω VDD 10k 27Ω #12 #13 10k 500µ 10k Internal switch VCM PWM low input VCM PWM filter Capacitor VDD + - VCC + 27Ω #14 + #15 15.6µ 3k Internal switch Internal 4V 7 FAN8620B Equivalent Circuits (Continued) Filtered VCM PWM command output VCM current sense input VCC VCC + Internal DEC OUT #18 - #19 Capacitor for retract power U V Maximum retract current set input W VCC 30Ω VCC 27Ω #20 2k #24 Retract Block Spindle motor output compensation Capacitor Spindle motor output and Back-EMF sensing part VCC VDD VCC #32, 34, 37 VCC 60Ω #38 #33 Retract Block VCC 60Ω - #36 + + - Internal 4.2V 8 FAN8620B Equivalent Circuits (Continued) Dynamic brake part CNTL1, 2, 3 input VCC VCC VDD U 40Ω 2k VDD #40 27Ω 8k #44, #45, #46 27Ω #39 VCM output and control part Sense12 input VCC #17 VCC #9 #27 - VCC + #30 Internal 4V VCC + + 60Ω 60Ω #42 - - #22 #28 VCC VCC #25 60Ω #19 + Internal 4V 9 FAN8620B Absolute Maximum Ratings (Ta = 25°C) Parameter Symbol Value Unit Maximum signal block supply voltage for 5V line VDDMAX 6.0 V Maximum signal block supply voltage for 12V line VCCMAX 15.0 V Maximum power block supply voltage for 12V line PVCCMAX 15.0 V Maximum output current of Spindle motor ISOMAX 2.0 A Maximum output current of VCM IVOMAX 1.2 A Power dissipation 3.0 PD note W Storage temperature TSTG -55 ~ 125 °C Maximum junction temperature TJMAX 150 °C Operating ambient temperature TA 0 ~ 70 °C Notes: 1. Power dissipation is reduced 16mW / °C for using above Ta=25°C. 2. Do not exceed Pd and SOA(Safe Operating Area). Power Dissipation Curve Pd[mW] 3,000 2,000 SOA 1,000 0 0 25 50 70 100 125 150 175 Ambient temperature, Ta [°C] Recommended Operating Conditions (Ta = 25°C) Parameter Supply voltage Supply voltage for logic circuit Symbol Min. Typ. Max. Unit VCC, PVCC1, PVCC2 10.8 12.0 13.2 V VDD 4.5 5.0 5.5 V 10 FAN8620B Electrical Characteristics (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units 5V line supply current 1 IDD1 Brake Mode (CNTL1= Low) – 55 65 mA 5V line supply current 2 IDD2 Stand by – 20 25 mA 5V line supply current 3 IDD3 Normal Mode ( CNTL1 = CNTL3 = High ) – 20 25 mA 5V line supply current 4 IDD4 Retract Mode (CNTL3=Low) – 20 25 mA 12V line supply current 1 ICC1 Brake Mode ( CNTL1 =Low) – 7 12 mA 12V line supply current 2 ICC2 Stand by – 9 15 mA 12V line supply current 3 ICC3 Normal Mode ( CNTL1 = CNTL3 = High) – 30 50 mA 12V line supply current 4 ICC4 Retract Mode (CNTL3 =Low) – 9 14 mA SUPPLY CURRENT(1) POWER MONITOR Threshold voltage level for 12V VTH12 VCC=Sweep, VDD=5V 9.1 9.45 9.8 V Hysteresis on 12V comparator VHYS12 VCC=Sweep, VDD=5V 100 200 300 mV Adjustable pin voltage for 12V V12 VCC=12V, VDD=5V 3.0 3.2 3.4 V Threshold voltage level for 5V VTH5 VCC=12V, VDD=Sweep 3.6 3.95 4.3 V Hysteresis on 5V comparator VHYS5 VCC=12V, VDD=Sweep 50 100 150 mV Adjustable pin voltage for 5V V5 VCC=12V, VDD=5V 2.90 3.23 3.55 V ICPOR VCC=12V, VDD=5V -17.0 -13.5 -10.0 uA CDLY=Sweep 2.3 2.5 2.7 V POWER ON RESET GENERATOR Charging current for POR Capacitor POR threshold voltage VTHPOR Output high voltage VPOH VCC=12V, VDD=5V 4.5 – VDD V Output low voltage VPOL VCC=12V, VDD=5V 0 – 0.5 V CDLY=220nF – 40 – ms 2.07 – – V Power on reset delay(2) CONTROL INPUT TdPOR (3) Logic control input 1 HIGH voltage VCTL1H - Logic control input 1 HIGH current ICTL1H CNTL1 = High 65 100 160 uA Logic control input 1 LOW voltage VCTL1L - – – 1.43 V Logic control input 1 LOW current ICTL1L -200 -165 -130 uA CNTL1= Low 11 FAN8620B Electrical Characteristics (Continued) (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units Back-EMF threshold voltage(2) VBTH – 65 80 95 mV FG output high voltage VFGH – 4.5 – – V FG output low voltage VFGL – – – 0.5 V Running mode check RM1 - 100 – Hz RUNNING MODE CHECK U=V=W=5V, N=100Hz SPINDLE FG GENERATION FG frequency FG U,V,W=120° shift pulse(100Hz) – 300 – Hz DTFG U,V,W=120° shift pulse(1KHz) 45 50 55 % VSPMH – 3.0 – – V VSPML – – – 2.0 V High input current at PWMSP IPSP1 PWMSP=100% 100 150 200 uA CFSP voltage2(100% duty of PWMSP) VSP2 PWMSP=100% 1.5 1.7 1.9 V Low input current at PWMSP IPSP2 PWMSP=0% -200 -150 -100 uA CFSP voltage1(0% duty of PWMSP) VSP1 PWMSP=0% 3.1 3.3 3.5 V CFSP voltage amplitude VSPD 1.2 1.6 2.0 V FG duty SPINDLE PWM CONTROL PWM high level input voltage(2) PWM low level input voltage (2) – PWMSP=50% 2.35 2.5 2.65 V CFSP charging current ICFSP1 PWMSP=0%, CFSP=2.5V -200 -150 -100 uA CFSP discharge current ICFSP2 SPMSP=100%, CFSP=2.5V 100 150 200 uA 11.0 – – V – VDD – V – – 0.5 V CFSP voltage3 (50% of PWMSP) VSP3 BRAKE CBrake output voltage VBC Brake output high voltage VBH Brake output low voltage VBL – (Test only) – 12 FAN8620B Electrical Characteristics (Continued) (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units – 3.0 – – V SPINDLE PWM SOFT COMMUTATION PWM high level input voltage(2) (2) VSFMH VSFML – – – 2.0 V High input current at PWMSF IPFP1 PWMSF=100% 100 150 200 uA CFSF voltage2(100% duty of PWMSF) VSF2 PWMSF=100% 2.60 2.75 2.90 V Low input current at PWMSF IPSF2 PWMSF=0% -200 -150 -100 uA CFSF voltage1(0% duty of PWMSF) VSF1 PWMSF=0% 2.10 2.25 2.40 V CFSF voltage amplitude VSFD 425 475 525 mV CFSF voltage3 (50% of PWMSF) VSF3 PWMSF=50% 2.35 2.50 2.65 V -150 -100 -50 uA PWM low level input voltage – CFSF charging current ICFSF1 PWMSF=0%, CFSP=2.5V CFSF discharge current ICFSF2 SPMSF=100%, CFSP=2.5V 50 100 150 uA U saturation voltage_upper VSU5U RU,RV,RW=5Ω – – 0.9 V V saturation voltage_upper VSU5V RU,RV,RW=5Ω – – 0.9 V W saturation voltage_upper VSU5W RU,RV,RW=5Ω – – 0.9 V U saturation voltage_lower VSV5L RU,RV,RW=5Ω – – 0.8 V V saturation voltage_lower VSU5L RU,RV,RW=5Ω – – 0.8 V W saturation voltage_lower VSU5L RU,RV,RW=5Ω – – 0.8 V U output frequency FU CNTL2=12KHz – 1 – KHz V output frequency FV CNTL2=12KHz – 1 – KHz W output frequency FW CNTL2=12KHz – 1 – KHz SPINDLE OUTPUT Leakage current U upper IULQU – -10 0 10 uA Leakage current V upper IVLQU – -10 0 10 uA Leakage current W upper IWLQU – -10 0 10 uA Leakage current U lower IULQL – -20 0 20 uA Leakage current V lower IVLQL – -20 0 20 uA Leakage current W lower IWLQL – -20 0 20 uA Transconductance gain SPM GMSP RU,RV,RW=5Ω – 0.85 – A/V CCOMP charging current1 ICOMP1 PWMSP=0% -10 0 10 uA CCOMP charging current2 ICOMP2 PWMSP=50% -400 -300 -200 uA CCOMP charging current3 ICOMP3 PWMSP=100% -750 -630 -500 uA 13 FAN8620B Electrical Characteristics (Continued) (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units VADJ – 1.29 1.31 1.33 V Regulator output voltage VREG – 3.1 3.3 3.5 V Regulator line regulation(2) RLINE – – – 2.0 % Regulator load regulation(2) RLOAD IO = 500mA – – 2.0 % REGULATOR Adjustable PIN voltage VCM PWM CONTROL High PWMH input current IPWMH1 PWMH = 100% Low PWMH input current IPWMH2 PWMH = 0% High PWML input current IPWML1 PWML = 100% IPWM2 PWML = 0% Low PWML input current (2) 36 48 60 uA -200 -150 -100 uA 36 48 60 uA -200 -150 -100 uA 3.0 – – V VPWMH1 – (2) VPWMH2 – – – 2.0 V PWML high level input voltage(2) VPWML1 – 3.0 – – V VPWM2 – – – 2.0 V PWMH high level input voltage PWMH low level input voltage PWML low level input voltage (2) CFVCM voltage1 VCFVC1 PWMH=100%,PWML=100% 5.56 5.95 6.34 V CFVCM voltage5 VCFVC5 PWMH=50%,PWML=50% 3.80 4.00 4.20 V CFVCM voltage9 VCFVC9 PWMH=0%,PWML=0% 1.66 2.05 2.44 V PWM current ratio (VCM) RPWM – – 64 – – PWMH current variation IVPWM – 1.2 1.3 1.4 mA PWML current variation IVPWM – 17.7 20.3 22.3 uA – – 2 deg VCM PWM FILTER Maximum phase shift(2) DF Filter cut-off frequency(2) Filter attenuation at 1MHz (2) Measure at 500HZ, CFVCM=10nF FCO – – 100 – kHz aFILTER – – 70 – dB 14 FAN8620B Electrical Characteristics (Continued) (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units VCM REFERENCE VOLTAGE VCM reference voltage VREF CNTL3= High 3.8 4.0 4.2 V Amplifier output high VEOH – 10.8 – – V Amplifier output low VCM ERROR AMPLIFIER VEOL – – – 1.2 V (2) IESC – 8 – – mA voltage(2) VOSE – -15 0 15 mV Error amplifier open loop gain(2) AVE – – 80 – dB BGE – – 2 – MHz Amplifier output high VSOH – 10.8 – – V Amplifier output low VSOL – – – 1.2 V Short circuit current(2) ISSC – 10 – – mA Input offset voltage(2) VOSE – -15 0 15 mV Short circuit current Input offset Unit gain bandwidth (2) VCM SENSE AMPLIFIER Unit gain bandwidth (2) Sense amplifier voltage BGS – – 2 – MHz gain1(2) AVS1 Gainsel=High – 18 – dB (2) AVS2 Gainsel=Low – 6 – dB Sense amplifier voltage gain2 VCM POWER AMPLIFIER Power Amplifier gain APO – – 22.9 – dB Power Amplifier output high voltage VPOH – 11.0 – – V Power Amplifier output low voltage VPOL – – – 1.0 V VOSE – -15 0 15 mV BGP – – 2 – MHz Input offset voltage(2) Unit gain bandwidth(2) 15 FAN8620B Electrical Characteristics (Continued) (Ta=25°C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Units IOSVCM PWMH=PWML=50% duty –20 0 20 mA VCM AMPLIFIER TOTAL VCM offset current VCM transconductance gain high GMVH Gainsel=Low – 0.45 – A/V VCM transconductance gain low GMVL Gainsel=High – 0.11 – A/V VCM+ saturation voltage lower VVMS1 Rvcm=15Ω – – 0.7 V VCM- saturation voltage upper VVMS2 Rvcm=15Ω – – 0.7 V VCM+ saturation voltage upper VVMS3 Rvcm=15Ω – – 0.7 V VCM- saturation voltage lower VVMS4 Rvcm=15Ω – – 0.7 V Leakage current power Amplifier1 IVCML1 -20 0 20 uA CRET2=Sweep – – 3.6 V – RETRACT Min. operating voltage of CRET2 VCRET2 VSRC CRET2=5V – – 1.2 V VRTSAT CRET2=5V – – 0.7 V Retract sinking current1 IRCT1 Rret=8.0KΩ 40 58 76 mA Retract sinking current2 IRCT2 Rret=4.2KΩ 80 100 130 mA Upper power transistor leakage ILRET1 – –10 0 10 uA Lower power transistor leakage ILRET1 – –10 0 10 uA Operating temperature TSD – – 150 – °C Thermal hysteresis THYS – – 30 – °C Source voltage Sinking saturation voltage THERMAL SHUT DOWN Notes: 1. No Spindle or VCM Load. 2. Guaranteed by Design. 3. Logic control input2 & 3 spec’s are equal to logic control input1. 16 FAN8620B Application Information Spindle Motor Drive Circuit The FAN8620B is a combination chip consisting of spindle motor and voice coil motor designed for HDD system. According to the spindle conditions, the digital ASIC provides optimum control signals (Start-up, commutation, speed control, and commutation mode) to the FAN8620B. Back-EMF (BEMF) signal of the spindle motor is fed back to ASIC via FG line. The MCLK and PWM signals are used to determine the commutation timing and to control the spindle speed, respectively. Spindle Driver The spindle includes both low and high side drivers (H-bridge) for a three-phase sensorless brushless DC motor. To reduce the saturation voltage, the vertical PNP transistor is used as the high side driver. Frequency Generation (FG) FG stands for Frequency Generation. It is the output signal to the ASIC. It contains important information about the motor speed. According to the FG frequency, the digital ASIC provides different motor clock signals to the motor drive IC via MCLK. It checks the motor speed to send the VCM enable signal via CNTL3. FG frequency (Hz), motor speed (rpm) and pole number are directly related as shown below in the three phase motor. FG frequency(Hz) = motor speed(rpm) × pole number / 2 × 3 / 60 In a typical application,(8 pole motor) FG frequency = 5400 × 8 /2 × 3 / 60 = 1080 [Hz] MCLK & Mask The MCLK is a motor clock used as the standard clock signal for the proper commutation timing of the spindle motor. It is supplied by the ASIC. As shown in table 1, it has different delay times depending on the mode of the spindle. MCLK (Td) MASK Commutation 2ms (External ASIC) 1ms Hard Acceleration mode FG(n-1) / 2 FG(n-1) / 4 Hard Running mode FG(n-1) / 32 344.45ms Soft Start-up mode Table 1. After the FG_Edge signal detection, the MCLK occurs after a half FG_Edge delay time in the acceleration mode and 1/ 32 FG_Edge delay time in the soft commutation mode. 17 FAN8620B Mask When the coil current is abruptly changed in a short time interval, a spark voltage occurs. This spark voltage mixes with the FG output to give the wrong spindle information to the ASIC. To eliminate the spark voltage from the FG output, the masking circuit is needed. di Vcoil = – L ----dt W_BEMF V_BEMF U_ BEMF U_Comp 120° V_Comp W_Comp 60° FG FG_Edge Electrically 30° Delay MCLK Figure 1. BEMF, FG, and MCLK in the acceleration mode commutation noise, false zero cross FG ≥ 8msec FG 2msec 2msec MCLK 1msec 1msec MASK Figure 2. MCLK vs MASK in the start-up mode 18 FAN8620B FG ≤ 8msec, T1 commutation noise, false zero cross T2 FG T1/2 T2/2 MSLK T1/4 T2/4 MASK Figure 3. MCLK vs MASK in the acceleration mode PWMDEC and Speed Control Motor speed is measured by the ASIC via the FG output. The digital ASIC compares FG frequency with the target motor speed and sends the speed compensation signal to the PWMSP input of the FAN8620B. This PWM signal is internally filtered and is converted into DC voltage through the built-in PWM Decoder Filter. The analog output of the filter depends on the duty of the PWM signal. The filter is a 3rd order, low-pass filter. The first pole location of the filter is determined by the external capacitor connected to pin(48) CFSP. 1 0.5 1 0.5 Ispindle = ( D – D MIN ) ⋅ --------------------------------------- ⋅ --------------- = ( D – 0.13 ) ⋅ -------------------------------- ⋅ ----------R33 + R METAL D MAX R33 + 0.074 0.87 PWM SP vs ISPM ISPM (mA) Io(mA) 1400.0 1200.0 1000.0 800.0 600.0 400.0 200.0 0.0 0 10 20 30 40 50 Duty(%) 60 70 80 Figure 4. Spindle current vs PWMSP duty variation ( R33 = 0.25Ω ) 19 90 100 FAN8620B Start-up Mode In the sensorless BLDC motor the Back-EMF is used to determine the rotor position. At standstill condition, there is no Back-EMF voltage and no FG output. There is no information about the motor position. To drive the spindle in the start-up mode, the digital ASIC sends the spindle enable signal via CNTL1 and supplies the HIGH or OPEN signal via CNTL2 to be used as commutation signal of the spindle motor. The digital ASIC continuously provides HIGH or OPEN signal until the Back-EMF generated is large enough to produce the FG signal for the self commutation. During a fixed time, if the Back-EMF generated is too small and the spindle motor is not driven by the self commutation, the ASIC resets all signals and retries the spindle. CNTL1(1) SPM driver CNTL2(2) CNTL3(3) VCM driver Retract SPM driver VCM gain High 1 0 Hard 1 0 Normal 0.11 Open (Floating) 0 0 Hard 0 0 x x Low Brake Commutation GAINSEL 0 1 Soft 0 1 (5) Start up Hold 0.45 Notes: 1. CNTL1: Spindle motor control 2. CNTL2: commutation mode control 3. CNTL3; VCM control 4. “1”: Enable; “0”: disable; Test only Acceleration Mode When the Back-EMF detected is large enough to determine motor position, the mode is changed from start-up to acceleration. The ASIC sends the optimum commutation timing signal via MCLK according to the FG input. By using the Back-EMF, the spindle is self-commuted at acceleration and running modes. During the motor drive, the spindle motor is commuted at a point which is electrically 30° delayed after the FG_Edge. Running Mode The running mode is when the spindle motor speed arrives within ± 1% of the target speed. The commutation mode, commutation delay time, MCLK delay time (Td) and masking time are changed at the running mode. The spindle motor speed is controlled by PWM signal within ± 0.01%. The soft commutation using the current slope of the motor may reduce audible noise, EMI (Electromagnetic Interference) and spark voltage which is generated on the motor coil commutation. 20 FAN8620B CNTL1 SPINdle ON High Open Low High Open CNTL2 Low FG +1% Target RPM -1% Rotation Speed Start-Up Hard-commutation Soft-commutation Internal Ready 10msec Internal commutation Mode Change 100msec CNTL3 VCM ON High Open High CASE1 : High gain Low High CASE1 : Low gain Low Figure 5. Motor start-up sequence Duty (%) 100% D% 0 F trarget FG Frequency Figure 6. FG vs PWMSP duty variation 21 VCM Enable FAN8620B (1) Acceleration Mode: Hard-Commutation Mode + U_BEMF 0 - + V_BEMF 0 - + W_BEMF 0 - SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK (2) Running Mode: Soft-commutation Mode SOURCE Iu SINK SOURCE Iv SINK SOURCE Iw SINK Figure 7. Acceleration and running the spindle motor 22 FAN8620B Start High frequency Noise Elimination Using filtered FG Generate start Counter Counting the FG duration NO Hard commutation NO Saturation =? MCLK = FG(n-1)/32 MASK = 344.45usec YES Running Waiting 2msec MCLK generation MCLK = FG(n-1)/2 MASK = FG(n-1)/4 Acceleration Retry MASK = 1msec FG polarity Check = SAME? YES Start up Keep going Waiting for FG edge Store count Value of the FG Figure 8. MCLK generation flow chart 23 FAN8620B Voice Coil Motor VCM Driver The voice coil motor driver is linear, class AB, H-bridge type driver, It includes all power transistors. After the VCM is enabled via CNTL3, the VCM current level is controlled by two PWM signals. The input voltage level at pin PWMH weighs, at a maximum, 64 times more than the input voltage at pin PWML. These PWM signals are filtered by an internal secondorder low-pass filter and converted into PWMOUT (DC Voltage). The filter PWMOUT depends only on the duty cycle and not on the logic level. The PWM Filter's pole is adjustable by pin CFVCM connected to the external capacitor. R1 Vin PWMH input 13 VREF(4V) - R2 Gm 1/2 VDD R1 Vin PWML input 14 C1 3k + + A R1 R1 + - Filtout R2 C1 Gm 18 - + 1/2 VDD 15 CFVCM Figure 9. PWM decoder & filter schematic 2 17 PGND 26 VCC R7 9 - HALFVCC VCM+ R5 C9 v+ 27 + L R5 PVCC 21 VREF(4V) VCM R5 PWM decoder & - RL + Sense R5 + Filter 19 - - IVCM R4 22 R3 - vb Filtout Errin 18 Errout 28 R3 VREF(4V) Senseout 30 25 12 Gainsel R18 Rext Cext R25 Figure 10. VCM driver schematic 24 VCM+ vs - + Gain: 8,2 R6 Rsense v- FAN8620B The transconductance of VCM amplifier gain, Gm, is: I VCM 2 ⋅ Aerror ⋅ Apower ⋅ R25 Gm = -----------= ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Vin 2 ⋅ R18 ⋅ Rsense ⋅ As ⋅ Aerror ⋅ Apower + ( R18 + R25 ) ( Z VCM + Rsense ) Aloop R25 1 1 Gm = -------------------------- ----------- ---------------------- ------- 1 + Aloop R18 Rsense As 2 ⋅ R18 ⋅ As ⋅ Aerror ⋅ Apower Aloop = ---------------------------------------------------------------------------------( R18 + R25 ) ( Z VCM + Rsense ) Therefore Aloop >>1, R25 1 1 Gm ≅ ----------- ⋅ ---------------------- ⋅ ------- ⋅ 2 R18 Rsense As The transconductance (Gm) can be adjusted by selecting the external components R18, R25 and sense resister Rsense. if R18 = R25, Rsense = 1Ω GAINSEL = Low, 1 / AS = 0.45 Gm = 0.45 GAINSEL = High, 1 / AS = 0.11 Gm = 0.11 VCM current (IVCM) is: 1 R25 1 1 Imotor = 4 × ( PWMH – 0.5 ) + ------ ( PWML – 0.5 ) × ----------- × ---------------------- × -------32 R18 Rsense AS NOTES: PWMH = 1 when 100% duty PWMH = 0.5 when 50% duty PWMH = 0 when 0% duty 25 FAN8620B Retract Circuit The retract function is the operation where the VCM moves from the data zone to the parking zone. It is off in the normal state. It operates when power interrupt causes the spindle to stop. _ U V W Bandgap Reference 21 Cret2 20 Q19 + × 300 Retract Enable Iref Iret 2V Iretdly - 2K + 16 24 R16 19 VA _ Rret Cret Figure 11. Retract block schematic VA = 2.0V 2 × Rret Vret = ------------------------- – V BE, Q19 [ V ] Rret + 2k 26 27 VCM FAN8620B Power Management Features Low Power Interrupt: The low power interrupt operation occurs when the power supply voltage (5V,12V) level drops below each threshold voltage. The threshold voltage (Vth) and time delay (Tdly) may be adjustable by the external component value. Vth Tdly = CDLY --------- ,( Vth = 2.5V , I = 14µA) I VDD 11 VDD VCC CDLY I = 14µA R4 R7 + 5V SENSE 4 + 12V SENSE 42 + _ R5 Q15 12 _ POR R8 TSD 2.5V R4 = 7k, R5 = 11k R7 = 25k, R8 = 9k Figure 12. Power on reset block schematic Power on Reset The power-on reset circuit monitors the voltage level of both +5V or +12V power supplies and chip temperature (thermal shut down). The power-on reset circuit disables the spindle and VCM circuit when the power supply voltage level drops below the reference voltage. VDD, VCC Vth Vhys T POR Tdly Vbe T Figure 13. Power on reset function 27 FAN8620B Vhys = 53mV R4 + R5 VDD ;Vhys ( 5V ) = ---------------------- × Vhys R5 R7 + R8 VDD ;Vhys ( 12V ) = ---------------------- × Vhys R8 Default (pin4, pin42 : not connected) VDD, th ≅ 4.1V VCC ,th ≅ 9.4V 7k + 11k VDD ;Vhys ( 5V ) = ----------------------- × 53mV ≅ 90mV 11k 25k + 9k VDD ;Vhys ( 12V ) = ----------------------- × 53mV ≅ 200mV 9k Regulator The FAN8620B includes the voltage regulator for ASIC and other circuits. It consists bias circuit, the band gap reference and the external NPN power transistor. The regulator voltage can be adjusted by the external resistor, R3a, R3b. V REG = V REF 1 + R3a ----------- , V REF R3b = 1.3V VDD Bias Block Bandgap Reference Vref + 7 VREF VREG R3a Vadjust 3 R3b Figure 14. low drop regulator schematic if R3a = 20k, R3b = 13k V REG = V REF 1 + R3a ----------- R3b 20k = 1.3 × 1 + ---------- = 3.3V 13k 28 FAN8620B STR_CLK BEMF DETECTION STR_MASK U_OUT FG Figure 15. Start-up mode MCLK*2 U_OU T FG Figure 16. Acceleration mode 1 T1/4 2msec T1/2 MCLK*2 T1 U_OUT FG Figure 17. Acceleration mode 2 29 FAN8620B U_OUT V_OUT W_OU T Figure 18. Output in hard-commutation mode Switching Mode Conterting FG COM O utput Figure 19. commutation mode converting U_OU T V_OU T W _OU T Figure 20. Soft-commutation mode 30 FAN8620B Figure 21. VCM recalibration flow 31 FAN8620B Vrret Iret Vvcm Figure 22. Retract & break at power off 32 FAN8620B Typical Application Circuits 5V R3a Q1 R3b GND C11 SENSE5 SENSE12 4 42 11 3 7 POR VREF Bandgap Reference & Bias Power On Reset 10 Thermal Shutdown FG 43 ADJ CDLY Zero Cross Detector 36 N V 39 Cbrake Brake FG Generator 6 U V W Brake Brake AMP W M39a M39b C39 C40 40 MCLK 41 PVCC 8 CNTL1 U 44 3 State Input Control CNTL2 45 CNTL3 37 Commutation & Spindle Motor Control 46 V C38 38 PWMSP C48 R33 PWM Decoder & Filter 47 33 AMP Vlimit 48 31 PWM Decoder & Filter 1 C2 U 2 V W 20 Retract 13 12V SUBGND CRET2 D1 C20 24 RRET R16 PWM Decoder & Filter 14 PCS R24 Retract VCM enable PWML W 32 CCOMP PWMSF PWMH 34 3-phase Output Driver C15 Q16 16 VCM+ VCM- PVCC 21 VCC CRET C16 15 - C9 9 HALFVCC FILOUT VCMREF4V - Gain:8,2 23, 35 SENSEOUT 25 VCM+ + 18 ERRIN 28 RS D3 PGND ERROUT 30 GND 17 5 29 VCC VDD R25 R18 R30 C30 D4 +5V 33 CS 27 Gain:14 12 D2 SENSE 19 - + - SENSE 22 Rsense + SENSE Amplifier VCM - GAINSEL VCM- + 26 FAN8620B Application Circuits R42a R42b 12V 5V 12V R4a C11 R4b D4 5V VREG FG 6 MCLK 8 CNTL1 44 CNTL2 45 CNTL3 46 PWMSP 47 PWMSF 1 PWMH 13 PWML 14 Digital Custom ASIC C48 48 C2 2 C15 15 SENSE12 10 SENSE5 POR 11 42 4 CDLY 17 5, 29 VCC VDD VREF ADJ C3 R3a Q1 BRAKE R3b 3 U M39a 39 v M39b 2003 C39 12V CBRAKE 40 PVCC1 41 N 36 U 37 CFSP C40 CFSF CFVCM HALFVCC FAN8620B C9 7 V U 34 9 V GAINSEL 12 W +12V 22 D2 32 C38 38 VCM- W CCOMP 33 Rsense CS PCS 19 12V R33 21 SENSE PVCC2 D1 CRET2 20 RS FILOUT 25 R18 R25 ERRIN 28 30 ERROUT 18 D3 VCM+ SENSEOUT 27 RRET 24 CRET GND 16 C20 R16 23, 26, 31, 35 Q16 R24 C16 To Pin19 : option R30 C30 34 FAN8620B DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 12/1/00 0.0m 001 Stock#DSxxxxxxxx 2000 Fairchild Semiconductor International