MC68HC908GT16 MC68HC908GT8 Technical Data M68HC08 Microcontrollers MC68HC908GT16/D Rev. 2, 6/2002 WWW.MOTOROLA.COM/SEMICONDUCTORS MC68HC908GT16 MC68HC908GT8 Technical Data To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.motorola.com/semiconductors/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA © Motorola, Inc., 2002 Technical Data 3 Revision History Revision History Date Revision Level March, 2002 N/A May, 2002 June, 2002 Technical Data 4 1 2 Description Page Number(s) Original release N/A 7.3 Features — Corrected third bulleted item to reflect ±4 percent variability 111 Figure 15-1. Forced Monitor Mode (Low) — Reworked for clarity 211 Figure 15-2. Forced Monitor Mode (High) — Reworked for clarity 211 Figure 15-3. Standard Monitor Mode — Reworked for clarity 212 Table 15-1. Monitor Mode Signal Requirements and Options — Reworked for clarity 214 Figure 16-4. Port A I/O Circuit — Reworked to correct pullup resistor 231 Figure 16-11. Port C I/O Circuit — Reworked to correct pullup resistor 238 Figure 16-15. Port D I/O Circuit — Reworked to correct pullup resistor 243 Figure 2-2. Control, Status, and Data Registers — Corrected ESCI arbiter data register (SCIADAT) to reflect read-only status 50 Figure 18-18. ESCI Arbiter Control Register (SCIACTL) — Corrected address location designator from $0018 to $000A 290 Figure 18-19. ESCI Arbiter Data Register (SCIADAT) — Corrected address location designator from $0019 to $000B 292 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 33 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Section 3. Low-Power Modes. . . . . . . . . . . . . . . . . . . . . . 59 Section 4. Resets and Interrupts . . . . . . . . . . . . . . . . . . . 71 Section 5. Analog-to-Digital Converter (ADC) . . . . . . . . 89 Section 6. Break Module (BRK) . . . . . . . . . . . . . . . . . . . 101 Section 7. Internal Clock Generator (ICG) Module. . . . 109 Section 8. Configuration Register (CONFIG) . . . . . . . . 147 Section 9. Computer Operating Properly (COP) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Section 10. Central Processor Unit (CPU) . . . . . . . . . . 159 Section 11. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . 177 Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . . 189 Section 13. Keyboard Interrupt Module (KBI). . . . . . . . 195 Section 14. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 203 Section 15. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 209 Section 16. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 225 Section 17. Random-Access Memory (RAM) . . . . . . . . 249 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data List of Sections 5 List of Sections Section 18. Enhanced Serial Communications Interface (ESCI) Module . . . . . . . . . . . . . . . 251 Section 19. System Integration Module (SIM) . . . . . . . 295 Section 20. Serial Peripheral Interface Module (SPI) . . 321 Section 21. Timebase Module (TBM). . . . . . . . . . . . . . . 351 Section 22. Timer Interface Module (TIM) . . . . . . . . . . . 357 Section 23. Electrical Specifications. . . . . . . . . . . . . . . 381 Section 24. Mechanical Specifications . . . . . . . . . . . . . 405 Section 25. Ordering Information . . . . . . . . . . . . . . . . . 409 Technical Data 6 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Sections MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.1 Standard Features of the MC68HC908GT16/MC68HC908GT8 . . . . . . . . . . . . . . . 34 1.3.2 Features of the CPU08. . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . .40 1.6.2 Oscillator Pins (PTE4/OSC1 and PTE3/OSC2) . . . . . . . . . .41 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.6.4 External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.6.5 ADC and ICG Power Supply Pins (VDDA and VSSA) . . . . . . 42 1.6.6 ADC Reference Pins (VREFH and VREFL) . . . . . . . . . . . . . . .42 1.6.7 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . 42 1.6.8 Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . . 42 1.6.9 Port C I/O Pins (PTC6–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.10 Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . . . 43 1.6.11 Port E I/O Pins (PTE4–PTE2, PTE1/RxD, and PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Section 2. Memory Map 2.1 2.2 2.3 2.4 2.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 7 Table of Contents Section 3. Low-Power Modes 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.2.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.4 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.4.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.5 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.6 Internal Clock Generator Module (ICG) . . . . . . . . . . . . . . . . . . 63 3.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 3.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 3.7 Computer Operating Properly Module (COP). . . . . . . . . . . . . . 64 3.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.8 External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .64 3.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . 65 3.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . . 65 3.10.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.10.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.11 Enhanced Serial Communications Interface Module (SCI) . . . 66 3.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . 66 3.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Technical Data 8 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents 3.13 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . 67 3.13.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.13.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.14.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.14.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Section 4. Resets and Interrupts 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3.1 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 73 4.3.3.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . .74 4.3.3.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.4 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2.1 Software Interrupt (SWI) Instruction. . . . . . . . . . . . . . . . . 80 4.4.2.2 Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.3 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 4.4.2.4 Internal Clock Generator (ICG) . . . . . . . . . . . . . . . . . . . . 81 4.4.2.5 Timer Interface Module 1 (TIM1) . . . . . . . . . . . . . . . . . . .81 4.4.2.6 Timer Interface Module 2 (TIM2) . . . . . . . . . . . . . . . . . . .82 4.4.2.7 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . .82 4.4.2.8 Serial Communications Interface (SCI) . . . . . . . . . . . . . . 83 4.4.2.9 KBD0–KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.2.10 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . 84 4.4.2.11 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . 84 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 9 Table of Contents 4.4.3 4.4.3.1 4.4.3.2 4.4.3.3 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 86 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .86 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .87 Section 5. Analog-to-Digital Converter (ADC) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 5.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 5.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 5.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7.1 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 94 5.7.2 ADC Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . 94 5.7.3 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . 94 5.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . 94 5.7.5 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . 95 5.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Section 6. Break Module (BRK) Technical Data 10 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents 6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 104 6.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .104 6.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 104 6.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .104 6.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 6.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 6.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .105 6.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 7. Internal Clock Generator (ICG) Module 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 117 7.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .118 7.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 120 7.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 121 7.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .122 7.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.4.5.1 Clock Selection Switches . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 124 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 11 Table of Contents 7.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.3 Using Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . 127 7.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 128 7.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 129 7.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 130 7.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 130 7.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 130 7.5.5 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 131 7.5.6 Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 132 7.5.6.1 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 132 7.5.6.2 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 133 7.5.6.3 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.5.7 Trimming Frequency on the Internal Clock Generator . . . . 134 7.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 7.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 7.7 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.7.1 External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . . 136 7.7.2 External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . . 137 7.7.3 Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . . 137 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . . 138 7.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 7.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Section 8. Configuration Register (CONFIG) Technical Data 12 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents Section 9. Computer Operating Properly (COP) Module 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.4.1 COPCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 9.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 9.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 156 9.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 9.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 9.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 9.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 158 Section 10. Central Processor Unit (CPU) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 10.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 13 Table of Contents 10.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Section 11. FLASH Memory 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 180 11.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 181 11.7 FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . 182 11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . 185 11.8.2 ICG User Trim Registers (ICGTR5 and ICGTR3) . . . . . . . 186 11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.10 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Section 12. External Interrupt (IRQ) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 193 12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 193 Section 13. Keyboard Interrupt Module (KBI) Technical Data 14 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 200 13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 201 13.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 202 Section 14. Low-Voltage Inhibit (LVI) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 14.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 206 14.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 Section 15. Monitor ROM (MON) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 15.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 15.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 15 Table of Contents Section 16. Input/Output (I/O) Ports 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 230 16.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 232 16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 16.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 16.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 237 16.5.3 Port C Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 239 16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 16.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 16.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 242 16.6.3 Port D Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 244 16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 16.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 16.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . 246 Section 17. Random-Access Memory (RAM) 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Section 18. Enhanced Serial Communications Interface (ESCI) Module 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 18.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Technical Data 16 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents 18.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 18.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .260 18.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 18.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 18.5.3.8 Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 18.7 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . .270 18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 271 18.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.9.1 ESCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 18.9.2 ESCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 18.9.3 ESCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 18.9.4 ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 18.9.5 ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 18.9.6 ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 18.9.7 ESCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . 284 18.9.8 ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . 286 18.10 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 18.10.1 ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . 290 18.10.2 ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . 292 18.10.3 Bit Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 18.10.4 Arbitration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 17 Table of Contents Section 19. System Integration Module (SIM) 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 299 19.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 19.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . 299 19.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 300 19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 300 19.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 19.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 302 19.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 19.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 304 19.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 19.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 19.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .305 19.4.2.6 Monitor Mode Entry Module Reset (MODRST) . . . . . . . 305 19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 19.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 305 19.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 306 19.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 306 19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 19.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 19.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 19.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 19.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .310 19.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 19.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 19.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 312 19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 19.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313 19.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 19.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 316 19.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 318 19.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 319 Technical Data 18 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents Section 20. Serial Peripheral Interface Module (SPI) 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 20.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 20.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .327 20.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 328 20.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 329 20.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 330 20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 332 20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 20.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 20.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 20.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 341 20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 342 20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 342 20.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 20.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 347 20.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 19 Table of Contents Section 21. Timebase Module (TBM) 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 353 21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 Section 22. Timer Interface Module (TIM) 22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 22.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 22.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 22.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 363 22.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .364 22.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 365 22.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 366 22.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 367 22.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369 Technical Data 20 22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 370 22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Table of Contents 22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 22.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 371 22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 375 22.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 376 22.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .379 Section 23. Electrical Specifications 23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.6 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 384 23.7 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 386 23.8 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 23.9 3.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 23.10 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 389 23.11 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . 389 23.12 Trimmed Accuracy of the Internal Clock Generator . . . . . . . . 390 23.12.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 390 23.12.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 390 23.13 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . . 391 23.14 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . 394 23.15 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 23.16 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 23.17 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 23.18 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 23.19 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 403 23.20 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Table of Contents Technical Data 21 Table of Contents Section 24. Mechanical Specifications 24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 24.3 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . .406 24.4 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .407 Section 25. Ordering Information Technical Data 22 25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Table of Contents MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 List of Figures Figure Title 1-1 1-2 1-3 1-4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 42-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 39 44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 49 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Power-On Reset Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 76 Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 78 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 86 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 86 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . . 87 5-1 5-2 5-3 5-4 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . .95 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 98 6-1 6-2 6-3 6-4 6-5 6-6 6-7 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 103 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 105 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .106 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .106 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 107 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 108 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Page Technical Data List of Figures 23 List of Figures Figure Title 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 7-14 7-15 ICG Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Internal Clock Generator Block Diagram . . . . . . . . . . . . . . . . 114 External Clock Generator Block Diagram . . . . . . . . . . . . . . . . 117 Clock Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 119 Internal Clock Activity Detector. . . . . . . . . . . . . . . . . . . . . . . . 121 External Clock Activity Detector . . . . . . . . . . . . . . . . . . . . . . .122 Clock Selection Circuit Block Diagram . . . . . . . . . . . . . . . . . . 123 Code Example for Switching Clock Sources . . . . . . . . . . . . . 126 Code Example for Enabling the Clock Monitor . . . . . . . . . . . . 127 ICG Module I/O Register Summary . . . . . . . . . . . . . . . . . . . . 139 ICG Control Register (ICGCR) . . . . . . . . . . . . . . . . . . . . . . . . 141 ICG Multiplier Register (ICGMR) . . . . . . . . . . . . . . . . . . . . . . 143 ICG Trim Register (ICGTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ICG DCO Divider Control Register (ICGDVR) . . . . . . . . . . . . 144 ICG DCO Stage Control Register (ICGDSR) . . . . . . . . . . . . . 145 8-1 8-2 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . 148 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 148 9-1 9-2 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 157 10-1 10-2 10-3 10-4 10-5 10-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . .164 11-1 11-2 11-3 11-4 11-5 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . 179 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . .184 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . 185 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . 185 ICG User Trim Registers (ICGTR5 and ICGTR3). . . . . . . . . . 187 12-1 12-2 12-3 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 190 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 191 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .193 Technical Data 24 Page MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Figures MOTOROLA List of Figures Figure Title 13-1 13-2 13-3 13-4 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 197 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Keyboard Status and Control Register (INTKBSCR) . . . . . . . 201 Keyboard Interrupt Enable Register (INTKBIER) . . . . . . . . . . 202 14-1 14-2 14-3 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 207 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 Forced Monitor Mode (Low) . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Forced Monitor Mode (High). . . . . . . . . . . . . . . . . . . . . . . . . . 211 Standard Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .215 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 223 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 16-12 16-13 16-14 16-15 16-16 16-17 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 230 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 232 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 234 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 237 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Port C Input Pullup Enable Register (PTCPUE) . . . . . . . . . . . 239 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 242 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Port D Input Pullup Enable Register (PTDPUE) . . . . . . . . . . . 244 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 245 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Page Technical Data List of Figures 25 List of Figures Figure Title Page 16-18 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 246 16-19 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 18-17 18-18 18-19 18-20 18-21 18-22 ESCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 255 ESCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 256 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 ESCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 ESCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 262 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 ESCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . . . 272 ESCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . . . 275 ESCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . . . 278 ESCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . .279 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 ESCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . .283 ESCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . . 284 ESCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . 284 ESCI Prescaler Register (SCPSC) . . . . . . . . . . . . . . . . . . . . . 286 ESCI Arbiter Control Register (SCIACTL) . . . . . . . . . . . . . . . 290 ESCI Arbiter Data Register (SCIADAT) . . . . . . . . . . . . . . . . . 292 Bit Time Measurement with ACLK = 0 . . . . . . . . . . . . . . . . . .293 Bit Time Measurement with ACLK = 1, Scenario A . . . . . . . . 293 Bit Time Measurement with ACLK = 1, Scenario B . . . . . . . . 293 19-1 19-2 19-3 19-4 19-5 19-6 19-7 19-8 19-9 19-10 19-11 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 298 System Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 309 Technical Data 26 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Figures MOTOROLA List of Figures Figure Title 19-12 19-13 19-14 19-15 19-16 19-17 19-18 19-19 19-20 19-21 19-22 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 311 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 311 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . 312 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 314 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 314 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 316 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 316 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 318 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 319 20-1 20-2 20-3 20-4 20-5 20-6 20-7 20-8 20-9 20-10 20-11 20-12 20-13 20-14 20-15 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . . 325 Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . 328 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . . 330 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . . 331 SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . . . 332 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . . 334 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . . 335 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . . 338 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . 345 SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . . 347 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 21-1 21-2 22-1 22-2 22-3 22-4 22-5 22-6 22-7 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . . 353 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 365 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 371 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . .374 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . .374 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . . 375 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Page Technical Data List of Figures 27 List of Figures Figure 22-8 22-9 22-10 22-11 22-12 22-13 22-14 22-15 Title Page TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 375 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 376 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 376 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 380 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 380 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 380 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 380 23-1 Typical High-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . .391 23-2 Typical High-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . .391 23-3 Typical High-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . .392 23-4 Typical High-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . .392 23-5 Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) . . . . . . . . . . . . . . . . . . .393 23-6 Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . .393 23-7 Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 5.5 Vdc) . . . . . . . . . . . . . . . . . . .394 23-8 Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . .394 23-9 Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . .395 23-10 Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . .395 23-11 Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) . . . . . . . . . . . . . . . . . . .396 23-12 Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . .396 Technical Data 28 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Figures MOTOROLA List of Figures Figure Title Page 23-13 Typical Operating IDD, with All Modules Turned On (–40°C to 85°C) . . . . . . . . . . . . . . . . . . . . . . . . 397 23-14 Typical Wait Mode IDD, with all Modules Disabled (–40°C to 85°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397 23-15 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 23-16 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data List of Figures 29 List of Figures Technical Data 30 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Figures MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 List of Tables Table Title 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4-1 4-2 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5-1 5-2 Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7-1 7-2 7-3 7-4 Correction Sizes from DLF to DCO . . . . . . . . . . . . . . . . . . . . 116 Quantization Error in ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Typical Settling Time Examples . . . . . . . . . . . . . . . . . . . . . . .134 ICG Module Register Bit Interaction Summary. . . . . . . . . . . . 140 8-1 External Clock Option Settings . . . . . . . . . . . . . . . . . . . . . . . . 150 10-1 10-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 14-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 Monitor Mode Signal Requirements and Options . . . . . . . . . . 214 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 218 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 220 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 220 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 221 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 221 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 222 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .222 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Page Technical Data List of Tables 31 List of Tables Table Title 16-1 16-2 16-3 16-4 16-5 16-6 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . . 228 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 273 ESCI LIN Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 ESCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . 285 ESCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 ESCI Prescaler Division Ratio . . . . . . . . . . . . . . . . . . . . . . . . 286 ESCI Prescaler Divisor Fine Adjust . . . . . . . . . . . . . . . . . . . . 287 ESCI Baud Rate Selection Examples. . . . . . . . . . . . . . . . . . .289 ESCI Arbiter Selectable Modes . . . . . . . . . . . . . . . . . . . . . . .290 19-1 19-2 19-3 19-4 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 20-1 20-2 20-3 20-4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . 350 21-1 Timebase Rate Selection for OSC1 = 32.768 kHz . . . . . . . . .353 22-1 22-2 22-3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 378 25-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 Technical Data 32 Page MC68HC908GT16 • MC68HC908GT8 — Rev. 2 List of Tables MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.1 Standard Features of the MC68HC908GT16. . . . . . . . . . . . 34 1.3.2 Features of the CPU08. . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . .40 1.6.2 Oscillator Pins (PTE4/OSC1 and PTE3/OSC2) . . . . . . . . . .41 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.6.4 External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.6.5 ADC and ICG Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.6.6 ADC Reference Pins (VREFH and VREFL) . . . . . . . . . . . . . . .42 1.6.7 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . 42 1.6.8 Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . . 42 1.6.9 Port C I/O Pins (PTC6–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.10 Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . . . 43 1.6.11 Port E I/O Pins (PTE4–PTE2, PTE1/RxD, and PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 33 General Description 1.2 Introduction The MC68HC908GT16 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. All references to the MC68HC908GT16 in this data book apply equally to the MC68HC908GT8, unless otherwise stated. 1.3 Features For convenience, features have been organized to reflect: • Standard features of the MC68HC908GT16/MC68HC908GT8 • Features of the CPU08 1.3.1 Standard Features of the MC68HC908GT16/MC68HC908GT8 • High-performance M68HC08 architecture optimized for C-compilers • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • 8-MHz internal bus frequency • Internal oscillator requiring no external components: – Software selectable bus frequencies – ±25 percent accuracy with trim capability to ±4 percent – Clock monitor – Option to allow use of external clock source or external crystal/ceramic resonator • FLASH program memory security(1) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 34 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description MOTOROLA General Description Features • On-chip programming firmware for use with host personal computer which does not require high voltage for entry • In-system programming (ISP) • System protection features: – Optional computer operating properly (COP) reset – Low-voltage detection with optional reset and selectable trip points for 3.0-V and 5.0-V operation – Illegal opcode detection with reset – Illegal address detection with reset • Low-power design; fully static with stop and wait modes • Standard low-power modes of operation: – Wait mode – Stop mode • Master reset pin and power-on reset (POR) • 16 Kbytes of on-chip 100k cycle write/erase capable FLASH memory (8 Kbytes on MC68HC908GT8) • 512 bytes of on-chip random-access memory (RAM) • 720 bytes of flash programming routines ROM • Serial peripheral interface module (SPI) • Serial communications interface module (SCI) • Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and pulse-width modulation (PWM) capability on each channel • 8-channel, 8-bit successive approximation analog-to-digital converter (ADC) • BREAK module (BRK) to allow single breakpoint setting during in-circuit debugging • Internal pullups on IRQ and RST to reduce customer system cost MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 35 General Description • Up to 36 general-purpose input/output (I/O) pins, including: – 28 shared-function I/O pins – Six or eight dedicated I/O pins, depending on package choice • Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis. During output mode, pullups are disengaged. • High current 10-mA sink/10-mA source capability on all port pins • Higher current 20-mA sink/source capability on PTC0–PTC4 • Timebase module with clock prescaler circuitry for eight user selectable periodic real-time interrupts with optional active clock source during stop mode for periodic wakeup from stop using an external 32-kHz crystal or internal oscillator • User selection of having the oscillator enabled or disabled during stop mode • 8-bit keyboard wakeup port • Available packages: – 42-pin shrink dual in-line package (SDIP) – 44-pin quad flat pack (QFP) • Specific features of the MC68HC908GT16 in 42-pin SDIP are: – Port C is only 5 bits: PTC0–PTC4 – Port D is 8 bits: PTD0–PTD7; dual 2-channel TIM modules • Specific features of the MC68HC908GT16 in 44-pin QFP are: – Port C is 7 bits: PTC0–PTC6 – Port D is 8 bits: PTD0–PTD7; dual 2-channel TIM modules Technical Data 36 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description MOTOROLA General Description MCU Block Diagram 1.3.2 Features of the CPU08 Features of the CPU08 include: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Efficient C language support 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908GT16/ MC68HC908GT8. Text in parentheses within a module block indicates the module name. Text in parentheses next to a signal indicates the module which uses the signal. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 37 PORTA PTC6 † PTC5 † PTC4 † ‡ PTC3 † ‡ PTC2 † ‡ PTC1 † ‡ PTC0 † ‡ PTD7/T2CH1 † PTD6/T2CH0 † PTD5/T1CH1 † PTD4/T1CH0 † PTD3/SPSCK † PTD2/MOSI † PTD1/MISO † PTD0/SS † PTE2 PTE1/RxD PTE0/TxD MONITOR ROM — 304 BYTES 2-CHANNEL TIMER INTERFACE MODULE 1 FLASH PROGRAMMING ROUTINES ROM — 720 BYTES 2-CHANNEL TIMER INTERFACE MODULE 2 DDRC 8-BIT KEYBOARD INTERRUPT MODULE USER RAM — 512 BYTES USER FLASH VECTOR SPACE — 36 BYTES SERIAL COMMUNICATIONS INTERFACE MODULE MOTOROLA INTERNAL CLOCK GENERATOR MODULE * RST SYSTEM INTEGRATION MODULE * IRQ SINGLE EXTERNAL INTERRUPT MODULE VREFH VREFL 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE SERIAL PERIPHERAL INTERFACE MODULE MONITOR MODULE DATA BUS SWITCH MODULE MEMORY MAP MODULE POWER-ON RESET MODULE VDD VSS VDDA VSSA COMPUTER OPERATING PROPERLY MODULE DDRD PTE4/OSC1 PTE3/OSC2 CONFIGURATION REGISTER 1 MODULE DDRE MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description PORTB DUAL VOLTAGE LOW-VOLTAGE INHIBIT MODULE PORTC USER FLASH MC68HC908GT16 — 15,872 BYTES MC68HC908GT8 — 7,680 BYTES PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PORTD SINGLE BREAKPOINT BREAK MODULE PTA7/KBD7–PTA0/KBD0 † PORTE CONTROL AND STATUS REGISTERS — 64 BYTES DDRA PROGRAMMABLE TIMEBASE MODULE DDRB ARITHMETIC/LOGIC UNIT (ALU) CPU REGISTERS SECURITY MODULE POWER † Ports are software configurable with pullup device if input port. ‡ Higher current drive port pins * Pin contains integrated pullup device CONFIGURATION REGISTER 2 MODULE Figure 1-1. MCU Block Diagram MONITOR MODE ENTRY MODULE General Description Technical Data 38 INTERNAL BUS M68HC08 CPU General Description Pin Assignments 1.5 Pin Assignments VDDA (ADC/ICG) 1 42 PTA7/KBD7 VSSA (ADC/ICG) 2 41 PTA6/KBD6 PTE2 3 40 PTA5/KBD5 PTE3/OSC2 4 39 PTA4/KBD4 PTE4/OSC1 5 38 PTA3/KBD3 RST 6 37 PTA2/KBD2 PTC0 7 36 PTA1/KBD1 PTC1 8 35 PTA0/KBD0 PTC2 9 34 VREFL (ADC) PTC3 10 33 VREFH (ADC) PTC4 11 32 PTB7/AD7 PTE0/TxD 12 31 PTB6/AD6 PTE1/RxD 13 30 PTB5/AD5 IRQ 14 29 PTB4/AD4 PTD0/SS 15 28 PTB3/AD3 PTD1/MISO 16 27 PTB2/AD2 PTD2/MOSI 17 26 PTB1/AD1 PTD3/SPSCK 18 25 PTB0/AD0 VSS 19 24 PTD7/T2CH1 VDD 20 23 PTD6/T2CH0 PTD4/T1CH0 21 22 PTD5/T1CH1 Pins Not Available on 42-Pin Package Internal Connection PTC5 Connected to ground PTC6 Connected to ground Figure 1-2. 42-Pin SDIP Pin Assignments MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 39 34 PTA2/KBD2 PTA3/KBD3 PTA6/KBD6 38 35 PTA7/KBD7 39 PTA4/KBD4 VDDA 40 36 VSSA 41 PTA5/KBD5 PTE2 42 RST 1 37 PTE3/OSC2 43 44 PTE4/OSC1 General Description 33 PTA1/KBD1 28 PTB6/AD6 PTC5 7 27 PTB5/AD5 PTC6 8 26 PTB4/AD4 PTE0/TxD 9 25 PTB3/AD3 PTE1/RxD 10 24 PTB2/AD2 23 PTB1/AD1 PTB0/AD0 22 PTD0/SS 12 IRQ 11 21 6 PTD7/T2CH1 PTC4 20 PTB7/AD7 PTD6/T2CH0 29 19 5 PTD5/T1CH1 PTC3 18 VREFH PTD4/T1CH0 30 17 4 VDD PTC2 16 VREFL VSS 31 15 3 PTD3/SPSCK PTC1 14 PTA0/KBD0 PTD2/MOSI 32 13 2 PTD1/MISO PTC0 Figure 1-3. 44-Pin QFP Pin Assignments 1.6 Pin Functions Descriptions of the pin functions are provided here. 1.6.1 Power Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an Technical Data 40 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description MOTOROLA General Description Pin Functions optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels. MCU VDD VSS C1 0.1 µF + C2 VDD Note: Component values shown represent typical applications. Figure 1-4. Power Supply Bypassing 1.6.2 Oscillator Pins (PTE4/OSC1 and PTE3/OSC2) PTE4/OSC1 and PTE3/OSC2 are general-purpose, bidirectional I/O port pins. These pins can also be programmed to be the connections for an external crystal, resonator or clock circuit. See Section 7. Internal Clock Generator (ICG) Module. 1.6.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Section 19. System Integration Module (SIM). 1.6.4 External Interrupt Pin (IRQ) IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See Section 12. External Interrupt (IRQ). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 41 General Description 1.6.5 ADC and ICG Power Supply Pins (VDDA and VSSA) VDDA and VSSA are the power supply pins for the analog-to-digital converter (ADC) and the internal clock generator (ICG). Connect the VDDA pin to the same voltage potential as VDD, and the VSSA pin to the same voltage potential as VSS. Decoupling of these pins should be as per the digital supply. See Section 5. Analog-to-Digital Converter (ADC) and Section 7. Internal Clock Generator (ICG) Module. 1.6.6 ADC Reference Pins (VREFH and VREFL) VREFH and VREFL are the reference voltage pins for the analog-to-digital converter (ADC). VREFH is the high reference supply for the ADC and should be filtered. VREFH can be connected to the same voltage potential as the analog supply pin, VDDA, or to an external precision voltage reference. VREFL is the low reference supply for the ADC and should be externally filtered. While VREFL can be connected to an external reference, it is practical to connect it to the same voltage potential as the analog supply pin VSSA. See Section 5. Analog-to-Digital Converter (ADC). 1.6.7 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0) PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. See Section 16. Input/Output (I/O) Ports and Section 13. Keyboard Interrupt Module (KBI). These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. 1.6.8 Port B I/O Pins (PTB7/AD7–PTB0/AD0) PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital converter (ADC) inputs. See Section 16. Input/Output (I/O) Ports and Section 5. Analog-to-Digital Converter (ADC). Technical Data 42 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description MOTOROLA General Description Pin Functions 1.6.9 Port C I/O Pins (PTC6–PTC0) PTC6–PTC0 are general-purpose, bidirectional I/O port pins. PTC0–PTC4 have higher current sink/source capability. PTC5 and PTC6 are only available on the 44-pin QFP package. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. See Section 16. Input/Output (I/O) Ports. 1.6.10 Port D I/O Pins (PTD7/T2CH1–PTD0/SS) PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD0–PTD3 can be programmed to be serial peripheral interface (SPI) pins, while PTD4–PTD7 can be individually programmed to be timer interface module (TIM1 and TIM2) pins. See Section 22. Timer Interface Module (TIM), Section 20. Serial Peripheral Interface Module (SPI), and Section 16. Input/Output (I/O) Ports. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. 1.6.11 Port E I/O Pins (PTE4–PTE2, PTE1/RxD, and PTE0/TxD) PTE0–PTE4 are general-purpose, bidirectional I/O port pins. PTE0–PTE1 can also be programmed to be serial communications interface (SCI) pins. See Section 18. Enhanced Serial Communications Interface (ESCI) Module and Section 16. Input/Output (I/O) Ports. PTE3 and PTE4 can also be programmed to be clock or oscillator pins. See Section 8. Configuration Register (CONFIG) and Section 16. Input/Output (I/O) Ports. NOTE: Any unused inputs and I/O ports should be tied to an appropriate logic level (either VDD or VSS). Although the I/O ports of the MC68HC908GT16 • MC68HC908GT8 do not require termination, termination is recommended to reduce the possibility of static damage. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA General Description Technical Data 43 General Description Technical Data 44 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 General Description MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 45 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 2.2 Introduction The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: • User FLASH memory: – MC68HC908GT16 — 15,872 bytes – MC68HC908GT8 — 7,680 bytes • 512 bytes of random-access memory (RAM) • 720 bytes of FLASH programming routines read-only memory (ROM) • 36 bytes of user-defined vectors • 304 bytes of monitor ROM 2.3 Unimplemented Memory Locations Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 45 Memory Map 2.4 Reserved Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. 2.5 Input/Output (I/O) Section Most of the control, status, and data registers are in the zero page area of $0000–$003F. Additional I/O registers have these addresses: • $FE00; SIM break status register, SBSR • $FE01; SIM reset status register, SRSR • $FE02; reserved, SUBAR • $FE03; SIM break flag control register, SBFCR • $FE04; interrupt status register 1, INT1 • $FE05; interrupt status register 2, INT2 • $FE06; interrupt status register 3, INT3 • $FE07; reserved • $FE08; FLASH control register, FLCR • $FE09; break address register high, BRKH • $FE0A; break address register low, BRKL • $FE0B; break status and control register, BRKSCR • $FE0C; LVI status register, LVISR • $FF7E; FLASH block protect register, FLBPR • $FF80; ICG user trim register 5V ICGTR5 • $FF81; ICG user trim register 3V ICGTR3 • $FFFF; COP control register, COPCTL Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations. Technical Data 46 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section $0000 ↓ I/O REGISTERS 64 BYTES $003F $0040 ↓ RAM 512 BYTES $023F $0240 ↓ UNIMPLEMENTED 6416 BYTES $1B4F $1B50 ↓ FLASH PROGRAMMING ROUTINES ROM 720 BYTES $1E1F $1E20 ↓ UNIMPLEMENTED 41,440 BYTES $BFFF $C000 ↓ FLASH MEMORY MC68HC908GT16 15,872 BYTES $FDFF $FE00 SIM BREAK STATUS REGISTER (SBSR) $FE01 SIM RESET STATUS REGISTER (SRSR) $FE02 RESERVED (SUBAR) $FE03 SIM BREAK FLAG CONTROL REGISTER (SBFCR) $FE04 INTERRUPT STATUS REGISTER 1 (INT1) $FE05 INTERRUPT STATUS REGISTER 2 (INT2) $FE06 INTERRUPT STATUS REGISTER 3 (INT3) $FE07 RESERVED $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 BREAK ADDRESS REGISTER HIGH (BRKH) UNIMPLEMENTED(1) $C000 ↓ $DFFF FLASH MEMORY MC68HC908GT8 7,680 BYTES $E000 ↓ $FDFF 1. Inadvertent access to these locations will not cause an illegal address reset. Figure 2-1. Memory Map MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 47 Memory Map $FE0A BREAK ADDRESS REGISTER LOW (BRKL) $FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR) $FE0C LVI STATUS REGISTER (LVISR) $FE0D ↓ UNIMPLEMENTED 3 BYTES $FE0F $FE10 ↓ $FE1F UNIMPLEMENTED 16 BYTES RESERVED FOR COMPATIBILITY WITH MONITOR CODE FOR A-FAMILY PART $FE20 ↓ MONITOR ROM 304 BYTES $FF4F $FF50 ↓ UNIMPLEMENTED 46 BYTES $FF7D $FF7E FLASH BLOCK PROTECT REGISTER (FLBPR) $FF7F UNIMPLEMENTED 1 BYTE $FF80 ICG USER TRIM REGISTER 5V (ICGTR5) $FF81 ICG USER TRIM REGISTER 3V (ICGTR3) $FF82 ↓ UNIMPLEMENTED 90 BYTES $FFDB $FFDC ↓ FLASH VECTORS 36 BYTES $FFFF(2) 2. $FFF6–$FFFD reserved for eight security bytes Figure 2-1. Memory Map (Continued) Technical Data 48 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section Addr. Register Name $0000 Read: Port A Data Register (PTA) Write: See page 229. Reset: $0001 $0002 $0003 Read: Port B Data Register (PTB) Write: See page 233. Reset: Read: Port C Data Register (PTC) Write: See page 236. Reset: Read: Port D Data Register (PTD) Write: See page 240. Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 0 PTD7 $0009 Read: ESCI Prescaler Register (SCPSC) Write: See page 286. Reset: PTB3 PTC6 PTC5 PTC4 PTC3 PTD6 PTD5 PTD4 PTD3 Unaffected by reset 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 0 PTE4 PTE3 PTE2 PTE1 PTE0 0 Read: Data Direction Register D DDRD7 $0007 (DDRD) Write: See page 242. Reset: 0 $0008 PTB4 Unaffected by reset Read: Data Direction Register B DDRB7 $0005 (DDRB) Write: See page 234. Reset: 0 Read: Port E Data Register (PTE) Write: See page 245. Reset: PTB5 Unaffected by reset Read: Data Direction Register A DDRA7 $0004 (DDRA) Write: See page 230. Reset: 0 Read: Data Direction Register C $0006 (DDRC) Write: See page 237. Reset: PTB6 0 Unaffected by reset PDS2 PDS1 PDS0 PSSB4 PSSB3 PSSB2 PSSB1 PSSB0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 9) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 49 Memory Map Addr. Register Name $000A Read: ESCI Arbiter Control Register (SCIACTL) Write: See page 290. Reset: $000B Read: ESCI Arbiter Data Register (SCIADAT) Write: See page 292. Reset: Read: Data Direction Register E $000C (DDRE) Write: See page 246. Reset: Bit 7 AM1 6 ALOST 5 4 AM0 ACLK 3 2 1 Bit 0 AFIN ARUN AOVFL ARD8 0 0 0 0 0 0 0 0 ARD7 ARD6 ARD5 ARD4 ARD3 ARD2 ARD1 ARD0 0 0 0 0 0 0 0 0 0 0 0 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 0 Read: Port A Input Pullup Enable PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 $000D Register (PTAPUE) Write: See page 232. Reset: 0 0 0 0 0 0 0 0 Read: Port C Input Pullup Enable $000E Register (PTCPUE) Write: See page 239. Reset: 0 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 0 0 0 0 0 0 0 Read: Port D Input Pullup Enable PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 $000F Register (PTDPUE) Write: See page 244. Reset: 0 0 0 0 0 0 0 0 $0010 $0011 $0012 $0013 Read: SPI Control Register (SPCR) Write: See page 345. Reset: Read: SPI Status and Control Register (SPSCR) Write: See page 347. Reset: Read: SPI Data Register (SPDR) Write: See page 350. Reset: SPRIE 0 SPRF DMAS 0 ERRIE SPMSTR CPOL CPHA SPWOM SPE SPTIE 1 0 1 0 0 0 OVRF MODF SPTE MODFEN SPR1 SPR0 0 0 0 0 1 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Read: ESCI Control Register 1 LOOPS (SCC1) Write: See page 272. Reset: 0 Unaffected by reset ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9) Technical Data 50 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section Addr. $0014 $0015 $0016 $0017 Register Name Read: ESCI Control Register 2 (SCC2) Write: See page 275. Reset: 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE R8 U U 0 0 0 0 0 0 Read: ESCI Status Register 1 (SCS1) Write: See page 279. Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 BKF RPF Read: ESCI Status Register 2 (SCS2) Write: See page 283. Reset: Read: ESCI Data Register (SCDR) Write: See page 284. Reset: Read: ESCI Baud Rate Register $0019 (SCBR) Write: See page 284. Reset: Keyboard Status Read: and Control Register Write: (INTKBSCR) See page 201. Reset: Read: Keyboard Interrupt Enable $001B Register (INTKBIER) Write: See page 202. Reset: Read: Timebase Module Control $001C Register (TBCR) Write: See page 353. Reset: $001D 6 Read: ESCI Control Register 3 (SCC3) Write: See page 278. Reset: $0018 $001A Bit 7 Read: IRQ Status and Control Register (INTSCR) Write: See page 193. Reset: 0 0 0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Unaffected by reset SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 IMASKK MODEK 0 0 0 0 0 0 0 0 0 0 KEYF 0 ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 TBR2 TBR1 TBR0 TBIE TBON R 0 0 IMASK1 MODE1 0 0 TBIF 0 TACK 0 0 0 0 0 0 0 0 0 0 IRQF1 0 ACK1 0 0 0 = Unimplemented 0 R = Reserved 0 0 U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 51 Memory Map Addr. $001E $001F Register Name Configuration Register 2 Read: (CONFIG2)† Write: See page 148. Reset: Bit 7 R 0 Read: Configuration Register 1 COPRS † (CONFIG1) Write: See page 148. Reset: 0 6 5 4 3 2 1 Bit 0 0 EXTXTALEN EXTSLOW EXTCLKEN 0 OSCENINSTOP R 0 0 0 0 0 0 0 SSREC STOP COPD 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3† 0 0 0 0 † One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset). Read: Timer 1 Status and Control $0020 Register (T1SC) Write: See page 371. Reset: TOF $0021 $0022 TSTOP 0 0 1 0 Read: Timer 1 Counter Register High (T1CNTH) Write: See page 374. Reset: Bit 15 14 13 0 0 Read: Timer 1 Counter Register Low (T1CNTL) Write: See page 374. Reset: Bit 7 Read: Timer 1 Counter Modulo $0023 Register High (T1MODH) Write: See page 375. Reset: Read: Timer 1 Counter Modulo $0024 Register Low (T1MODL) Write: See page 375. Reset: Timer 1 Channel 0 Status Read: and Control Register Write: $0025 (T1SC0) See page 376. Reset: $0026 0 TOIE Read: Timer 1 Channel 0 Register High (T1CH0H) Write: See page 380. Reset: 0 PS2 PS1 PS0 0 0 0 0 12 11 10 9 Bit 8 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 0 TRST CH0F 0 Indeterminate after reset = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 9) Technical Data 52 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section Addr. $0027 Register Name Read: Timer 1 Channel 0 Register Low (T1CH0L) Write: See page 380. Reset: Timer 1 Channel 1 Status Read: and Control Register Write: $0028 (T1SC1) See page 376. Reset: $0029 $002A Read: Timer 1 Channel 1 Register High (T1CH1H) Write: See page 380. Reset: Read: Timer 1 Channel 1 Register Low (T1CH1L) Write: See page 380. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 PS2 PS1 PS0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset Read: Timer 2 Status and Control $002B Register (T2SC) Write: See page 371. Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer 2 Counter Register High (T2CNTH) Write: See page 374. Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer 2 Counter Register Low (T2CNTL) Write: See page 374. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 $002C $002D Read: Timer 2 Counter Modulo $002E Register High (T2MODH) Write: See page 375. Reset: $002F Read: Timer 2 Counter Modulo Register Low (T2MODL) Write: See page 375. Reset: Timer 2 Channel 0 Status Read: and Control Register Write: $0030 (T2SC0) See page 376. Reset: TOIE TSTOP 0 CH0F 0 0 TRST 0 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 9) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 53 Memory Map Addr. $0031 $0032 Register Name Read: Timer 2 Channel 0 Register High (T2CH0H) Write: See page 380. Reset: Read: Timer 2 Channel 0 Register Low (T2CH0L) Write: See page 380. Reset: Timer 2 Channel 1 Status Read: and Control Register Write: $0033 (T2SC1) See page 376. Reset: $0034 $0035 $0036 $0037 $0038 $0039 $003A Read: Timer 2 Channel 1 Register High (T2CH1H) Write: See page 380. Reset: Read: Timer 2 Channel 1 Register Low (T2CH1L) Write: See page 380. Reset: Read: ICG Control Register (ICGCR) Write: See page 141. Reset: Read: ICG Multiplier Register (ICGMR) Write: See page 143. Reset: Read: ICG Trim Register (ICGTR) Write: See page 144. Reset: Read: ICG Divider Control Register (ICGDVR) Write: See page 144. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CMIE CMF ICGS ECGON ECGS CMON CS ICGON 0 0 0 1 0 0 0 N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 DDIV3 DDIV2 DDIV1 DDIV0 0 0 0 Read: DSTG7 ICG DCO Stage Control Register (ICGDSR) Write: R See page 145. Reset: U 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 R R R R R R R U U U U U U U = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 9) Technical Data 54 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section Addr. Register Name Read: Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R R R Reserved Write: $003B Reset: $003C Read: ADC Status and Control Register (ADSCR) Write: See page 95. Reset: Read: ADC Data Register (ADR) Write: See page 98. Reset: $003D $003E Read: ADC Clock Register (ADCLK) Write: See page 98. Reset: Indeterminate after reset COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 0 0 0 0 0 0 0 0 ADIV2 ADIV1 ADIV0 ADICLK 0 0 0 0 0 0 0 0 0 0 0 0 R R R R R R Read: $003F Unimplemented Write: Reset: Read: SIM Break Status Register $FE00 (SBSR) Write: See page 107. Reset: SBSW R NOTE 0 0 0 0 0 0 0 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 R R R R R R R R BCFE R R R R R R R Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 76. POR: $FE02 Read: SIM Upper Byte Address Write: Register (SUBAR) Reset: $FE03 Read: SIM Break Flag Control Register (SBFCR) Write: See page 108. Reset: 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 9) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 55 Memory Map Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: Interrupt Status Register 1 $FE04 (INT1) Write: See page 86. Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: See page 86. Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 (INT3) Write: See page 87. Reset: 0 0 0 0 0 0 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R Reset: 0 0 0 0 0 0 0 0 Read: FLASH Control Register (FLCR) Write: See page 179. Reset: 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read: Reserved Write: $FE07 $FE08 $FE09 $FE0A Read: Break Address Register High (BRKH) Write: See page 106. Reset: Read: Break Address Register Low (BRKL) Write: See page 106. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 105. Reset: $FE0C Read: LVIOUT LVI Status Register (LVISR) Write: See page 207. Reset: 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 9) Technical Data 56 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Memory Map Input/Output (I/O) Section Addr. Register Name $FF7E Read: FLASH Block Protect Register (FLBPR)† Write: See page 185. Reset: $FF80 $FF81 $FFFF Read: ICG User Trim † Register 5V (ICGTR5) Write: See page 187. Reset: Read: ICG User Trim Register 3V (ICGTR3)† Write: See page 187. Reset: Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 U U U U U U U U TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 U U U U U U U U TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 U U U U U U U U Read: COP Control Register (COPCTL) Write: See page 157. Reset: Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset † Non-volatile FLASH register = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 9) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data Memory Map 57 Memory Map . Table 2-1. Vector Addresses Vector Priority Lowest Vector IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 — Highest — Address $FFDC Timebase Vector (High) $FFDD Timebase Vector (Low) $FFDE ADC Conversion Complete Vector (High) $FFDF ADC Conversion Complete Vector (Low) $FFE0 Keyboard Vector (High) $FFE1 Keyboard Vector (Low) $FFE2 SCI Transmit Vector (High) $FFE3 SCI Transmit Vector (Low) $FFE4 SCI Receive Vector (High) $FFE5 SCI Receive Vector (Low) $FFE6 SCI Error Vector (High) $FFE7 SCI Error Vector (Low) $FFE8 SPI Transmit Vector (High) $FFE9 SPI Transmit Vector (Low) $FFEA SPI Receive Vector (High) $FFEB SPI Receive Vector (Low) $FFEC TIM2 Overflow Vector (High) $FFED TIM2 Overflow Vector (Low) $FFEE TIM2 Channel 1 Vector (High) $FFEF TIM2 Channel 1 Vector (Low) $FFF0 TIM2 Channel 0 Vector (High) $FFF1 TIM2 Channel 0 Vector (Low) $FFF2 TIM1 Overflow Vector (High) $FFF3 TIM1 Overflow Vector (Low) $FFF4 TIM1 Channel 1 Vector (High) $FFF5 TIM1 Channel 1 Vector (Low) $FFF6 TIM1 Channel 0 Vector (High) $FFF7 TIM1 Channel 0 Vector (Low) $FFF8 ICG Vector (High) $FFF9 ICG Vector (Low) $FFFA IRQ Vector (High) $FFFB IRQ Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Technical Data 58 Vector MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Memory Map MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 3. Low-Power Modes 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.2.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.3.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.4 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.4.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.5 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 3.6 Internal Clock Generator Module (ICG) . . . . . . . . . . . . . . . . . . 63 3.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 3.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 3.7 Computer Operating Properly Module (COP). . . . . . . . . . . . . . 64 3.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.8 External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .64 3.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 3.9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . 65 3.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 59 Low-Power Modes 3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . . 65 3.10.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.10.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 3.11 Enhanced Serial Communications Interface Module (SCI) . . . 66 3.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . 66 3.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.13 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . 67 3.13.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.13.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.14.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.14.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.2 Introduction The microcontroller (MCU) may enter two low-power modes: wait mode and stop mode. They are common to all HC08 MCUs and are entered through instruction execution. This section describes how each module acts in the low-power modes. 3.2.1 Wait Mode The WAIT instruction puts the MCU in a low-power standby mode in which the central processor unit (CPU) clock is disabled but the bus clock continues to run. Power consumption can be further reduced by disabling the LVI module and/or the timebase module through bits in the CONFIG1 register. (See Section 8. Configuration Register (CONFIG).) Technical Data 60 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Low-Power Modes Analog-to-Digital Converter (ADC) 3.2.2 Stop Mode Stop mode is entered when a STOP instruction is executed. The CPU clock is disabled and the bus clock is disabled if the OSCENINSTOP bit in the CONFIG2 register is at a logic 0. (See Section 8. Configuration Register (CONFIG).) 3.3 Analog-to-Digital Converter (ADC) 3.3.1 Wait Mode The analog-to-digital converter (ADC) continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the WAIT instruction. 3.3.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry. 3.4 Break Module (BRK) 3.4.1 Wait Mode If enabled, the break (BRK) module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if the SBSW bit in the break status register is set. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 61 Low-Power Modes 3.4.2 Stop Mode The break module is inactive in stop mode. A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. The STOP instruction does not affect break module register states. 3.5 Central Processor Unit (CPU) 3.5.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock 3.5.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. Technical Data 62 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Low-Power Modes Internal Clock Generator Module (ICG) 3.6 Internal Clock Generator Module (ICG) 3.6.1 Wait Mode The internal clock generator (ICG) module remains active in wait mode. If enabled, the ICG interrupt to the CPU can bring the MCU out of wait mode. In some applications, low power-consumption is desired in wait mode and a high-frequency clock is not needed. In these applications, reduce power consumption by either selecting a low-frequency external clock and turn the internal clock generator off or reduce the bus frequency by minimizing the ICG multiplier factor (N) before executing the WAIT instruction. 3.6.2 Stop Mode The value of the oscillator enable in stop (OSCENINSTOP) bit in the CONFIG2 register determines the behavior of the ICG in stop mode. If OSCENINSTOP is low, the ICG is disabled in stop and, upon execution of the STOP instruction, all ICG activity will cease and the output clocks (CGMXCLK, CGMOUT, COPCLK, and TBMCLK) will be held low. Power consumption will be minimal. If OSCENINSTOP is high, the ICG is enabled in stop and activity will continue. This is useful if the timebase module (TBM) is required to bring the MCU out of stop mode. ICG interrupts will not bring the MCU out of stop mode in this case. During stop mode, if OSCENINSTOP is low, several functions in the ICG are affected. The stable bits (ECGS and ICGS) are cleared, which will enable the external clock stabilization divider upon recovery. The clock monitor is disabled (CMON = 0) which will also clear the clock monitor interrupt enable (CMIE) and clock monitor flag (CMF) bits. The CS, ICGON, ECGON, N, TRIM, DDIV, and DSTG bits are unaffected. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 63 Low-Power Modes 3.7 Computer Operating Properly Module (COP) 3.7.1 Wait Mode The computer operating properly (COP) module remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. 3.7.2 Stop Mode Stop mode turns off the COPCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. The STOP bit in the CONFIG1 register enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit. 3.8 External Interrupt Module (IRQ) 3.8.1 Wait Mode The external interrupt (IRQ) module remains active in wait mode. Clearing the IMASK1 bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of wait mode. 3.8.2 Stop Mode The IRQ module remains active in stop mode. Clearing the IMASK1 bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of stop mode. Technical Data 64 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Low-Power Modes Keyboard Interrupt Module (KBI) 3.9 Keyboard Interrupt Module (KBI) 3.9.1 Wait Mode The keyboard interrupt (KBI) module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 3.9.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. 3.10 Low-Voltage Inhibit Module (LVI) 3.10.1 Wait Mode If enabled, the low-voltage inhibit (LVI) module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. 3.10.2 Stop Mode If enabled, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 65 Low-Power Modes 3.11 Enhanced Serial Communications Interface Module (SCI) 3.11.1 Wait Mode The enhanced serial communications interface (ESCI), or SCI module for short, module remains active in wait mode. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. 3.11.2 Stop Mode The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI module operation resumes after the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. 3.12 Serial Peripheral Interface Module (SPI) 3.12.1 Wait Mode The serial peripheral interface (SPI) module remains active in wait mode. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. Technical Data 66 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Low-Power Modes Timer Interface Module (TIM1 and TIM2) 3.12.2 Stop Mode The SPI module is inactive in stop mode. The STOP instruction does not affect SPI register states. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset. 3.13 Timer Interface Module (TIM1 and TIM2) 3.13.1 Wait Mode The timer interface modules (TIM) remain active in wait mode. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 3.13.2 Stop Mode The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. 3.14 Timebase Module (TBM) 3.14.1 Wait Mode The timebase module (TBM) remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 67 Low-Power Modes 3.14.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCENINSTOP bit in the CONFIG2 register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. 3.15 Exiting Wait Mode These events restart the CPU clock and load the program counter with the reset vector or with an interrupt vector: Technical Data 68 • External reset — A logic 0 on the RST pin resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. • External interrupt — A high-to-low transition on an external interrupt pin (IRQ pin) loads the program counter with the contents of locations: $FFFA and $FFFB; IRQ pin. • Break interrupt — A break interrupt loads the program counter with the contents of $FFFC and $FFFD. • Computer operating properly module (COP) reset — A timeout of the COP counter resets the MCU and loads the program counter with the contents of $FFFE and $FFFF. • Low-voltage inhibit module (LVI) reset — A power supply voltage below the VTRIPF voltage resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. • Internal Clock Generator module (ICG) interrupt — A CPU interrupt request from the ICG loads the program counter with the contents of $FFF8 and $FFF9. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Low-Power Modes Exiting Wait Mode • Keyboard module (KBI) interrupt — A CPU interrupt request from the KBI module loads the program counter with the contents of $FFE0 and $FFE1. • Timer 1 interface module (TIM1) interrupt — A CPU interrupt request from the TIM1 loads the program counter with the contents of: – $FFF2 and $FFF3; TIM1 overflow – $FFF4 and $FFF5; TIM1 channel 1 – $FFF6 and $FFF7; TIM1 channel 0 • Timer 2 interface module (TIM2) interrupt — A CPU interrupt request from the TIM2 loads the program counter with the contents of: – $FFEC and $FFED; TIM2 overflow – $FFEE and $FFEF; TIM2 channel 1 – $FFF0 and $FFF1; TIM2 channel 0 • Serial peripheral interface module (SPI) interrupt — A CPU interrupt request from the SPI loads the program counter with the contents of: – $FFE8 and $FFE9; SPI transmitter – $FFEA and $FFEB; SPI receiver • Serial communications interface module (SCI) interrupt — A CPU interrupt request from the SCI loads the program counter with the contents of: – $FFE2 and $FFE3; SCI transmitter – $FFE4 and $FFE5; SCI receiver – $FFE6 and $FFE7; SCI receiver error • Analog-to-digital converter module (ADC) interrupt — A CPU interrupt request from the ADC loads the program counter with the contents of: $FFDE and $FFDF; ADC conversion complete. • Timebase module (TBM) interrupt — A CPU interrupt request from the TBM loads the program counter with the contents of: $FFDC and $FFDD; TBM interrupt. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Power Modes Technical Data 69 Low-Power Modes 3.16 Exiting Stop Mode These events restart the system clocks and load the program counter with the reset vector or with an interrupt vector: • External reset — A logic 0 on the RST pin resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. • External interrupt — A high-to-low transition on an external interrupt pin loads the program counter with the contents of locations: – $FFFA and $FFFB; IRQ pin – $FFE0 and $FFE1; keyboard interrupt pins • Low-voltage inhibit (LVI) reset — A power supply voltage below the LVITRIPF voltage resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. • Break interrupt — A break interrupt loads the program counter with the contents of locations $FFFC and $FFFD. • Timebase module (TBM) interrupt — A TBM interrupt loads the program counter with the contents of locations $FFDC and $FFDD when the timebase counter has rolled over. This allows the TBM to generate a periodic wakeup from stop mode. Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external interrupt. The short stop recovery bit, SSREC, in the CONFIG1 register controls the oscillator stabilization delay during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32 CGMXCLK cycles. NOTE: Technical Data 70 Use the full stop recovery time (SSREC = 0) in applications that use an external crystal. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Power Modes MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 4. Resets and Interrupts 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3 Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3.1 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 73 4.3.3.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . .74 4.3.3.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.4 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2.1 Software Interrupt (SWI) Instruction. . . . . . . . . . . . . . . . . 80 4.4.2.2 Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.3 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 4.4.2.4 Internal Clock Generator (ICG) . . . . . . . . . . . . . . . . . . . . 81 4.4.2.5 Timer Interface Module 1 (TIM1) . . . . . . . . . . . . . . . . . . .81 4.4.2.6 Timer Interface Module 2 (TIM2) . . . . . . . . . . . . . . . . . . .82 4.4.2.7 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . .82 4.4.2.8 Serial Communications Interface (SCI) . . . . . . . . . . . . . . 83 4.4.2.9 KBD0–KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.2.10 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . 84 4.4.2.11 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.3.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.3.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .86 4.4.3.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .87 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 71 Resets and Interrupts 4.2 Introduction Resets and interrupts are responses to exceptional events during program execution. A reset re-initializes the MCU to its startup condition. An interrupt vectors the program counter to a service routine. 4.3 Resets A reset immediately returns the MCU to a known startup condition and begins program execution from a user-defined memory location. 4.3.1 Effects A reset: • Immediately stops the operation of the instruction being executed • Initializes certain control and status bits • Loads the program counter with a user-defined reset vector address from locations $FFFE and $FFFF • Selects CGMXCLK divided by four as the bus clock 4.3.2 External Reset A logic 0 applied to the RST pin for a time, tIRL, generates an external reset. An external reset sets the PIN bit in the SIM reset status register. 4.3.3 Internal Reset Sources: Technical Data 72 • Power-on reset (POR) • Computer operating properly (COP) • Low-power reset circuits • Illegal opcode • Illegal address MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Resets All internal reset sources pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external devices. The MCU is held in reset for an additional 32 CGMXCLK cycles after releasing the RST pin. PULLED LOW BY MCU RST PIN 32 CYCLES 32 CYCLES CGMXCLK INTERNAL RESET Figure 4-1. Internal Reset Timing 4.3.3.1 Power-On Reset (POR) A power-on reset (POR) is an internal reset caused by a positive transition on the VDD pin. VDD at the POR must go completely to 0 V to reset the MCU. This distinguishes between a reset and a POR. The POR is not a brown-out detector, low-voltage detector, or glitch detector. A power-on reset: • Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles • Drives the RST pin low during the oscillator stabilization delay • Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay • Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay • Sets the POR and LP bits in the SIM reset status register and clears all other bits in the register 4.3.3.2 Computer Operating Properly (COP) Reset A COP reset is an internal reset caused by an overflow of the COP counter. A COP reset sets the COP bit in the system integration module (SIM) reset status register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 73 Resets and Interrupts OSC1 PORRST(1) 4096 CYCLES 32 CYCLES 32 CYCLES CGMXCLK CGMOUT RST PIN INTERNAL RESET 1. PORRST is an internally generated power-on reset pulse. Figure 4-2. Power-On Reset Recovery To clear the COP counter and prevent a COP reset, write any value to the COP control register at location $FFFF. 4.3.3.3 Low-Voltage Inhibit Reset A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in the power supply voltage to the LVITRIPF voltage. An LVI reset: Technical Data 74 • Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles after the power supply voltage rises to the LVITRIPR voltage • Drives the RST pin low for as long as VDD is below the LVITRIPR voltage and during the oscillator stabilization delay • Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay • Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay • Sets the LVI bit in the SIM reset status register MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Resets 4.3.3.4 Illegal Opcode Reset An illegal opcode reset is an internal reset caused by an opcode that is not in the instruction set. An illegal opcode reset sets the ILOP bit in the SIM reset status register. If the stop enable bit, STOP, in the mask option register is a logic 0, the STOP instruction causes an illegal opcode reset. 4.3.3.5 Illegal Address Reset An illegal address reset is an internal reset caused by opcode fetch from an unmapped address. An illegal address reset sets the ILAD bit in the SIM reset status register. A data fetch from an unmapped address does not generate a reset. 4.3.4 SIM Reset Status Register This read-only register contains flags to show reset sources. All flag bits are automatically cleared following a read of the register. Reset service can read the SIM reset status register to clear the register after poweron reset and to determine the source of any subsequent reset. The register is initialized on power-up as shown with the POR bit set and all other bits cleared. During a POR or any other internal reset, the RST pin is pulled low. After the pin is released, it will be sampled 32 CGMXCLK cycles later. If the pin is not above a VIH at that time, then the PIN bit in the SRSR may be set in addition to whatever other bits are set. NOTE: Only a read of the SIM reset status register clears all reset flags. After multiple resets from different sources without reading the register, multiple flags remain set. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 75 Resets and Interrupts Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 Write: POR: = Unimplemented Figure 4-3. SIM Reset Status Register (SRSR) POR — Power-On Reset Flag 1 = Power-on reset since last read of SRSR 0 = Read of SRSR since last power-on reset PIN — External Reset Flag 1 = External reset via RST pin since last read of SRSR 0 = POR or read of SRSR since last external reset COP — Computer Operating Properly Reset Bit 1 = Last reset caused by timeout of COP counter 0 = POR or read of SRSR since any reset ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR since any reset ILAD — Illegal Address Reset Bit 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR since any reset MODRST — Monitor Mode Entry Module Reset Bit 1 = Last reset caused by forced monitor mode entry. 0 = POR or read of SRSR since any reset LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset caused by low-power supply voltage 0 = POR or read of SRSR since any reset Technical Data 76 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts 4.4 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. An interrupt does not stop the operation of the instruction being executed, but begins when the current instruction completes its operation. 4.4.1 Effects An interrupt: • Saves the CPU registers on the stack. At the end of the interrupt, the RTI instruction recovers the CPU registers from the stack so that normal processing can resume. • Sets the interrupt mask (I bit) to prevent additional interrupts. Once an interrupt is latched, no other interrupt can take precedence, regardless of its priority. • Loads the program counter with a user-defined vector address • • • STACKING ORDER 5 CONDITION CODE REGISTER 1 4 ACCUMULATOR 2 3 INDEX REGISTER (LOW BYTE)* 3 2 PROGRAM COUNTER (HIGH BYTE) 4 1 PROGRAM COUNTER (LOW BYTE) 5 UNSTACKING ORDER • • • $00FF DEFAULT ADDRESS ON RESET *High byte of index register is not stacked. Figure 4-4. Interrupt Stacking Order MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 77 Resets and Interrupts After every instruction, the CPU checks all pending interrupts if the I bit is not set. If more than one interrupt is pending when an instruction is done, the highest priority interrupt is serviced first. In the example shown in Figure 4-5, if an interrupt is pending upon exit from the interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI BACKGROUND ROUTINE LDA #$FF INT1 PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 4-5. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, save the H register and then restore it prior to exiting the routine. 4.4.2 Sources The sources in Table 4-1 can generate CPU interrupt requests. Technical Data 78 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts FROM RESET BREAK INTERRUPT ? NO YES YES BITSET? SET? IIBIT NO IRQ INTERRUPT ? NO YES ICG INTERRUPT ? NO YES OTHER INTERRUPTS ? YES NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR FETCH NEXT INSTRUCTION SWI INSTRUCTION ? YES NO RTI INSTRUCTION ? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 4-6. Interrupt Processing MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 79 Resets and Interrupts Table 4-1. Interrupt Sources Flag Mask(1) INT Register Flag Priority(2) Vector Address Reset None None None 0 $FFFE–$FFFF SWI instruction None None None 0 $FFFC–$FFFD IRQ pin IRQF IMASK1 IF1 1 $FFFA–$FFFB ICG clock monitor CMF CMIE IF2 2 $FFF8–$FFF9 TIM1 channel 0 CH0F CH0IE IF3 3 $FFF6–$FFF7 TIM1 channel 1 CH1F CH1IE IF4 4 $FFF4–$FFF5 TOF TOIE IF5 5 $FFF2–$FFF3 TIM2 channel 0 CH0F CH0IE IF6 6 $FFF0–$FFF1 TIM2 channel 1 CH1F CH1IE IF7 7 $FFEE–$FFEF TOF TOIE IF8 8 $FFEC–$FFED SPI receiver full SPRF SPRIE SPI overflow OVRF ERRIE IF9 9 $FFEA–$FFEB SPI mode fault MODF ERRIE SPI transmitter empty SPTE SPTIE IF10 10 $FFE8–$FFE9 SCI receiver overrun OR ORIE SCI noise fag NF NEIE SCI framing error FE FEIE IF11 11 $FFE6–$FFE7 SCI parity error PE PEIE SCI receiver full SCRF SCRIE SCI input idle IDLE ILIE IF12 12 $FFE4–$FFE5 SCI transmitter empty SCTE SCTIE TC TCIE IF13 13 $FFE2–$FFE3 Keyboard pin KEYF IMASKK IF14 14 $FFE0–$FFE1 ADC conversion complete COCO AIEN IF15 15 $FFDE–$FFDF TBIF TBIE IF16 16 $FFDC–$FFDD Source TIM1 overflow TIM2 overflow SCI transmission complete Timebase 1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority 4.4.2.1 Software Interrupt (SWI) Instruction The software interrupt instruction (SWI) causes a non-maskable interrupt. NOTE: Technical Data 80 A software interrupt pushes PC onto the stack. An SWI does not push PC – 1, as a hardware interrupt does. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts 4.4.2.2 Break Interrupt The break module causes the CPU to execute an SWI instruction at a software-programmable break point. 4.4.2.3 IRQ Pin A logic 0 on the IRQ1 pin latches an external interrupt request. 4.4.2.4 Internal Clock Generator (ICG) The ICG can generate a CPU interrupt request every time the selected internal or external clock becomes inactive. When the clock monitor CMON bit is set and the currently selected clock becomes inactive, the clock monitor interrupt flag CMF is set. The clock monitor interrupt enable bit (CMIE) enables ICG CPU interrupt requests. CMIE, CMF, and CMON are in the ICGCR control register. 4.4.2.5 Timer Interface Module 1 (TIM1) TIM1 CPU interrupt sources: • TIM1 overflow flag (TOF) — The TOF bit is set when the TIM1 counter value rolls over to $0000 after matching the value in the TIM1 counter modulo registers. The TIM1 overflow interrupt enable bit, TOIE, enables TIM1 overflow CPU interrupt requests. TOF and TOIE are in the TIM1 status and control register. • TIM1 channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM1 CPU interrupt requests. CHxF and CHxIE are in the TIM1 channel x status and control register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 81 Resets and Interrupts 4.4.2.6 Timer Interface Module 2 (TIM2) TIM2 CPU interrupt sources: • TIM2 overflow flag (TOF) — The TOF bit is set when the TIM2 counter value rolls over to $0000 after matching the value in the TIM2 counter modulo registers. The TIM2 overflow interrupt enable bit, TOIE, enables TIM2 overflow CPU interrupt requests. TOF and TOIE are in the TIM2 status and control register. • TIM2 channel flags (CH1F–CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM2 CPU interrupt requests. CHxF and CHxIE are in the TIM2 channel x status and control register. 4.4.2.7 Serial Peripheral Interface (SPI) SPI CPU interrupt sources: Technical Data 82 • SPI receiver full bit (SPRF) — The SPRF bit is set every time a byte transfers from the shift register to the receive data register. The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU interrupt requests. SPRF is in the SPI status and control register and SPRIE is in the SPI control register. • SPI transmitter empty (SPTE) — The SPTE bit is set every time a byte transfers from the transmit data register to the shift register. The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU interrupt requests. SPTE is in the SPI status and control register and SPTIE is in the SPI control register. • Mode fault bit (MODF) — The MODF bit is set in a slave SPI if the SS pin goes high during a transmission with the mode fault enable bit (MODFEN) set. In a master SPI, the MODF bit is set if the SS pin goes low at any time with the MODFEN bit set. The error interrupt enable bit, ERRIE, enables MODF CPU interrupt requests. MODF, MODFEN, and ERRIE are in the SPI status and control register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts • Overflow bit (OVRF) — The OVRF bit is set if software does not read the byte in the receive data register before the next full byte enters the shift register. The error interrupt enable bit, ERRIE, enables OVRF CPU interrupt requests. OVRF and ERRIE are in the SPI status and control register. 4.4.2.8 Serial Communications Interface (SCI) SCI CPU interrupt sources: • SCI transmitter empty bit (SCTE) — SCTE is set when the SCI data register transfers a character to the transmit shift register. The SCI transmit interrupt enable bit, SCTIE, enables transmitter CPU interrupt requests. SCTE is in SCI status register 1. SCTIE is in SCI control register 2. • Transmission complete bit (TC) — TC is set when the transmit shift register and the SCI data register are empty and no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, enables transmitter CPU interrupt requests. TC is in SCI status register 1. TCIE is in SCI control register 2. • SCI receiver full bit (SCRF) — SCRF is set when the receive shift register transfers a character to the SCI data register. The SCI receive interrupt enable bit, SCRIE, enables receiver CPU interrupts. SCRF is in SCI status register 1. SCRIE is in SCI control register 2. • Idle input bit (IDLE) — IDLE is set when 10 or 11 consecutive logic 1s shift in from the RxD pin. The idle line interrupt enable bit, ILIE, enables IDLE CPU interrupt requests. IDLE is in SCI status register 1. ILIE is in SCI control register 2. • Receiver overrun bit (OR) — OR is set when the receive shift register shifts in a new character before the previous character was read from the SCI data register. The overrun interrupt enable bit, ORIE, enables OR to generate SCI error CPU interrupt requests. OR is in SCI status register 1. ORIE is in SCI control register 3. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 83 Resets and Interrupts • Noise flag (NF) — NF is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, enables NF to generate SCI error CPU interrupt requests. NF is in SCI status register 1. NEIE is in SCI control register 3. • Framing error bit (FE) — FE is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, enables FE to generate SCI error CPU interrupt requests. FE is in SCI status register 1. FEIE is in SCI control register 3. • Parity error bit (PE) — PE is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, enables PE to generate SCI error CPU interrupt requests. PE is in SCI status register 1. PEIE is in SCI control register 3. 4.4.2.9 KBD0–KBD7 Pins A logic 0 on a keyboard interrupt pin latches an external interrupt request. 4.4.2.10 Analog-to-Digital Converter (ADC) When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. The COCO bit is not used as a conversion complete flag when interrupts are enabled. 4.4.2.11 Timebase Module (TBM) The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. Technical Data 84 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts 4.4.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 4-2 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 4-2. Interrupt Source Flags Interrupt Source Reset — SWI instruction — IRQ pin IF1 ICG clock monitor IF2 TIM1 channel 0 IF3 TIM1 channel 1 IF4 TIM1 overflow IF5 TIM2 channel 0 IF6 TIM2 channel 1 IF7 TIM2 overflow IF8 SPI receive IF9 SPI transmit IF10 SCI error IF11 SCI receive IF12 SCI transmit IF13 Keyboard IF14 ADC conversion complete IF15 Timebase IF16 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Interrupt Status Register Flag Resets and Interrupts Technical Data 85 Resets and Interrupts 4.4.3.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 4-7. Interrupt Status Register 1 (INT1) IF6–IF1 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present Bit 1 and Bit 0 — Always read 0 4.4.3.2 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 4-8. Interrupt Status Register 2 (INT2) IF14–IF7 — Interrupt Flags 14–7 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present Technical Data 86 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Resets and Interrupts Interrupts 4.4.3.3 Interrupt Status Register 3 Address: $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 0 0 IF16 IF15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 4-9. Interrupt Status Register 3 (INT3) IF16–IF15 — Interrupt Flags 16–15 This flag indicates the presence of an interrupt request from the source shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present Bits 7–2 — Always read 0 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Resets and Interrupts Technical Data 87 Resets and Interrupts Technical Data 88 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Resets and Interrupts MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 5. Analog-to-Digital Converter (ADC) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 5.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 5.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 5.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7.1 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 94 5.7.2 ADC Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . 94 5.7.3 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . 94 5.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . 94 5.7.5 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . 95 5.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 89 Analog-to-Digital Converter (ADC) 5.2 Introduction This section describes the 8-bit analog-to-digital converter (ADC). 5.3 Features Features of the ADC module include: • Eight channels with multiplexed input • Linear successive approximation with monotonicity • 8-bit resolution • Single or continuous conversion • Conversion complete flag or conversion complete interrupt • Selectable ADC clock 5.4 Functional Description The ADC provides eight pins for sampling external sources at pins PTB7/AD7–PTB0/AD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (VADIN). VADIN is converted by the successive approximation registerbased analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 5-1. Technical Data 90 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) Functional Description INTERNAL DATA BUS READ DDRBx WRITE DDRBx DISABLE DDRBx RESET WRITE PTBx PTBx PTBx ADC CHANNEL x READ PTBx DISABLE ADC DATA REGISTER ADC VOLTAGE IN (VADIN) INTERRUPT LOGIC CONVERSION COMPLETE ADC CHANNEL SELECT ADCH4–ADCH0 VREFH VREFL AIEN ADC CLOCK COCO CGMXCLK BUS CLOCK CLOCK GENERATOR ADIV2–ADIV0 ADICLK Figure 5-1. ADC Block Diagram 5.4.1 ADC Port I/O Pins PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC will return a logic 0. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 91 Analog-to-Digital Converter (ADC) 5.4.2 Voltage Conversion When the input voltage to the ADC equals VREFH, the ADC converts the signal to $FF (full scale). If the input voltage equals VREFL, the ADC converts it to $00. Input voltages between VREFH and VREFL are a straight-line linear conversion. NOTE: The ADC input voltage must always be greater than VSSA and less than VDDA. VREFH must always be greater than or equal to VREFL. Connect the VDDA pin to the same voltage potential as the VDD pin, and connect the VSSA pin to the same voltage potential as the VSS pin. The VDDA pin should be routed carefully for maximum noise immunity. 5.4.3 Conversion Time Conversion starts after a write to the ADC status and control register (ADSCR). One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC clock frequency. Conversion time = 16 to 17 ADC cycles ADC frequency Number of bus cycles = conversion time × bus frequency 5.4.4 Conversion In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after the first conversion and will stay set until the next write of the ADC status and control register or the next read of the ADC data register. In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR. Technical Data 92 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) Interrupts 5.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 5.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. 5.6 Low-Power Modes The WAIT and STOP instruction can put the MCU in low powerconsumption standby modes. 5.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the WAIT instruction. 5.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry. 5.7 I/O Signals The ADC module has eight pins shared with port B, PTB7/AD7–PTB0/AD0. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 93 Analog-to-Digital Converter (ADC) 5.7.1 ADC Analog Power Pin (VDDA) The ADC analog portion uses VDDA as its power pin. Connect the VDDA pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDA for good results. NOTE: For maximum noise immunity, route VDDA carefully and place bypass capacitors as close as possible to the package. 5.7.2 ADC Analog Ground Pin (VSSA) The ADC analog portion uses VSSA as its ground pin. Connect the VSSA pin to the same voltage potential as VSS. NOTE: Route VSSA cleanly to avoid any offset errors. 5.7.3 ADC Voltage Reference High Pin (VREFH) The ADC analog portion uses VREFH as its upper voltage reference pin. The VREFH pin can be connected to an external precision reference or to the same voltage potential as VDDA. External filtering is often necessary to ensure a clean VREFH for good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values. NOTE: For maximum noise immunity, route VREFH carefully and place bypass capacitors as close as possible to the package. Routing VREFH close and parallel to VREFL may improve common mode noise rejection. 5.7.4 ADC Voltage Reference Low Pin (VREFL) The ADC analog portion uses VREFL as its lower voltage reference pin. The VREFL pin should be connected to the same voltage potential as VSSA. External filtering is often necessary to ensure a clean VREFL for good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values. NOTE: Technical Data 94 For maximum noise immunity, route VREFL carefully and, if not connected to VSS, place bypass capacitors as close as possible to the MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) I/O Registers package. Routing VREFH close and parallel to VREFL may improve common mode noise rejection. 5.7.5 ADC Voltage In (VADIN) VADIN is the input voltage signal from one of the eight ADC channels to the ADC module. 5.8 I/O Registers These I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR) • ADC data register (ADR) • ADC clock register (ADCLK) 5.8.1 ADC Status and Control Register Function of the ADC status and control register (ADSCR) is described here. Address: $003C Bit 7 6 5 4 3 2 1 Bit 0 COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 Read: Write: Reset: Figure 5-2. ADC Status and Control Register (ADSCR) COCO — Conversions Complete When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed except in the continuous conversion mode where it is set after the first conversion. This bit is cleared whenever the ADSCR is written or whenever the ADR is read. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 95 Analog-to-Digital Converter (ADC) If the AIEN bit is a logic 1, the COCO becomes a read/write bit, which should be cleared to logic 0 for CPU to service the ADC interrupt request. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1) AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH4–ADCH0 — ADC Channel Select Bits ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC channels. Only eight channels, AD7–AD0, are available on this MCU. The channels are detailed in Table 5-1. Care should be taken when using a port pin as both an analog and digital input simultaneously to prevent switching noise from corrupting the analog signal. See Table 5-1. The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not being used. NOTE: Technical Data 96 Recovery from the disabled state requires one conversion cycle to stabilize. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) I/O Registers The voltage levels supplied from internal reference nodes, as specified in Table 5-1, are used to verify the operation of the ADC converter both in production test and for user applications. Table 5-1. Mux Channel Select(1) ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Input Select 0 0 0 0 0 PTB0/AD0 0 0 0 0 1 PTB1/KBD1 0 0 0 1 0 PTB2/KBD2 0 0 0 1 1 PTB3/KBD3 0 0 1 0 0 PTB4/KBD4 0 0 1 0 1 PTB5/KBD5 0 0 1 1 0 PTB6/KBD6 0 0 1 1 1 PTB7/AD7 0 1 0 0 0 ↓ ↓ ↓ ↓ ↓ 1 1 1 0 0 1 1 1 0 1 VREFH 1 1 1 1 0 VREFL 1 1 1 1 1 ADC power off Reserved 1. If any unused channels are selected, the resulting ADC conversion will be unknown or reserved. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 97 Analog-to-Digital Converter (ADC) 5.8.2 ADC Data Register One 8-bit result register, ADC data register (ADR), is provided. This register is updated each time an ADC conversion completes. Address: Read: $003D Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 5-3. ADC Data Register (ADR) 5.8.3 ADC Clock Register The ADC clock register (ADCLK) selects the clock frequency for the ADC. Address: $003E Bit 7 6 5 4 ADIV2 ADIV1 ADIV0 ADICLK 0 0 0 0 Read: 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 5-4. ADC Clock Register (ADCLK) ADIV2–ADIV0 — ADC Clock Prescaler Bits ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 5-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. Technical Data 98 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) I/O Registers Table 5-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 ADC input clock ÷ 1 0 0 1 ADC input clock ÷ 2 0 1 0 ADC input clock ÷ 4 0 1 1 ADC input clock ÷ 8 1 X(1) X(1) ADC input clock ÷ 16 1. X = Don’t care ADICLK — ADC Input Clock Select Bit ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK) as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. 1 = Internal bus clock 0 = Oscillator outputclock (CGMXCLK) The ADC requires a clock rate of approximately 1 MHz for correct operation. If the selected clock source is not fast enough, the ADC will generate incorrect conversions. See 23.16 ADC Characteristics. fADIC = fCGMXCLK or bus frequency ADIV[2:0] MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Analog-to-Digital Converter (ADC) ≅ 1 MHz Technical Data 99 Analog-to-Digital Converter (ADC) Technical Data 100 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Analog-to-Digital Converter (ADC) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 6. Break Module (BRK) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 104 6.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .104 6.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 104 6.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .104 6.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 6.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 6.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .105 6.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2 Introduction This section describes the break module (BRK). The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Break Module (BRK) Technical Data 101 Break Module (BRK) 6.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break interrupt • Central processor unit (CPU) generated break interrupts • Software-generated break interrupts • Computer operating properly (COP) disabling during break interrupts 6.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: • A CPU generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation. Figure 6-1 shows the structure of the break module. Technical Data 102 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Break Module (BRK) MOTOROLA Break Module (BRK) Functional Description IAB15–IAB8 BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15–IAB0 BREAK CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB7–IAB0 Figure 6-1. Break Module Block Diagram Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: SIM Break Status Register $FE00 (SBSR) Write: See page 107. Reset: 0 0 0 1 0 0 SBSW 0 R R R R R R NOTE R 0 0 0 1 0 0 0 0 BCFE R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 = Unimplemented R Note: Writing a logic 0 clear SBSW. $FE03 $FE09 $FE0A Read: SIM Break Flag Control Register (SBFCR) Write: See page 108. Reset: Read: Break Address Register High (BRKH) Write: See page 106. Reset: Read: Break Address Register Low (BRKL) Write: See page 106. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 105. Reset: 0 = Reserved Figure 6-2. I/O Register Summary MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Break Module (BRK) Technical Data 103 Break Module (BRK) 6.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. 6.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 6.4.3 TIM1 and TIM2 During Break Interrupts A break interrupt stops the timer counters. 6.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin. 6.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 6.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. See Section 3. Low-Power Modes. Clear the SBSW bit by writing logic 0 to it. Technical Data 104 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Break Module (BRK) MOTOROLA Break Module (BRK) Break Module Registers 6.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. 6.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • SIM break status register (SBSR) • SIM break flag control register (SBFCR) 6.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: $FE0B Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 6-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Break Module (BRK) Technical Data 105 Break Module (BRK) BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match 6.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE09 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 6-4. Break Address Register High (BRKH) Address: $FE0A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 6-5. Break Address Register Low (BRKL) Technical Data 106 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Break Module (BRK) MOTOROLA Break Module (BRK) Break Module Registers 6.6.3 Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop or wait mode. The flag is useful in applications requiring a return to stop or wait mode after exiting from a break interrupt. Address: $FE00 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 1 0 0 SBSW 0 Write: R R R R R R NOTE R Reset: 0 0 0 1 0 0 0 0 Note: Writing a logic 0 clears SBSW. R = Reserved Figure 6-6. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This read/write bit is set when a break interrupt causes an exit from stop or wait mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Break interrupt during stop/wait mode 0 = No break interrupt during stop/wait mode SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example. This code works if the H register was stacked in the break interrupt routine. Execute this code at the end of the break interrupt routine. HIBYTE LOBYTE ; DOLO RETURN EQU EQU If not BRCLR 5 6 SBSW, do RTI SBSW,BSR, RETURN TST BNE DEC DEC PULH RTI LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Break Module (BRK) ; ; ; ; ; ; ; See if wait mode or stop mode was exited by break. If RETURNLO is not 0, then just decrement low byte. Else deal with high byte also. Point to WAIT/STOP opcode. Restore H register. Technical Data 107 Break Module (BRK) 6.6.4 Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 6-7. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 108 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Break Module (BRK) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 7. Internal Clock Generator (ICG) Module 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 117 7.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .118 7.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 120 7.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 121 7.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .122 7.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.4.5.1 Clock Selection Switches . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.3 Using Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . 127 7.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 128 7.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 129 7.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 130 7.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 130 7.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 130 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 109 Internal Clock Generator (ICG) Module 7.5.5 7.5.6 7.5.6.1 7.5.6.2 7.5.6.3 7.5.7 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 131 Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 132 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 132 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 133 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Trimming Frequency on the Internal Clock Generator . . . . 134 7.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 7.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 7.7 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.7.1 External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . . 136 7.7.2 External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . . 137 7.7.3 Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . . 137 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . . 138 7.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 7.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 Introduction The internal clock generator module (ICG) is used to create a stable clock source for the microcontroller without using any external components. The ICG generates the oscillator output clock (CGMXCLK), which is used by the low-voltage inhibit (LVI) and other modules. The ICG also generates the clock generator output (CGMOUT), which is fed to the system integration module (SIM) to create the bus clocks. The bus frequency will be one-fourth the frequency of CGMXCLK and one-half the frequency of CGMOUT. Finally, the ICG generates the timebase clock (TBMCLK), which is used in the timebase module (TBM) and the computer operating properly (COP) clock (COPCLK) which is used by the COP module. Technical Data 110 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Features 7.3 Features The ICG has these features: NOTE: • Selectable external clock generator, either 1-pin external source or 2-pin crystal, multiplexed with port pins • Internal clock generator with programmable frequency output in integer multiples of a nominal frequency (307.2 kHz ± 25 percent) • Frequency adjust (trim) register to improve variability to ±4 percent • Bus clock software selectable from either internal or external clock (bus frequency range from 76.8 kHz ± 25 percent to 9.75 MHz ± 25 percent in 76.8-kHz increments Do not exceed the maximum bus frequency of 8 MHz at 5.0 V and 4 MHz at 3.0 V. • Timebase clock automatically selected from external if external clock is available • Clock monitor for both internal and external clocks 7.4 Functional Description The ICG, shown in Figure 7-1, contains these major submodules: • Clock enable circuit • Internal clock generator • External clock generator • Clock monitor circuit • Clock selection circuit MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 111 Internal Clock Generator (ICG) Module CS CGMOUT RESET CGMXCLK CLOCK SELECTION CIRCUIT TBMCLK COPCLK IOFF EOFF CMON ECGS ICGS CLOCK MONITOR CIRCUIT FICGS DDIV[3:0] INTERNAL CLOCK GENERATOR N[6:0} DSTG[7:0] TRIM[7:0] ICLK IBASE ICGEN SIMOSCEN CLOCK/PIN ENABLE CIRCUIT OSCENINSTOP EXTCLKEN ECGON ICGON ECGEN EXTXTALEN EXTERNAL CLOCK GENERATOR EXTSLOW INTERNAL TO MCU ECLK PTE3 LOGIC PTE4 LOGIC OSC1 PTE4 OSC2 PTE3 EXTERNAL NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-1. ICG Module Block Diagram Technical Data 112 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.1 Clock Enable Circuit The clock enable circuit is used to enable the internal clock (ICLK) or external clock (ECLK) and the port logic which is shared with the oscillator pins (OSC1 and OSC2). The clock enable circuit generates an ICG stop (ICGSTOP) signal which stops all clocks (ICLK, ECLK, and the low-frequency base clock, IBASE). ICGSTOP is set and the ICG is disabled in stop mode if the oscillator enable stop bit (OSCENINSTOP) in the CONFIG2 register is clear. The ICG clocks will be enabled in stop mode if OSCENINSTOP is high. The internal clock enable signal (ICGEN) turns on the internal clock generator which generates ICLK. ICGEN is set (active) whenever the ICGON bit is set and the ICGSTOP signal is clear. When ICGEN is clear, ICLK and IBASE are both low. The external clock enable signal (ECGEN) turns on the external clock generator which generates ECLK. ECGEN is set (active) whenever the ECGON bit is set and the ICGSTOP signal is clear. ECGON cannot be set unless the external clock enable (EXTCLKEN) bit in the CONFIG2 register is set. when ECGEN is clear, ECLK is low. The port E4 enable signal (PE4EN) turns on the port E4 logic. Since port E4 is on the same pin as OSC1, this signal is only active (set) when the external clock function is not desired. Therefore, PE4EN is clear when ECGON is set. PE4EN is not gated with ICGSTOP, which means that if the ECGON bit is set, the port E4 logic will remain disabled in stop mode. The port E3 enable signal (PE3EN) turns on the port E3 logic. Since port E3 is on the same pin as OSC2, this signal is only active (set) when 2-pin oscillator function is not desired. Therefore, PE3EN is clear when ECGON and the external crystal enable (EXTXTALEN) bit in the CONFIG2 register are both set. PE3EN is not gated with ICGSTOP, which means that if ECGON and EXTXTALEN are set, the port E3 logic will remain disabled in stop mode. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 113 Internal Clock Generator (ICG) Module 7.4.2 Internal Clock Generator The internal clock generator, shown in Figure 7-2, creates a low frequency base clock (IBASE), which operates at a nominal frequency (fNOM) of 307.2 kHz ± 25 percent, and an internal clock (ICLK) which is an integer multiple of IBASE. This multiple is the ICG multiplier factor (N), which is programmed in the ICG multiplier register (ICGMR). The internal clock generator is turned off and the output clocks (IBASE and ICLK) are held low when the internal clock generator enable signal (ICGEN) is clear. The internal clock generator contains: • A digitally controlled oscillator • A modulo N divider • A frequency comparator, which contains voltage and current references, a frequency to voltage converter, and comparators • A digital loop filter ICGEN VOLTAGE AND CURRENT REFERENCES FICGS ++ DSTG[7:0] + DDIV[3:0] DIGITAL LOOP FILTER DIGITALLY CONTROLLED OSCILLATOR – ICLK –– TRIM[7:0] FREQUENCY COMPARATOR CLOCK GENERATOR N[6:0] MODULO N DIVIDER IBASE NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-2. Internal Clock Generator Block Diagram Technical Data 114 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.2.1 Digitally Controlled Oscillator The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK). The clock period of ICLK is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of only a limited number of bits in DDIV and DSTG, the precision of the output (ICLK) is restricted to a precision of approximately ±0.202 percent to ±0.368 percent when measured over several cycles (of the desired frequency). Additionally, since the propagation delays of the devices used in the DCO ring oscillator are a measurable fraction of the bus clock period, reaching the long-term precision may require alternately running faster and slower than desired, making the worst case cycle-to-cycle frequency variation ±6.45 percent to ±11.8 percent (of the desired frequency). The valid values of DDIV:DSTG range from $000 to $9FF. For more information on the quantization error in the DCO, see 7.5.4 Quantization Error in DCO Output. 7.4.2.2 Modulo N Divider The modulo N divider creates the low-frequency base clock (IBASE) by dividing the internal clock (ICLK) by the ICG multiplier factor (N), contained in the ICG multiplier register (ICGMR). When N is programmed to a $01 or $00, the divider is disabled and ICLK is passed through to IBASE undivided. When the internal clock generator is stable, the frequency of IBASE will be equal to the nominal frequency (fNOM) of 307.2 kHz ± 25 percent. 7.4.2.3 Frequency Comparator The frequency comparator effectively compares the low-frequency base clock (IBASE) to a nominal frequency, fNOM. First, the frequency comparator converts IBASE to a voltage by charging a known capacitor with a current reference for a period dependent on IBASE. This voltage is compared to a voltage reference with comparators, whose outputs are fed to the digital loop filter. The dependence of these outputs on the capacitor size, current reference, and voltage reference causes up to ±25 percent error in fNOM. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 115 Internal Clock Generator (ICG) Module 7.4.2.4 Digital Loop Filter The digital loop filter (DLF) uses the outputs of the frequency comparator to adjust the internal clock (ICLK) clock period. The DLF generates the DCO divider control bits (DDIV[3:0]) and the DCO stage control bits (DSTG[7:0]), which are fed to the DCO. The DLF first concatenates the DDIV and DSTG registers (DDIV[3:0]:DSTG[7:0]) and then adds or subtracts a value dependent on the relative error in the low-frequency base clock’s period, as shown in Table 7-1. In some extreme error conditions, such as operating at a VDD level which is out of specification, the DLF may attempt to use a value above the maximum ($9FF) or below the minimum ($000). In both cases, the value for DDIV will be between $A and $F. In this range, the DDIV value will be interpreted the same as $9 (the slowest condition). Recovering from this condition requires subtracting (increasing frequency) in the normal fashion until the value is again below $9FF. (If the desired value is $9xx, the value may settle at $Axx through $Fxx. This is an acceptable operating condition.) If the error is less than ±5 percent, the internal clock generator’s filter stable indicator (FICGS) is set, indicating relative frequency accuracy to the clock monitor. Table 7-1. Correction Sizes from DLF to DCO Frequency Error of IBASE Compared to fNOM DDVI[3:0]:DSTG[7:0] Correction IBASE < 0.85 fNOM –32 (–$020) 0.85 fNOM < IBASE IBASE < 0.95 fNOM –8 (–$008) 0.95 fNOM < IBASE IBASE < fNOM –1 (–$001) fNOM < IBASE IBASE < 1.05 fNOM +1 (+$001) 1.05 fNOM < IBASE IBASE < 1.15 fNOM +8 (+$008) 1.15 fNOM < IBASE +32 (+$020) Current to New DDIV[3:0]:DSTG[7:0](1) Relative Correction in DCO Minimum $xFF to $xDF –2/31 –6.45% Maximum $x20 to $x00 –2/19 –10.5% Minimum $xFF to $xF7 –0.5/31 –1.61% Maximum $x08 to $x00 –0.5/17.5 –2.86% Minimum $xFF to $xFE –0.0625/31 –0.202% Maximum $x01 to $x00 –0.0625/17.0625 –0.366% Minimum $xFE to $xFF +0.0625/30.9375 +0.202% Maximum $x00 to $x01 +0.0625/17 +0.368% Minimum $xF7 to $xFF +0.5/30.5 +1.64% Maximum $x00 to $x08 +0.5/17 +2.94% Minimum $xDF to $xFF +2/29 +6.90% Maximum $x00 to $x20 +2/17 +11.8% 1. x = Maximum error is independent of value in DDIV[3:0]. DDIV increments or decrements when an addition to DSTG[7:0] carries or borrows. Technical Data 116 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.3 External Clock Generator The ICG also provides for an external oscillator or external clock source, if desired. The external clock generator, shown in Figure 7-3, contains an external oscillator amplifier and an external clock input path. ECGEN ECLK INPUT PATH EXTXTALEN AMPLIFIER EXTERNAL CLOCK GENERATOR EXTSLOW INTERNAL TO MCU OSC1 PTE4 OSC2 PTE3 EXTERNAL NAME NAME RB RS CONFIG2 BIT X1 TOP LEVEL SIGNAL NAME REGISTER BIT NAME MODULE SIGNAL C1 *RS can be 0 (shorted) when used with higherfrequency crystals. Refer to manufacturer’s data. C2 These components are required for external crystal use only. Figure 7-3. External Clock Generator Block Diagram 7.4.3.1 External Oscillator Amplifier The external oscillator amplifier provides the gain required by an external crystal connected in a Pierce oscillator configuration. The amount of this gain is controlled by the slow external (EXTSLOW) bit in the CONFIG2 register. When EXTSLOW is set, the amplifier gain is reduced for operating low-frequency crystals (32 kHz to 100 kHz). When EXTSLOW is clear, the amplifier gain will be sufficient for 1-MHz to 8MHz crystals. EXTSLOW must be configured correctly for the given crystal or the circuit may not operate. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 117 Internal Clock Generator (ICG) Module The amplifier is enabled when the external clock generator enable (ECGEN) signal is set and when the external crystal enable (EXTXTALEN) bit in the CONFIG2 register is set. ECGEN is controlled by the clock enable circuit (see 7.4.1 Clock Enable Circuit) and indicates that the external clock function is desired. When enabled, the amplifier will be connected between the PTE4/OSC1 and PTE3/OSC2 pins. Otherwise, the PTE3/OSC2 pin reverts to its port function. In its typical configuration, the external oscillator requires five external components: 1. Crystal, X1 2. Fixed capacitor, C1 3. Tuning capacitor, C2 (can also be a fixed capacitor) 4. Feedback resistor, RB 5. Series resistor, RS (Included in Figure 7-3 to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information.) 7.4.3.2 External Clock Input Path The external clock input path is the means by which the microcontroller uses an external clock source. The input to the path is the PTE4/OSC1 pin and the output is the external clock (ECLK). The path, which contains input buffering, is enabled when the external clock generator enable signal (ECGEN) is set. When not enabled, the PTE4/OSC1 pin reverts to its port function. Technical Data 118 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.4 Clock Monitor Circuit The ICG contains a clock monitor circuit which, when enabled, will continuously monitor both the external clock (ECLK) and the internal clock (ICLK) to determine if either clock source has been corrupted. The clock monitor circuit, shown in Figure 7-4, contains these blocks: • Clock monitor reference generator • Internal clock activity detector • External clock activity detector IOFF IOFF EREF ICGS ICGS IBASE EREF CMON CMON FICGS FICGS IBASE IBASE ICGEN ICGEN ICLK ACTIVITY DETECTOR ICGON EXTXTALEN EXTXTALEN EXTSLOW EXTSLOW REFERENCE GENERATOR ECGS ESTBCLK ECLK ECGEN IREF ESTBCLK ECGS ECGS IREF ECGEN ECGEN ECLK ECLK ECLK ACTIVITY DETECTOR CMON EOFF EOFF NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-4. Clock Monitor Block Diagram MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 119 Internal Clock Generator (ICG) Module 7.4.4.1 Clock Monitor Reference Generator The clock monitor uses a reference based on one clock source to monitor the other clock source. The clock monitor reference generator generates the external reference clock (EREF) based on the external clock (ECLK) and the internal reference clock (IREF) based on the internal clock (ICLK). To simplify the circuit, the low-frequency base clock (IBASE) is used in place of ICLK because it always operates at or near 307.2 kHz. For proper operation, EREF must be at least twice as slow as IBASE and IREF must be at least twice as slow as ECLK. To guarantee that IREF is slower than ECLK and EREF is slower than IBASE, one of the signals is divided down. Which signal is divided and by how much is determined by the external slow (EXTSLOW) and external crystal enable (EXTXTALEN) bits in the CONFIG2 register, according to the rules in Table 7-2. NOTE: Each signal (IBASE and ECLK) is always divided by four. A longer divider is used on either IBASE or ECLK based on the EXTSLOW bit. To conserve size, the long divider (divide by 4096) is also used as an external crystal stabilization divider. The divider is reset when the external clock generator is turned off or in stop mode (ECGEN is clear). When the external clock generator is first turned on, the external clock generator stable bit (ECGS) will be clear. This condition automatically selects ECLK as the input to the long divider. The external stabilization clock (ESTBCLK) will be ECLK divided by 16 when EXTXTALEN is low or 4096 when EXTXTALEN is high. This timeout allows the crystal to stabilize. The falling edge of ESTBCLK is used to set ECGS, which will set after a full 16 or 4096 cycles. When ECGS is set, the divider returns to its normal function. ESTBCLK may be generated by either IBASE or ECLK, but any clocking will only reinforce the set condition. If ECGS is cleared because the clock monitor determined that ECLK was inactive, the divider will revert to a stabilization divider. Since this will change the EREF and IREF divide ratios, it is important to turn the clock monitor off (CMON = 0) after inactivity is detected to ensure valid recovery. Technical Data 120 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.4.2 Internal Clock Activity Detector The internal clock activity detector, shown in Figure 7-5, looks for at least one falling edge on the low-frequency base clock (IBASE) every time the external reference (EREF) is low. Since EREF is less than half the frequency of IBASE, this should occur every time. If it does not occur two consecutive times, the internal clock inactivity indicator (IOFF) is set. IOFF will be cleared the next time there is a falling edge of IBASE while EREF is low. The internal clock stable bit (ICGS) is also generated in the internal clock activity detector. ICGS is set when the internal clock generator’s filter stable signal (FICGS) indicates that IBASE is within about 5 percent of the target 307.2 kHz ± 25 percent for two consecutive measurements. ICGS is cleared when FICGS is clear, the internal clock generator is turned off or is in stop mode (ICGEN is clear), or when IOFF is set. CMON CK EREF IOFF Q 1/4 R R R D D DFFRS IBASE CK Q S R Q DFFRR CK D Q ICGS DFFRR CK R R DLF MEASURE OUTPUT CLOCK ICGEN FICGS NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-5. Internal Clock Activity Detector MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 121 Internal Clock Generator (ICG) Module 7.4.4.3 External Clock Activity Detector The external clock activity detector, shown in Figure 7-6, looks for at least one falling edge on the external clock (ECLK) every time the internal reference (IREF) is low. Since IREF is less than half the frequency of ECLK, this should occur every time. If it does not occur two consecutive times, the external clock inactivity indicator (EOFF) is set. EOFF will be cleared the next time there is a falling edge of ECLK while IREF is low. The external clock stable bit (ECGS) is also generated in the external clock activity detector. ECGS is set on a falling edge of the external stabilization clock (ESTBCLK). This will be 4096 ECLK cycles after the external clock generator on bit is set, or the MCU exits stop mode (ECGEN = 1) if the external crystal enable (EXTXTALEN) in the CONFIG2 register is set, or 16 cycles when EXTXTALEN is clear. ECGS is cleared when the external clock generator is turned off or in stop mode (ECGEN is clear) or when EOFF is set. CMON CK IREF EOFF Q 1/4 R R R D D DFFRR DFFRS ECLK CK CK Q S Q EGGS R ESTBCLK ECGEN NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-6. External Clock Activity Detector Technical Data 122 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Functional Description 7.4.5 Clock Selection Circuit The clock selection circuit, shown in Figure 7-7, contains two clock switches which generate the oscillator output clock (CGMXCLK) and the timebase clock (TBMCLK) from either the internal clock (ICLK) or the external clock (ECLK). The COP clock (COPCLK) is identical to TBMCLK. The clock selection circuit also contains a divide-by-two circuit which creates the clock generator output clock (CGMOUT), which generates the bus clocks. CS ICLK ICLK ECLK ECLK IOFF IOFF EOFF EOFF RESET VSS ECGON CGMXCLK OUTPUT SELECT SYNCHRONIZING CLOCK SWITCHER DIV2 CGMOUT FORCE_I FORCE_E TBMCLK OUTPUT SELECT COPCLK ICLK ECLK IOFF EOFF SYNCHRONIZING CLOCK SWITCHER FORCE_I FORCE_E NAME CONFIG2 REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-7. Clock Selection Circuit Block Diagram MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 123 Internal Clock Generator (ICG) Module 7.4.5.1 Clock Selection Switches The first switch creates the oscillator output clock (CGMXCLK) from either the internal clock (ICLK) or the external clock (ECLK), based on the clock select bit (CS; set selects ECLK, clear selects ICLK). When switching the CS bit, both ICLK and ECLK must be on (ICGON and ECGON set). The clock being switched to also must be stable (ICGS or ECGS set). The second switch creates the timebase clock (TBMCLK) and the COP clock (COPCLK) from ICLK or ECLK based on the external clock on bit. When ECGON is set, the switch automatically selects the external clock, regardless of the state of the ECGS bit. 7.4.5.2 Clock Switching Circuit To robustly switch between the internal clock (ICLK) and the external clock (ECLK), the switch assumes the clocks are completely asynchronous, so a synchronizing circuit is required to make the transition. When the select input (the clock select bit for the oscillator output clock switch or the external clock on bit for the timebase clock switch) is changed, the switch will continue to operate off the original clock for between one and two cycles as the select input is transitioned through one side of the synchronizer. Next, the output will be held low for between one and two cycles of the new clock as the select input transitions through the other side. Then the output starts switching at the new clock’s frequency. This transition guarantees that no glitches will be seen on the output even though the select input may change asynchronously to the clocks. The unpredictably of the transition period is a necessary result of the asynchronicity. The switch automatically selects ICLK during reset. When the clock monitor is on (CMON is set) and it determines one of the clock sources is inactive (as indicated by the IOFF or EOFF signals), the circuit is forced to select the active clock. There are no clocks for the inactive side of the synchronizer to properly operate, so that side is forced deselected. However, the active side will not be selected until one to two clock cycles after the IOFF or EOFF signal transitions. Technical Data 124 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Usage Notes 7.5 Usage Notes The ICG has several features which can provide protection to the microcontroller if properly used. Other features can greatly simplify usage of the ICG if certain techniques are employed. This section describes several possible ways to use the ICG and its features. These techniques are not the only ways to use the ICG and may not be optimum for all environments. In any case, these techniques should be used only as a template, and the user should modify them according to the application’s requirements. These notes include: • Switching clock sources • Enabling the clock monitor • Using clock monitor interrupts • Quantization error in digitally controlled oscillator (DCO) output • Switching internal clock frequencies • Nominal frequency settling time • Improving frequency settling time • Trimming frequency 7.5.1 Switching Clock Sources Switching from one clock source to another requires both clock sources to be enabled and stable. A simple flow requires: • Enable desired clock source • Wait for it to become stable • Switch clocks • Disable previous clock source The key point to remember in this flow is that the clock source cannot be switched (CS cannot be written) unless the desired clock is on and stable. A short assembly code example of how to employ this flow is MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 125 Internal Clock Generator (ICG) Module shown in Figure 7-8. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda #$13 loop ** ** sta icgcr cmpa bne icgcr loop ;Clock Switching Code Example ;This code switches from Internal to External clock ;Clock Monitor and interrupts are not enabled ;Mask for CS, ECGON, ECGS ; If switching from External to Internal, mask is $0C. ;Other code here, such as writing the COP, since ECGS may ; take some time to set ;Try to set CS, ECGON and clear ICGON. ICGON will not ; clear until CS is set, and CS will not set until ; ECGON and ECGS are set. ;Check to see if ECGS set, then CS set, then ICGON clear ;Keep looping until ICGON is clear. Figure 7-8. Code Example for Switching Clock Sources 7.5.2 Enabling the Clock Monitor Many applications require the clock monitor to determine if one of the clock sources has become inactive, so the other can be used to recover from a potentially dangerous situation. Using the clock monitor requires both clocks to be active (ECGON and ICGON both set). To enable the clock monitor, both clocks also must be stable (ECGS and ICGS both set). This is to prevent the use of the clock monitor when a clock is first turned on and potentially unstable. Enabling the clock monitor and clock monitor interrupts requires a flow similar to this: Technical Data 126 • Enable the alternate clock source • Wait for both clock sources to be stable • Switch to the desired clock source if necessary • Enable the clock monitor • Enable clock monitor interrupts MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Usage Notes These events must happen in sequence. A short assembly code example of how to employ this flow is shown in Figure 7-9. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda loop ** sta brset cmpa bne ;Clock Monitor Enabling Code Example ;This code turns on both clocks, selects the desired ; one, then turns on the Clock Monitor and Interrupts #$AF ;Mask for CMIE, CMON, ICGON, ICGS, ECGON, ECGS ; If Internal Clock desired, mask is $AF ; If External Clock desired, mask is $BF ; If interrupts not desired mask is $2F int; $3F ext ** ;Other code here, such as writing the COP, since ECGS ; and ICGS may take some time to set. icgcr ;Try to set CMIE. CMIE wont set until CMON set; CMON ; won’t set until ICGON, ICGS, ECGON, ECGS set. 6,ICGCR,error ;Verify CMF is not set icgcr ;Check if ECGS set, then CMON set, then CMIE set loop ;Keep looping until CMIE is set. Figure 7-9. Code Example for Enabling the Clock Monitor 7.5.3 Using Clock Monitor Interrupts The clock monitor circuit can be used to recover from perilous situations such as crystal loss. To use the clock monitor effectively, these points should be observed: • Enable the clock monitor and clock monitor interrupts. • The first statement in the clock monitor interrupt service routine (CMISR) should be a read to the ICG control register (ICGCR) to verify that the clock monitor flag (CMF) is set. This is also the first step in clearing the CMF bit. • The second statement in the CMISR should be a write to the ICGCR to clear the CMF bit (write the bit low). Writing the bit high will not affect it. This statement does not need to immediately follow the first, but must be contained in the CMISR. • The third statement in the CMISR should be to clear the CMON bit. This is required to ensure proper reconfiguration of the reference dividers. This statement also must be contained in the CMISR. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 127 Internal Clock Generator (ICG) Module • Although the clock monitor can be enabled only when both clocks are stable (ICGS is set or ECGS is set), it will remain set if one of the clocks goes unstable. • The clock monitor only works if the external slow (EXTSLOW) bit in the CONFIG2 register is set to the correct value. • The internal and external clocks must both be enabled and running to use the clock monitor. • When the clock monitor detects inactivity, the inactive clock is automatically deselected and the active clock selected as the source for CGMXCLK and TBMCLK. The CMISR can use the state of the CS bit to check which clock is inactive. • When the clock monitor detects inactivity, the application may have been subjected to extreme conditions which may have affected other circuits. The CMISR should take any appropriate precautions. 7.5.4 Quantization Error in DCO Output The digitally controlled oscillator (DCO) is comprised of three major subblocks: 1. Binary weighted divider 2. Variable-delay ring oscillator 3. Ring oscillator fine-adjust circuit Each of these blocks affects the clock period of the internal clock (ICLK). Since these blocks are controlled by the digital loop filter (DLF) outputs DDIV and DSTG, the output of the DCO can change only in quantized steps as the DLF increments or decrements its output. The following sections describe how each block will affect the output frequency. Technical Data 128 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Usage Notes 7.5.4.1 Digitally Controlled Oscillator The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK), whose clock period is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of the digital nature of the DCO, the clock period of ICLK will change in quantized steps. This will create a clock period difference or quantization error (Q-ERR) from one cycle to the next. Over several cycles or for longer periods, this error is divided out until it reaches a minimum error of 0.202 percent to 0.368 percent. The dependence of this error on the DDIV[3:0] value and the number of cycles the error is measured over is shown in Table 7-2. Table 7-2. Quantization Error in ICLK DDIV[3:0] ICLK Cycles Bus Cycles τICLK Q-ERR %0000 (min) 1 NA 6.45%–11.8% %0000 (min) 4 1 1.61%–2.94% %0000 (min) ≥ 32 ≥8 0.202%–0.368% %0001 1 NA 3.23%–5.88% %0001 4 1 0.806%–1.47% %0001 ≥ 16 ≥4 0.202%–0.368% %0010 1 NA 1.61%–2.94% %0010 4 1 0.403%–0.735% %0010 ≥8 ≥2 0.202%–0.368% %0011 1 NA 0.806%–1.47% %0011 ≥4 ≥1 0.202%–0.368% %0100 1 NA 0.403%–0.735% %0100 ≥2 ≥1 0.202%–0.368% %0101–%1001 (max) ≥1 ≥1 0.202%–0.368% MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 129 Internal Clock Generator (ICG) Module 7.5.4.2 Binary Weighted Divider The binary weighted divider divides the output of the ring oscillator by a power of two, specified by the DCO divider control bits (DDIV[3:0]). DDIV maximizes at %1001 (values of %1010 through %1111 are interpreted as %1001), which corresponds to a divide by 512. When DDIV is %0000, the ring oscillator’s output is divided by 1. Incrementing DDIV by one will double the period; decrementing DDIV will halve the period. The DLF cannot directly increment or decrement DDIV; DDIV is only incremented or decremented when an addition or subtraction to DSTG carries or borrows. 7.5.4.3 Variable-Delay Ring Oscillator The variable-delay ring oscillator’s period is adjustable from 17 to 31 stage delays, in increments of two, based on the upper three DCO stage control bits (DSTG[7:5]). A DSTG[7:5] of %000 corresponds to 17 stage delays; DSTG[7:5] of %111 corresponds to 31 stage delays. Adjusting the DSTG[5] bit has a 6.45 percent to 11.8 percent effect on the output frequency. This also corresponds to the size correction made when the frequency error is greater than ±15 percent. The value of the binary weighted divider does not affect the relative change in output clock period for a given change in DSTG[7:5]. 7.5.4.4 Ring Oscillator Fine-Adjust Circuit The ring oscillator fine-adjust circuit causes the ring oscillator to effectively operate at non-integer numbers of stage delays by operating at two different points for a variable number of cycles specified by the lower five DCO stage control bits (DSTG[4:0]). For example: Technical Data 130 • When DSTG[7:5] is %011, the ring oscillator nominally operates at 23 stage delays. • When DSTG[4:0] is %00000, the ring will always operate at 23 stage delays. • When DSTG[4:0] is %00001, the ring will operate at 25 stage delays for one of 32 cycles and at 23 stage delays for 31 of 32 cycles. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Usage Notes • Likewise, when DSTG[4:0] is %11111, the ring operates at 25 stage delays for 31 of 32 cycles and at 23 stage delays for one of 32 cycles. • When DSTG[7:5] is %111, similar results are achieved by including a variable divide-by-two, so the ring operates at 31 stages for some cycles and at 17 stage delays, with a divide-bytwo for an effective 34 stage delays, for the remainder of the cycles. Adjusting the DSTG[0] bit has a 0.202 percent to 0.368 percent effect on the output clock period. This corresponds to the minimum size correction made by the DLF, and the inherent, long-term quantization error in the output frequency. 7.5.5 Switching Internal Clock Frequencies The frequency of the internal clock (ICLK) may need to be changed for some applications. For example, if the reset condition does not provide the correct frequency, or if the clock is slowed down for a low-power mode (or sped up after a low-power mode), the frequency must be changed by programming the internal clock multiplier factor (N). The frequency of ICLK is N times the frequency of IBASE, which is 307.2 kHz ±25 percent. Before switching frequencies by changing the N value, the clock monitor must be disabled. This is because when N is changed, the frequency of the low-frequency base clock (IBASE) will change proportionally until the digital loop filter has corrected the error. Since the clock monitor uses IBASE, it could erroneously detect an inactive clock. The clock monitor cannot be re-enabled until the internal clock is stable again (ICGS is set). The following flow is an example of how to change the clock frequency: • Verify there is no clock monitor interrupt by reading the CMF bit. • Turn off the clock monitor. • If desired, switch to the external clock (see 7.5.1 Switching Clock Sources). • Change the value of N. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 131 Internal Clock Generator (ICG) Module • Switch back to internal (see 7.5.1 Switching Clock Sources), if desired. • Turn on the clock monitor (see 7.5.2 Enabling the Clock Monitor), if desired. 7.5.6 Nominal Frequency Settling Time Because the clock period of the internal clock (ICLK) is dependent on the digital loop filter outputs (DDIV and DSTG) which cannot change instantaneously, ICLK temporarily will operate at an incorrect clock period when any operating condition changes. This happens whenever the part is reset, the ICG multiply factor (N) is changed, the ICG trim factor (TRIM) is changed, or the internal clock is enabled after inactivity (stop mode or disabled operation). The time that the ICLK takes to adjust to the correct period is known as the settling time. Settling time depends primarily on how many corrections it takes to change the clock period and the period of each correction. Since the corrections require four periods of the low-frequency base clock (4*τIBASE), and since ICLK is N (the ICG multiply factor for the desired frequency) times faster than IBASE, each correction takes 4*N*τICLK. The period of ICLK, however, will vary as the corrections occur. 7.5.6.1 Settling to Within 15 Percent When the error is greater than 15 percent, the filter takes eight corrections to double or halve the clock period. Due to how the DCO increases or decreases the clock period, the total period of these eight corrections is approximately 11 times the period of the fastest correction. (If the corrections were perfectly linear, the total period would be 11.5 times the minimum period; however, the ring must be slightly nonlinear.) Therefore, the total time it takes to double or halve the clock period is 44*N*τICLKFAST. If the clock period needs more than doubled or halved, the same relationship applies, only for each time the clock period needs doubled, the total number of cycles doubles. That is, when transitioning from fast to slow, going from the initial speed to half speed takes 44*N*τICLKFAST; Technical Data 132 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Usage Notes from half speed to quarter speed takes 88*N*τICLKFAST; going from quarter speed to eighth speed takes 176*N*τICLKFAST; and so on. This series can be expressed as (2x–1)*44*N*τICLKFAST, where x is the number of times the speed needs doubled or halved. Since 2x happens to be equal to τICLKSLOW/τICLKFAST, the equation reduces to 44*N*(τICLKSLOW–τICLKFAST). Note that increasing speed takes much longer than decreasing speed since N is higher. This can be expressed in terms of the initial clock period (τ1) minus the final clock period (τ2) as such: τ 15 = abs [ 44N ( τ 1 – τ2 ) ] 7.5.6.2 Settling to Within 5 Percent Once the clock period is within 15 percent of the desired clock period, the filter starts making smaller adjustments. When between 15 percent and 5 percent error, each correction will adjust the clock period between 1.61 percent and 2.94 percent. In this mode, a maximum of eight corrections will be required to get to less than 5 percent error. Since the clock period is relatively close to desired, each correction takes approximately the same period of time, or 4*τIBASE. At this point, the internal clock stable bit (ICGS) will be set and the clock frequency is usable, although the error will be as high as 5 percent. The total time to this point is: τ 5 = abs [ 44N ( τ 1 – τ 2 ) ] + 32 τ IBASE 7.5.6.3 Total Settling Time Once the clock period is within 5 percent of the desired clock period, the filter starts making minimum adjustments. In this mode, each correction will adjust the frequency between 0.202 percent and 0.368 percent. A maximum of 24 corrections will be required to get to the minimum error. Each correction takes approximately the same period of time, or 4*τIBASE. Added to the corrections for 15 percent to 5 percent, this MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 133 Internal Clock Generator (ICG) Module makes 32 corrections (128*τIBASE) to get from 15 percent to the minimum error. The total time to the minimum error is: τtot = abs [ 44N ( τ1 – τ 2 ) ] + 128 τ IBASE The equations for τ15, τ5, and τtot are dependent on the actual initial and final clock periods τ1 and τ2, not the nominal. This means the variability in the ICLK frequency due to process, temperature, and voltage must be considered. Additionally, other process factors and noise can affect the actual tolerances of the points at which the filter changes modes. This means a worst case adjustment of up to 35 percent (ICLK clock period tolerance plus 10 percent) must be added. This adjustment can be reduced with trimming. Table 7-3 shows some typical values for settling time. Table 7-3. Typical Settling Time Examples τ1 τ2 N τ15 τ5 τtot 1/ (6.45 MHz) 1/ (25.8 MHz) 84 430 µs 535 µs 850 µs 1/ (25.8 MHz) 1/ (6.45 MHz) 21 107 µs 212 µs 525 µs 1/ (25.8 MHz) 1/ (307.2 kHz) 1 141 µs 246 µs 560 µs 1/ (307.2 kHz) 1/ (25.8 MHz) 84 11.9 ms 12.0 ms 12.3 ms 7.5.7 Trimming Frequency on the Internal Clock Generator The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, will vary as much as ±25 percent due to process, temperature, and voltage dependencies. These dependencies are in the voltage and current references, the offset of the comparators, and the internal capacitor. The method of changing the unadjusted operating point is by changing the size of the capacitor. This capacitor is designed with 639 equally sized units. Of that number, 384 of these units are always connected. The remaining 255 units are put in by adjusting the ICG trim factor (TRIM). The default value for TRIM is $80, or 128 units, making the default capacitor size 512. Each unit added or removed will adjust the Technical Data 134 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Low-Power Modes output frequency by about ±0.195 percent of the unadjusted frequency (adding to TRIM will decrease frequency). Therefore, the frequency of IBASE can be changed to ±25 percent of its unadjusted value, which is enough to cancel the process variability mentioned before. The best way to trim the internal clock is to use the timer to measure the width of an input pulse on an input capture pin (this pulse must be supplied by the application and should be as long or wide as possible). Considering the prescale value of the timer and the theoretical (zero error) frequency of the bus (307.2 kHz *N/4), the error can be calculated. This error, expressed as a percentage, can be divided by 0.195 percent and the resultant factor added or subtracted from TRIM. This process should be repeated to eliminate any residual error. 7.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 7.6.1 Wait Mode The ICG remains active in wait mode. If enabled, the ICG interrupt to the CPU can bring the MCU out of wait mode. In some applications, low power-consumption is desired in wait mode and a high-frequency clock is not needed. In these applications, reduce power consumption by either selecting a low-frequency external clock and turn the internal clock generator off or reduce the bus frequency by minimizing the ICG multiplier factor (N) before executing the WAIT instruction. 7.6.2 Stop Mode The value of the oscillator enable in stop (OSCENINSTOP) bit in the CONFIG2 register determines the behavior of the ICG in stop mode. If OSCENINSTOP is low, the ICG is disabled in stop and, upon execution of the STOP instruction, all ICG activity will cease and the output clocks MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 135 Internal Clock Generator (ICG) Module (CGMXCLK, CGMOUT, COPCLK, and TBMCLK) will be held low. Power consumption will be minimal. If OSCENINSTOP is high, the ICG is enabled in stop and activity will continue. This is useful if the timebase module (TBM) is required to bring the MCU out of stop mode. ICG interrupts will not bring the MCU out of stop mode in this case. During stop mode, if OSCENINSTOP is low, several functions in the ICG are affected. The stable bits (ECGS and ICGS) are cleared, which will enable the external clock stabilization divider upon recovery. The clock monitor is disabled (CMON = 0) which will also clear the clock monitor interrupt enable (CMIE) and clock monitor flag (CMF) bits. The CS, ICGON, ECGON, N, TRIM, DDIV, and DSTG bits are unaffected. 7.7 CONFIG2 Options Four CONFIG2 register options affect the functionality of the ICG. These options are: 1. EXTCLKEN, external clock enable 2. EXTXTALEN, external crystal enable 3. EXTSLOW, slow external clock 4. OSCENINSTOP, oscillator enable in stop All CONFIG2 options will have a default setting. Refer to Section 8. Configuration Register (CONFIG) on how the CONFIG2 register is used. 7.7.1 External Clock Enable (EXTCLKEN) External clock enable (EXTCLKEN), when set, enables the ECGON bit to be set. ECGON turns on the external clock input path through the PTE4/OSC1 pin. When EXTCLKEN is clear, ECGON cannot be set and PTE4/OSC1 will always perform the PTE4 function. The default state for this option is clear. Technical Data 136 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module CONFIG2 Options 7.7.2 External Crystal Enable (EXTXTALEN) External crystal enable (EXTXTALEN), when set, will enable an amplifier to drive the PTE3/OSC2 pin from the PTE4/OSC1 pin. The amplifier will drive only if the external clock enable (EXTCLKEN) bit and the ECGON bit are also set. If EXTCLKEN or ECGON are clear, PTE3/OSC2 will perform the PTE3 function. When EXTXTALEN is clear, PTE3/OSC2 will always perform the PTE3 function. EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the valid range of crystals (30 kHz to 100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock monitor will expect an external clock source in the valid range for externally generated clocks when using the clock monitor (60 Hz to 32 MHz). EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for a 4096 cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear, the stabilization divider is configured to 16 cycles since an external clock source does not need a startup time. The default state for this option is clear. 7.7.3 Slow External Clock (EXTSLOW) Slow external clock (EXTSLOW), when set, will decrease the drive strength of the oscillator amplifier, enabling low-frequency crystal operation (30 kHz–100 kHz) if properly enabled with the external clock enable (EXTCLKEN) and external crystal enable (EXTXTALEN) bits. When clear, EXTSLOW enables high-frequency crystal operation (1 MHz to 8 MHz). EXTSLOW, when set, also configures the clock monitor to expect an external clock source that is slower than the low-frequency base clock (60 Hz to 307.2 kHz). When EXTSLOW is clear, the clock monitor will expect an external clock faster than the low-frequency base clock (307.2 kHz to 32 MHz). The default state for this option is clear. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 137 Internal Clock Generator (ICG) Module 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) Oscillator enable in stop (OSCENINSTOP), when set, will enable the ICG to continue to generate clocks (either CGMXCLK, CGMOUT, COPCLK, or TBMCLK) in stop mode. This function is used to keep the timebase and COP running while the rest of the microcontroller stops. The clock monitor and autoswitching functions remain operative. When OSCENINSTOP is clear, all clock generation will cease and CGMXCLK, CGMOUT, COPCLK, and TBMCLK will be forced low during stop mode. The clock monitor and autoswitching functions become inoperative. The default state for this option is clear. 7.8 Input/Output (I/O) Registers The ICG contains five registers, summarized in Figure 7-10. These registers are: 1. ICG control register (ICGCR) 2. ICG multiplier register (ICGMR) 3. ICG trim register (ICGTR) 4. ICG DCO divider control register (ICGDVR) 5. ICG DCO stage control register (ICGDSR) Several of the bits in these registers have interaction where the state of one bit may force another bit to a particular state or prevent another bit from being set or cleared. A summary of this interaction is shown in Table 7-4. Technical Data 138 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Input/Output (I/O) Registers Addr. Register Name Bit 7 $0036 Read: ICG Control Register (ICGCR) Write: See page 141. Reset: 6 5 4 3 2 CMON CS ICGON 0 0 1 0 0 0 N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 DDIV3 DDIV2 DDIV1 DDIV0 CMF CMIE 1 ICGS Bit 0 ECGS ECGON 0* 0 0 *See 7.8.1 ICG Control Register for method of clearing the CMF bit. $0037 Read: ICG Multiply Register (ICGMR) Write: See page 143. Reset: Read: ICG Trim Register (ICGTR) Write: See page 144. Reset: $0038 Read: ICG Divider Control Register (ICGDVR) Write: See page 144. Reset: $0039 $003A 0 Read: DSTG7 ICG DCO Stage Control Register (ICGDSR) Write: R See page 145. Reset: U 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 R R R R R R R U U U U U U U = Unimplemented R = Reserved U = Unaffected Figure 7-10. ICG Module I/O Register Summary MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 139 Internal Clock Generator (ICG) Module Table 7-4. ICG Module Register Bit Interaction Summary CMIE CMF CMON CS ICGON ICGS ECGON ECGS N[6:0] TRIM[7:0] DDIV[3:0] DSTG[7:0] Register Bit Results for Given Condition Reset 0 0 0 0 1 0 0 0 $15 $80 — — OSCENINSTOP = 0, STOP = 1 0 0 0 — — 0 — 0 — — — — EXTCLKEN = 0 0 0 0 0 1 — 0 0 — — uw uw CMF = 1 — (1) 1 — 1 — 1 — uw uw uw uw CMON = 0 0 0 (0) — — — — — — — — — CMON = 1 — — (1) — 1 — 1 — uw uw uw uw CS = 0 — — — (0) 1 — — — — — uw uw CS = 1 — — — (1) — — 1 — — — — — ICGON = 0 0 0 0 1 (0) 0 1 — — — — — ICGON = 1 — — — — (1) — — — — — uw uw ICGS = 0 us — us uc — (0) — — — — — — ECGON = 0 0 0 0 0 1 — (0) 0 — — uw uw ECGS = 0 us — us us — — — (0) — — — — IOFF = 1 — 1* (1) 1 (1) 0 (1) — uw uw uw uw EOFF = 1 — 1* (1) 0 (1) — (1) 0 uw uw uw uw N = written (0) (0) (0) — — 0* — — — — — — TRIM = written (0) (0) (0) — — 0* — — — — — — Condition — 0, 1 0*, 1* (0), (1) us, uc, uw Technical Data 140 Register bit is unaffected by the given condition. Register bit is forced clear or set (respectively) in the given condition. Register bit is temporarily forced clear or set (respectively) in the given condition. Register bit must be clear or set (respectively) for the given condition to occur. Register bit cannot be set, cleared, or written (respectively) in the given condition. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Input/Output (I/O) Registers 7.8.1 ICG Control Register The ICG control register (ICGCR) contains the control and status bits for the internal clock generator, external clock generator, and clock monitor as well as the clock select and interrupt enable bits. Address: $0036 Bit 7 Read: 6 4 3 CMON CS ICGON 0 0 1 CMF CMIE Write: Reset: 5 2 1 ICGS Bit 0 ECGS ECGON 0* 0 0 0 0 0 *See CMF bit description for method of clearing CMF bit. = Unimplemented Figure 7-11. ICG Control Register (ICGCR) CMIE — Clock Monitor Interrupt Enable Bit This read/write bit enables clock monitor interrupts. An interrupt will occur when both CMIE and CMF are set. CMIE can be set when the CMON bit has been set for at least one cycle. CMIE is forced clear when CMON is clear or during reset. 1 = Clock monitor interrupts enabled 0 = Clock monitor interrupts disabled CMF — Clock Monitor Interrupt Flag This read-only bit is set when the clock monitor determines that either ICLK or ECLK becomes inactive and the CMON bit is set. This bit is cleared by first reading the bit while it is set, followed by writing the bit low. This bit is forced clear when CMON is clear or during reset. 1 = Either ICLK or ECLK has become inactive. 0 = ICLK and ECLK have not become inactive since the last read of the ICGCR, or the clock monitor is disabled. CMON — Clock Monitor On Bit This read/write bit enables the clock monitor. CMON can be set when both ICLK and ECLK have been on and stable for at least one bus cycle. (ICGON, ECGON, ICGS, and ECGS are all set.) CMON is MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 141 Internal Clock Generator (ICG) Module forced set when CMF is set, to avoid inadvertent clearing of CMF. CMON is forced clear when either ICGON or ECGON is clear, during stop mode with OSCENINSTOP low, or during reset. 1 = Clock monitor output enabled 0 = Clock monitor output disabled CS — Clock Select Bit This read/write bit determines which clock will generate the oscillator output clock (CGMXCLK). This bit can be set when ECGON and ECGS have been set for at least one bus cycle and can be cleared when ICGON and ICGS have been set for at least one bus cycle. This bit is forced set when the clock monitor determines the internal clock (ICLK) is inactive or when ICGON is clear. This bit is forced clear when the clock monitor determines that the external clock (ECLK) is inactive, when ECGON is clear, or during reset. 1 = External clock (ECLK) sources CGMXCLK 0 = Internal clock (ICLK) sources CGMXCLK ICGON — Internal Clock Generator On Bit This read/write bit enables the internal clock generator. ICGON can be cleared when the CS bit has been set and the CMON bit has been clear for at least one bus cycle. ICGON is forced set when the CMON bit is set, the CS bit is clear, or during reset. 1 = Internal clock generator enabled 0 = Internal clock generator disabled ICGS — Internal Clock Generator Stable Bit This read-only bit indicates when the internal clock generator has determined that the internal clock (ICLK) is within about 5 percent of the desired value. This bit is forced clear when the clock monitor determines the ICLK is inactive, when ICGON is clear, when the ICG multiplier register (ICGMR) is written, when the ICG TRIM register (ICGTR) is written, during stop mode with OSCENINSTOP low, or during reset. 1 = Internal clock is within 5 percent of the desired value. 0 = Internal clock may not be within 5 percent of the desired value. Technical Data 142 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Input/Output (I/O) Registers ECGON — External Clock Generator On Bit This read/write bit enables the external clock generator. ECGON can be cleared when the CS and CMON bits have been clear for at least one bus cycle. ECGON is forced set when the CMON bit or the CS bit is set. ECGON is forced clear during reset. 1 = External clock generator enabled 0 = External clock generator disabled ECGS — External Clock Generator Stable Bit This read-only bit indicates when at least 4096 external clock (ECLK) cycles have elapsed since the external clock generator was enabled. This is not an assurance of the stability of ECLK but is meant to provide a startup delay. This bit is forced clear when the clock monitor determines ECLK is inactive, when ECGON is clear, during stop mode with OSCENINSTOP low, or during reset. 1 = 4096 ECLK cycles have elapsed since ECGON was set. 0 = External clock is unstable, inactive, or disabled. 7.8.2 ICG Multiplier Register Address: $0037 Bit 7 6 5 4 3 2 1 Bit 0 N6 N5 N4 N3 N2 N1 N0 0 0 1 0 1 0 1 Read: Write: Reset: 0 = Unimplemented Figure 7-12. ICG Multiplier Register (ICGMR) N6:N0 — ICG Multiplier Factor Bits These read/write bits change the multiplier used by the internal clock generator. The internal clock (ICLK) will be: (307.2 kHz ± 25 percent) * N A value of $00 in this register is interpreted the same as a value of $01. This register cannot be written when the CMON bit is set. Reset sets this factor to $15 (decimal 21) for default frequency of 6.45 MHz ± 25 percent (1.613 MHz ± 25 percent bus). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 143 Internal Clock Generator (ICG) Module 7.8.3 ICG Trim Register Address: $0038 Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-13. ICG Trim Register (ICGTR) TRIM7:TRIM0 — ICG Trim Factor Bits These read/write bits change the size of the internal capacitor used by the internal clock generator. By testing the frequency of the internal clock and incrementing or decrementing this factor accordingly, the accuracy of the internal clock can be improved to ± 2 percent. Incrementing this register by one decreases the frequency by 0.195 percent of the unadjusted value. Decrementing this register by one increases the frequency by 0.195 percent. This register cannot be written when the CMON bit is set. Reset sets these bits to $80, centering the range of possible adjustment. 7.8.4 ICG DCO Divider Register Address: $0039 Bit 7 6 5 4 Read: 3 2 1 Bit 0 DDIV3 DDIV2 DDIV1 DDIV0 U U U U Write: Reset: 0 0 0 = Unimplemented 0 U = Unaffected Figure 7-14. ICG DCO Divider Control Register (ICGDVR) DDIV3:DDIV0 — ICG DCO Divider Control Bits These bits indicate the number of divide-by-twos (DDIV) that follow the digitally controlled oscillator. When ICGON is set, DDIV is controlled by the digital loop filter. The range of valid values for DDIV Technical Data 144 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Internal Clock Generator (ICG) Module Input/Output (I/O) Registers is from $0 to $9. Values of $A through $F are interpreted the same as $9. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. 7.8.5 ICG DCO Stage Register Address: $003A Bit 7 6 5 4 3 2 1 Bit 0 Read: DSTG7 DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 Write: R R R R R R R R Reset: U U U U U U U U R = Reserved U = Unaffected Figure 7-15. ICG DCO Stage Control Register (ICGDSR) DSTG7:DSTG0 — ICG DCO Stage Control Bits These bits indicate the number of stages (above the minimum) in the digitally controlled oscillator. The total number of stages is approximately equal to $1FF, so changing DSTG from $00 to $FF will approximately double the period. Incrementing DSTG will increase the period (decrease the frequency) by 0.202 percent to 0.368 percent (decrementing has the opposite effect). DSTG cannot be written when ICGON is set to prevent inadvertent frequency shifting. When ICGON is set, DSTG is controlled by the digital loop filter. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Internal Clock Generator (ICG) Module Technical Data 145 Internal Clock Generator (ICG) Module Technical Data 146 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Internal Clock Generator (ICG) Module MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 8. Configuration Register (CONFIG) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Introduction This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers enable or disable these options: • Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles) • COP timeout period (218 – 24 or 213 – 24 COPCLK cycles) • STOP instruction • Computer operating properly module (COP) • Low-voltage inhibit (LVI) module control and voltage trip point selection • Enable/disable the oscillator (OSC) during stop mode • External clock, external crystal, or ICG clock source 8.3 Functional Description The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU), it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F and may be read at anytime. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Configuration Register (CONFIG) Technical Data 147 Configuration Register (CONFIG) NOTE: On a FLASH device, the options except LVI5OR3 are one-time writable by the user after each reset. The LVI5OR3 bit is one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 8-1 and Figure 8-2. Address: Read: $001E Bit 7 6 5 4 3 2 1 Bit 0 0 0 EXTXTALEN EXTSLOW EXTCLKEN 0 OSCENINSTOP R 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Write: Reset: Figure 8-1. Configuration Register 2 (CONFIG2) Address: $001F Bit 7 Read: COPRS 6 5 4 3 LVISTOP LVIRSTD LVIPWRD LVI5OR3 2 1 Bit 0 SSREC STOP COPD 0 0 0 Write: Reset: 0 0 0 0 See Note Note: LVI5OR3 bit is only reset via POR (power-on reset) Figure 8-2. Configuration Register 1 (CONFIG1) EXTXTALEN — External Crystal Enable Bit EXTXTALEN enables the external oscillator circuits to be configured for a crystal configuration where the PTE4/OSC1 and PTE3/OSC2 pins are the connections for an external crystal. Clearing the EXTXTALEN bit (default setting) allows the PTE3/OSC2 pin to function as a general-purpose I/O pin. Refer to Table 8-1 for configuration options for the external source. See Section 7. Internal Clock Generator (ICG) Module for a more detailed description of the external clock operation. EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the valid range of crystals (30 kHz to 100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock Technical Data 148 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Configuration Register (CONFIG) MOTOROLA Configuration Register (CONFIG) Functional Description monitor will expect an external clock source in the valid range for externally generated clocks when using the clock monitor (60 Hz to 32 MHz). EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for a 4096-cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear, the stabilization divider is configured to 16 cycles since an external clock source does not need a startup time. 1 = Allows PTE3/OSC2 to be an external crystal connection. 0 = PTE3/OSC2 functions as an I/O port pin (default). EXTSLOW — Slow External Crystal Enable Bit The EXTSLOW bit has two functions. It configures the ICG module for a fast (1 MHz to 8 MHz) or slow (30 kHz to 100 kHz) speed crystal. The option also configures the clock monitor operation in the ICG module to expect an external frequency higher (307.2 kHz to 32 MHz) or lower (60 Hz to 307.2 kHz) than the base frequency of the internal oscillator. See Section 7. Internal Clock Generator (ICG) Module. 1 = ICG set for slow external crystal operation 0 = ICG set for fast external crystal operation 127( This bit does not function without setting the EXTCLKEN bit also. EXTCLKEN — External Clock Enable Bit EXTCLKEN enables an external clock source or crystal/ceramic resonator to be used as a clock input. Setting this bit enables PTE4/OSC1 pin to be a clock input pin. Clearing this bit (default setting) allows the PTE4/OSC1 and PTE3/OSC2 pins to function as a general-purpose input/output (I/O) pin. Refer to Table 8-1 for configuration options for the external source. See Section 7. Internal Clock Generator (ICG) Module for a more detailed description of the external clock operation. 1 = Allows PTE4/OSC1 to be an external clock connection 0 = PTE4/OSC1 and PTE3/OSC2 function as I/O port pins (default). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Configuration Register (CONFIG) Technical Data 149 Configuration Register (CONFIG) Table 8-1. External Clock Option Settings External Clock Configuration Bits Pin Function Description EXTCLKEN EXTXTALEN PTE4/OSC1 PTE3/OSC2 0 0 PTE4 PTE3 Default setting — external oscillator disabled 0 1 PTE4 PTE3 External oscillator disabled since EXTCLKEN not set 1 0 OSC1 PTE3 External oscillator configured for an external clock source input (square wave) on OSC1 OSC2 External oscillator configured for an external crystal configuration on OSC1 and OSC2. System will also operate with square-wave clock source in OSC1. 1 1 OSC1 OSCENINSTOP — Oscillator Enable In Stop Mode Bit OSCENINSTOP, when set, will enable the internal clock generator module to continue to generate clocks (either internal, ICLK, or external, ECLK) in stop mode. See Section 7. Internal Clock Generator (ICG) Module. This function is used to keep the timebase running while the rest of the microcontroller stops. See Section 21. Timebase Module (TBM). When clear, all clock generation will cease and both ICLK and ECLK will be forced low during stop mode. The default state for this option is clear, disabling the ICG in stop mode. 1 = Oscillator enabled to operate during stop mode 0 = Oscillator disabled during stop mode (default) NOTE: This bit has the same functionality as the OSCSTOPENB CONFIG bit in MC68HC908GP32 and MC68HC908GR8 parts. COPRS — COP Rate Select Bit COPD selects the COP timeout period. Reset clears COPRS. See Section 9. Computer Operating Properly (COP) Module 1 = COP timeout period = 213 – 24 COPCLK cycles 0 = COP timeout period = 218 – 24 COPCLK cycles Technical Data 150 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Configuration Register (CONFIG) MOTOROLA Configuration Register (CONFIG) Functional Description LVISTOP — LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRSTD — LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. See Section 14. Low-Voltage Inhibit (LVI). 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD — LVI Power Disable Bit LVIPWRD disables the LVI module. See Section 14. Low-Voltage Inhibit (LVI). 1 = LVI module power disabled 0 = LVI module power enabled LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. See Section 14. Low-Voltage Inhibit (LVI) The voltage mode selected for the LVI should match the operating VDD. See Section 23. Electrical Specifications for the LVI’s voltage trip points for each of the modes. 1 = LVI operates in 5-V mode. 0 = LVI operates in 3-V mode. NOTE: The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected. SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. 1 = Stop mode recovery after 32 CGMXCLK cycles 0 = Stop mode recovery after 4096 CGMXCLCK cycles NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Configuration Register (CONFIG) Technical Data 151 Configuration Register (CONFIG) If the system clock source selected is the internal oscillator or the external crystal and the OSCENINSTOP configuration bit is not set, the oscillator will be disabled during stop mode. The short stop recovery does not provide enough time for oscillator stabilization and thus the SSREC bit should not be set. When using the LVI during normal operation but disabling during stop mode, the LVI will have an enable time of ten. The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32-CGMXCLK delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU. STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. See Section 9. Computer Operating Properly (COP) Module. 1 = COP module disabled 0 = COP module enabled Technical Data 152 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Configuration Register (CONFIG) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 9. Computer Operating Properly (COP) Module 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.4.1 COPCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 9.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 9.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 156 9.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 9.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 9.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 9.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 158 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Computer Operating Properly (COP) Module Technical Data 153 Computer Operating Properly (COP) Module 9.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register. 9.3 Functional Description Figure 9-1 shows the structure of the COP module. RESET STATUS REGISTER COP TIMEOUT CLEAR STAGES 5–12 STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH RESET CIRCUIT 12-BIT COP PRESCALER CLEAR ALL STAGES COPCLK COPCTL WRITE COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (FROM CONFIG) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (FROM CONFIG) Figure 9-1. COP Block Diagram Technical Data 154 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Computer Operating Properly (COP) Module MOTOROLA Computer Operating Properly (COP) Module I/O Signals The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 COPCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. With a 213 – 24 COPCLK cycle overflow option, a 32.768-kHz crystal gives a COP timeout period of 250 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler. NOTE: Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls the RST pin low for 32 COPCLK cycles and sets the COP bit in the reset status register (RSR). In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at VTST. During the break state, VTST on the RST pin disables the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 9.4 I/O Signals The following paragraphs describe the signals shown in Figure 9-1. 9.4.1 COPCLK COPCLK is a clock generated by the clock selection circuit in the internal clock generator (ICG). See 7.4.5 Clock Selection Circuit for more details. 9.4.2 STOP Instruction The STOP instruction clears the COP prescaler. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Computer Operating Properly (COP) Module Technical Data 155 Computer Operating Properly (COP) Module 9.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 9.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. 9.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up. 9.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 9.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 9.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See Section 8. Configuration Register (CONFIG). 9.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See Section 8. Configuration Register (CONFIG). Technical Data 156 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Computer Operating Properly (COP) Module MOTOROLA Computer Operating Properly (COP) Module COP Control Register 9.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 9-2. COP Control Register (COPCTL) 9.6 Interrupts The COP does not generate central processor unit (CPU) interrupt requests. 9.7 Monitor Mode When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as long as VTST remains on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ pin, the COP is automatically disabled until a POR occurs. 9.8 Low-Power Modes The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Computer Operating Properly (COP) Module Technical Data 157 Computer Operating Properly (COP) Module 9.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. 9.8.2 Stop Mode Stop mode turns off the COPCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset. 9.9 COP Module During Break Mode The COP is disabled during a break interrupt when VTST is present on the RST pin. Technical Data 158 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Computer Operating Properly (COP) Module MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 10. Central Processor Unit (CPU) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 10.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 10.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 159 Central Processor Unit (CPU) 10.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. 10.3 Features Features of the CPU include: Technical Data 160 • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 8-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 10.4 CPU Registers Figure 10-1 shows the five CPU registers. CPU registers are not part of the memory map. 7 0 ACCUMULATOR (A) 15 0 H INDEX REGISTER (H:X) X 15 0 STACK POINTER (SP) 15 0 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 10-1. CPU Registers 10.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 10-2. Accumulator (A) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 161 Central Processor Unit (CPU) 10.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 10-3. Index Register (H:X) 10.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Technical Data 162 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 10-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. 10.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with vector from $FFFE and $FFFF Figure 10-5. Program Counter (PC) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 163 Central Processor Unit (CPU) 10.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X Read: Write: Reset: X = Indeterminate Figure 10-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 Technical Data 164 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 165 Central Processor Unit (CPU) C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 10.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 10.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. 10.6.1 Wait Mode The WAIT instruction: Technical Data 166 • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU During Break Interrupts 10.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 10.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 167 Central Processor Unit (CPU) 10.8 Instruction Set Summary . V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry – IMM DIR EXT IX2 IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) – – – – – – IMM AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear BCLR n, opr C Clear Bit n in M – 0 – – 0 b7 – – C b0 – – 2 3 4 4 3 2 4 5 ff ee ff 2 3 4 4 3 2 4 5 A7 ii 2 AF ii 2 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 A4 B4 C4 D4 E4 F4 9EE4 9ED4 IMM DIR EXT IX2 – IX1 IX SP1 SP2 ff ee ff DIR INH INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 37 dd 47 57 67 ff 77 9E67 ff 4 1 1 4 3 5 b0 b7 Technical Data 168 A ← (A) & (M) Logical AND Arithmetic Shift Left (Same as LSL) A ← (A) + (M) ff ee ff Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 1 of 8) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL Mn ← 0 DIR DIR DIR DIR – – – – – – DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 24 rr 3 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary V H I N Z C Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 2 of 8) BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel (A) & (M) 0 – – IMM DIR EXT IX2 – IX1 IX SP1 SP2 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL A5 B5 C5 D5 E5 F5 9EE5 9ED5 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 169 Central Processor Unit (CPU) V H I N Z C BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr Set Bit n in M BSR rel Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel – – – – – DIR DIR DIR DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) – – – – – – REL 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 21 rr 3 Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 3 of 8) DIR DIR DIR DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR DIR DIR – – – – – – DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel – – – – – – REL AD rr 4 DIR IMM – – – – – – IMM IX1+ IX+ SP1 31 41 51 61 71 9E61 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 PC ← (PC) + 3 + rel ? (Mn) = 1 PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) + 3 + rel ? (A) + 3 + rel ? (A) + 3 + rel ? (X) + 3 + rel ? (A) + 2 + rel ? (A) + 4 + rel ? (A) – (M) – (M) – (M) – (M) – (M) – (M) = $00 = $00 = $00 = $00 = $00 = $00 – – – – – CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 (A) – (M) IMM DIR EXT IX2 IX1 IX SP1 SP2 CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Clear Compare A with M Technical Data 170 – – 3F dd 4F 5F 8C 6F ff 7F 9E6F ff A1 B1 C1 D1 E1 F1 9EE1 9ED1 ii dd hh ll ee ff ff ff ee ff 3 1 1 1 3 2 4 2 3 4 4 3 2 4 5 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary V H I N Z C COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A Decrement DIV Divide EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP JMP JMP JMP JMP opr opr opr,X opr,X ,X (M) = $FF – (M) (A) = $FF – (M) (X) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (H:X) – (M:M + 1) (X) – (M) (A) 10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP M← A← X← M← M← M← M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A ← (H:A)/(X) H ← Remainder A ← (A ⊕ M) Exclusive OR M with A M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 Increment PC ← Jump Address Jump Central Processor Unit (CPU) 33 dd 43 53 63 ff 73 9E63 ff 4 1 1 4 3 5 0 – – IMM DIR 65 75 ii ii+1 dd 3 4 IMM DIR EXT IX2 IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 INH 72 – – – – U – – A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA DIR INH 1 INH IX1 IX SP1 Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 4 of 8) – – – – – – 0 – – – – DIR INH INH – IX1 IX SP1 INH 3B 4B 5B 6B 7B 9E6B ff ee ff 2 dd rr rr rr ff rr rr ff rr 3A dd 4A 5A 6A ff 7A 9E6A ff 52 ii dd hh ll ee ff ff A8 B8 C8 D8 E8 F8 9EE8 9ED8 DIR INH INH – IX1 IX SP1 3C dd 4C 5C 6C ff 7C 9E6C ff BC CC DC EC FC 4 1 1 4 3 5 7 IMM DIR EXT IX2 – IX1 IX SP1 SP2 DIR EXT – – – – – – IX2 IX1 IX 5 3 3 5 4 6 ff ee ff dd hh ll ee ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 2 3 4 3 2 Technical Data 171 Central Processor Unit (CPU) Table 10-1. Instruction Set Summary (Sheet 5 of 8) BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 IMM DIR EXT IX2 – IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 – IMM DIR 45 55 ii jj dd 3 4 IMM DIR EXT IX2 – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 V H I N Z C JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA LDA LDA LDA LDA LDA LDA LDA #opr opr opr opr,X opr,X ,X opr,SP opr,SP LDHX #opr LDHX opr LDX LDX LDX LDX LDX LDX LDX LDX #opr opr opr opr,X opr,X ,X opr,SP opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Jump to Subroutine Logical Shift Left (Same as ASL) MOV MOV MOV MOV Move NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation NSA Nibble Swap A Technical Data 172 0 – – C 0 b7 – – 0 C 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 34 dd 44 54 64 ff 74 9E64 ff 4 1 1 4 3 5 – – 0 b0 (M)Destination ← (M)Source H:X ← (H:X) + 1 (IX+D, DIX+) X:A ← (X) × (A) M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) 0 – – DD DIX+ – IMD IX+D – 0 – – – 0 INH – – ff ee ff DIR INH INH IX1 IX SP1 b0 b7 Unsigned multiply 0 – – X ← (M) Load X from M DIR EXT – – – – – – IX2 IX1 IX 0 – – H:X ← (M:M + 1) Load H:X from M Logical Shift Right MUL A ← (M) Load A from M LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP opr,opr opr,X+ #opr,opr X+,opr PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address Cycles Operand Description Opcode Operation Effect on CCR Address Mode Source Form DIR INH INH IX1 IX SP1 4E 5E 6E 7E dd dd dd ii dd dd 42 30 dd 40 50 60 ff 70 9E60 ff 5 4 4 4 5 4 1 1 4 3 5 None – – – – – – INH 9D 1 A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary V H I N Z C AA BA CA DA EA FA 9EEA 9EDA ii dd hh ll ee ff ff Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 6 of 8) 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP A ← (A) | (M) 0 – – C Rotate Left through Carry b7 Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) RTS Return from Subroutine #opr opr opr opr,X opr,X ,X opr,SP opr,SP C b7 39 dd 49 59 69 ff 79 9E69 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 36 dd 46 56 66 ff 76 9E66 ff 4 1 1 4 3 5 – – b0 SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) A ← (A) – (M) – (C) Subtract with Carry ff ee ff DIR INH INH IX1 IX SP1 b0 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP SBC SBC SBC SBC SBC SBC SBC SBC – – IMM DIR EXT IX2 – IX1 IX SP1 SP2 – – – – – – INH 9C 1 INH 80 7 – – – – – – INH 81 4 – – IMM DIR EXT IX2 IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 173 Central Processor Unit (CPU) V H I N Z C STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX STX STX STX STX STX STX opr opr opr,X opr,X ,X opr,SP opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Store X in M Subtract M ← (A) (M:M + 1) ← (H:X) I ← 0; Stop Oscillator M ← (X) A ← (A) – (M) Software Interrupt TAP Transfer A to CCR CCR ← (A) TAX Transfer A to X TPA Transfer CCR to A TSX Transfer SP to H:X Technical Data 174 – DIR 35 – – 0 – – – INH 8E 0 – – 0 – – SWI Test for Negative or Zero B7 C7 D7 E7 F7 9EE7 9ED7 0 – – PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP DIR EXT IX2 – IX1 IX SP1 SP2 – – ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 DIR EXT IX2 – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF dd hh ll ee ff ff IMM DIR EXT IX2 IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 7 of 8) ff ee ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 – – 1 – – – INH 83 9 INH 84 2 X ← (A) – – – – – – INH 97 1 A ← (CCR) – – – – – – INH 85 1 (A) – $00 or (X) – $00 or (M) – $00 H:X ← (SP) + 1 0 – – DIR INH – INH IX1 IX SP1 – – – – – – INH 3D dd 4D 5D 6D ff 7D 9E6D ff 95 3 1 1 3 2 4 2 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map V H I N Z C TXA Transfer X to A TXS Transfer H:X to SP WAIT Enable Interrupts; Stop Processor A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 10-1. Instruction Set Summary (Sheet 8 of 8) A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 I bit ← 0 – – 0 – – – INH 8F 1 Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : — Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected 10.9 Opcode Map See Table 10-2. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Central Processor Unit (CPU) Technical Data 175 MSB Branch REL DIR INH 3 4 1 2 3 4 5 6 7 8 9 MOTOROLA MC68HC908GT16 • MC68HC908GT8 — Rev. 2 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 IMM DIR EXT A B C Register/Memory IX2 SP2 D 9ED IX1 SP1 IX E 9EE F LSB 0 Central Processor Unit (CPU) 0 Read-Modify-Write INH IX1 A B C D E F 1 4 NEGA NEG INH 2 DIR 1 4 5 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 1 4 COMA COM INH 2 DIR 1 1 4 LSRA LSR INH 2 DIR 1 3 4 LDHX STHX 2 DIR 3 IMM 1 4 RORA ROR INH 2 DIR 1 1 4 ASRA ASR INH 2 DIR 1 1 4 LSLA LSL INH 2 DIR 1 1 4 ROLA ROL INH 2 DIR 1 1 4 DECA DEC INH 2 DIR 1 3 5 DBNZ DBNZA INH 3 DIR 2 1 4 INCA INC INH 2 DIR 1 1 3 TSTA TST INH 2 DIR 1 5 MOV 3 DD 1 3 CLRA CLR INH 2 DIR 1 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 3 5 NEG NEG IX 3 SP1 1 4 6 CBEQ CBEQ IX+ 4 SP1 2 2 DAA 1 INH 3 5 COM COM IX 3 SP1 1 3 5 LSR LSR IX 3 SP1 1 4 CPHX 2 DIR 3 5 ROR ROR IX 3 SP1 1 3 5 ASR ASR IX 3 SP1 1 3 5 LSL LSL IX 3 SP1 1 3 5 ROL ROL IX 3 SP1 1 3 5 DEC DEC IX 3 SP1 1 4 6 DBNZ DBNZ IX 4 SP1 2 3 5 INC INC IX 3 SP1 1 2 4 TST TST IX 3 SP1 1 4 MOV 2 IX+D 2 4 CLR CLR IX 3 SP1 1 SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 3 7 BGE RTI 1 INH 2 REL 3 4 BLT RTS 1 INH 2 REL 3 BGT 2 REL 3 9 BLE SWI 1 INH 2 REL 2 2 TXS TAP INH 1 INH 1 2 1 TSX TPA INH 1 INH 1 2 PULA 1 INH 1 2 TAX PSHA INH 1 INH 1 1 2 CLC PULX INH 1 INH 1 1 2 SEC PSHX INH 1 INH 1 2 2 CLI PULH INH 1 INH 1 2 2 SEI PSHH INH 1 INH 1 1 1 RSP CLRH INH 1 INH 1 1 NOP 1 INH 1 STOP * 1 INH 1 1 TXA WAIT INH 1 INH 1 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 2 2 2 2 2 2 2 2 2 2 2 2 2 4 BSR REL 2 2 LDX 2 IMM 2 2 AIX 2 IMM 2 2 3 SUB DIR 3 CMP DIR 3 SBC DIR 3 CPX DIR 3 AND DIR 3 BIT DIR 3 LDA DIR 3 STA DIR 3 EOR DIR 3 ADC DIR 3 ORA DIR 3 ADD DIR 2 JMP DIR 4 JSR DIR 3 LDX DIR 3 STX DIR MSB 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 4 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 5 JSR EXT 4 LDX EXT 4 STX EXT 0 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 4 4 4 4 4 4 4 4 4 4 4 4 5 SUB SP2 5 CMP SP2 5 SBC SP2 5 CPX SP2 5 AND SP2 5 BIT SP2 5 LDA SP2 5 STA SP2 5 EOR SP2 5 ADC SP2 5 ORA SP2 5 ADD SP2 5 LDX SP2 5 STX 4 SP2 4 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 3 LDX 2 IX1 3 STX 2 IX1 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB SP1 4 CMP SP1 4 SBC SP1 4 CPX SP1 4 AND SP1 4 BIT SP1 4 LDA SP1 4 STA SP1 4 EOR SP1 4 ADC SP1 4 ORA SP1 4 ADD SP1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 4 LDX SP1 1 4 STX 3 SP1 1 3 High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 1 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode 2 SUB IX 2 CMP IX 2 SBC IX 2 CPX IX 2 AND IX 2 BIT IX 2 LDA IX 2 STA IX 2 EOR IX 2 ADC IX 2 ORA IX 2 ADD IX 2 JMP IX 4 JSR IX 2 LDX IX 2 STX IX Central Processor Unit (CPU) Technical Data 176 Table 10-2. Opcode Map Bit Manipulation DIR DIR Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 11. FLASH Memory 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 180 11.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 181 11.7 FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . 182 11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 11.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . 185 11.8.2 ICG User Trim Registers (ICGTR5 and ICGTR3) . . . . . . . 186 11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.10 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.2 Introduction This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program, erase, and read operations are enabled through the use of an internal charge pump. It is recommended that the user utilize the FLASH programming routines provided in the on-chip ROM, which are described more fully in a separate Motorola application note. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 177 FLASH Memory 11.3 Functional Description The FLASH memory is an array of 15,872 bytes (7,680 bytes on MC68HC908GT8) with an additional 36 bytes of user vectors, one byte of block protection and two bytes of ICG user trim storage. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. Memory in the FLASH array is organized into two rows per page basis. The page size is 64 bytes per page and the row size is 32 bytes per row. Hence the minimum erase page size is 64 bytes and the minimum program row size is 32 bytes. Program and erase operation operations are facilitated through control bits in FLASH control register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are: • $C000–$FDFF; user memory ($E000–$FDFF on MC68HC908GT8) • $FE08; FLASH control register • $FF7E; FLASH block protect register • $FF80; ICG user trim register (ICGTR5) • $FF81; ICG user trim register (ICGTR3) • $FFDC–$FFFF; these locations are reserved for user-defined interrupt and reset vectors Programming tools are available from Motorola. Contact your local Motorola representative for more information. NOTE: A security feature prevents viewing of the FLASH contents.(1) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 178 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA FLASH Memory FLASH Control Register 11.4 FLASH Control Register The FLASH control register (FLCR) controls FLASH program and erase operations. Address: Read: $FE08 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 Write: Reset: 0 0 0 0 = Unimplemented Figure 11-1. FLASH Control Register (FLCR) HVEN — High-Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit Setting this read/write bit configures the 16Kbyte FLASH array for mass erase operation. 1 = MASS erase operation selected 0 = MASS erase operation unselected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 179 FLASH Memory PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected 11.5 FLASH Page Erase Operation Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to read as logic 1: 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH address within the page address range desired. 4. Wait for a time, tNVS (minimum 10 µs) 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum 1 ms) 7. Clear the ERASE bit. 8. Wait for a time, tNVH (minimum 5 µs) 9. Clear the HVEN bit. 10. After a time, tRCV (typical 1 µs), the memory can be accessed again in read mode. NOTE: While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Technical Data 180 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA FLASH Memory FLASH Mass Erase Operation 11.6 FLASH Mass Erase Operation Use this step-by-step procedure to erase entire FLASH memory to read as logic 1: 1. Set both the ERASE bit, and the MASS bit in the FLASH control register. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address(1) within the FLASH memory address range. 4. Wait for a time, tNVS (minimum 10 µs) 5. Set the HVEN bit. 6. Wait for a time, tMErase (minimum 4 ms) 7. Clear the ERASE bit. 8. Wait for a time, tNVHL (minimum 100 µs) 9. Clear the HVEN bit. 10. After a time, tRCV (minimum 1 µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. 1. When in monitor mode, with security sequence failed (see 15.5 Security), write to the FLASH block protect register instead of any FLASH address. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 181 FLASH Memory 11.7 FLASH Program/Read Operation Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0. Use this step-by-step procedure to program a row of FLASH memory (Figure 11-2 is a flowchart representation): NOTE: In order to avoid program disturbs, the row must be erased before any byte on that row is programmed. 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address within the row address range desired. 4. Wait for a time, tNVS (minimum 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tPGS (minimum 5 µs). 7. Write data to the FLASH address to be programmed.(1) 8. Wait for a time, tPROG (minimum 30 µs). 9. Repeat step 7 and 8 until all the bytes within the row are programmed. 10. Clear the PGM bit.(1) 11. Wait for a time, tNVH (minimum 5 µs). 12. Clear the HVEN bit. 13. After time, tRCV (minimum 1 µs), the memory can be accessed in read mode again. 1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG maximum. Technical Data 182 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA FLASH Memory FLASH Block Protection This program sequence is repeated throughout the memory until all data is programmed. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum. See 23.20 Memory Characteristics. 11.8 FLASH Block Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations. NOTE: In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit When the FLBPR is program with all 0’s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in 11.8.1 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 183 FLASH Memory Algorithm for programming a row (32 bytes) of FLASH memory 1 2 3 SET PGM BIT READ THE FLASH BLOCK PROTECT REGISTER WRITE ANY DATA TO ANY FLASH ADDRESS WITHIN THE ROW ADDRESS RANGE DESIRED 4 5 6 7 8 WAIT FOR A TIME, tNVS SET HVEN BIT WAIT FOR A TIME, tPGS WRITE DATA TO THE FLASH ADDRESS TO BE PROGRAMMED WAIT FOR A TIME, tPROG COMPLETED PROGRAMMING THIS ROW? Y N 10 11 CLEAR PGM BIT WAIT FOR A TIME, tNVH Note: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming time, tPROG max. This row program algorithm assumes the row/s to be programmed are initially erased. 12 13 CLEAR HVEN BIT WAIT FOR A TIME, tRCV END OF PROGRAMMING Figure 11-2. FLASH Programming Flowchart Technical Data 184 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA FLASH Memory FLASH Block Protection 11.8.1 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory. Address: $FF7E Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 U U U U U U U U Read: Write: Reset: U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory. Figure 11-3. FLASH Block Protect Register (FLBPR) BPR[7:0] — FLASH Block Protect Bits These eight bits represent bits [13:6] of a 16-bit memory address. Bit-15 and Bit-14 are logic 1s and bits [5:0] are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be $XX00, $XX40, $XX80 and $XXC0 (64 bytes page boundaries) within the FLASH memory. 16-BIT MEMORY ADDRESS START ADDRESS OF FLASH 1 BLOCK PROTECT 1 FLBPR VALUE 0 0 0 0 0 0 Figure 11-4. FLASH Block Protect Start Address MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 185 FLASH Memory Examples of protect start address: BPR[7:0] Start of Address of Protect Range $00 The entire FLASH memory is protected. $01 (0000 0001) $C040 (1100 0000 0100 0000) $02 (0000 0010) $C080 (1100 0000 1000 0000) and so on... $FE (1111 1110) $FF80 (1111 1111 1000 0000) $FF The entire FLASH memory is not protected. Note: The end address of the protected range is always $FFFF. 11.8.2 ICG User Trim Registers (ICGTR5 and ICGTR3) The ICG user trim register are two normal bytes of FLASH memory which are allocated for the user to store copies of the ICG trim register (ICGTR) value. ICGTR5 is allocated for storage of the trim value when a 5-V supply is used, ICGTR3 for storage of the trim value when a 3-V supply is used. Representative trim values are programmed into these locations by Motorola but they may be erased and reprogrammed by the user at any time. Storage and retrieval of data in these registers is not automatic and must be performed programmatically. Typically, these locations are programmed by the user during an in-system calibration procedure and one of them, depending on the application supply voltage, is subsequently used by the user’s initialization code to configure the ICG each time following a reset. ICGTR5 is used by the MC68HC908GT16 monitor ROM program during its initialization sequence if monitor mode was entered while clocking from the ICG. If the contents of ICGTR5 are not $FF then the contents are copied to ICGTR. NOTE: The contents of ICGTR3 are not utilized by the monitor ROM program. Technical Data 186 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA FLASH Memory Wait Mode Address: ICGTR5, $FF80 and ICGTR3, $FF81 Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 U U U U U U U U Read: Write: Reset: U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory. Figure 11-5. ICG User Trim Registers (ICGTR5 and ICGTR3) TRIM[7:0] — ICG Trim Factor Bits These bits are copied by the monitor ROM program following a reset, if monitor mode was entered while clocking from the ICG and may be copied by the user’s initialization code to the ICG trim register (ICGTR). 11.9 Wait Mode Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode. 11.10 Stop Mode Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode NOTE: Standby mode is the power saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Technical Data FLASH Memory 187 FLASH Memory Technical Data 188 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 FLASH Memory MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 12. External Interrupt (IRQ) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 193 12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 193 12.2 Introduction The IRQ (external interrupt) module provides a maskable interrupt input. 12.3 Features Features of the IRQ module include: • A dedicated external interrupt pin (IRQ1) • IRQ interrupt control bits • Hysteresis buffer • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Internal pullup resistor MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA External Interrupt (IRQ) Technical Data 189 External Interrupt (IRQ) 12.4 Functional Description A logic 0 applied to the external interrupt pin can latch a central processor unit (CPU) interrupt request. Figure 12-1 shows the structure of the IRQ module. Interrupt signals on the IRQ1 pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. RESET INTERNAL ADDRESS BUS ACK TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE VDD IRQF D CLR Q SYNCHRONIZER CK IRQ IRQ INTERRUPT REQUEST IMASK MODE HIGH VOLTAGE DETECT TO MODE SELECT LOGIC Figure 12-1. IRQ Module Block Diagram Technical Data 190 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 External Interrupt (IRQ) MOTOROLA External Interrupt (IRQ) Functional Description The external interrupt pin is falling-edge triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-level triggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ1 pin. When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level triggered, the interrupt remains set until both of these events occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. Addr. Register Name $001D Read: IRQ Status and Control Register (INTSCR) Write: See page 193. Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 1 Bit 0 IMASK MODE 0 0 ACK 0 0 0 0 0 0 = Unimplemented Figure 12-2. IRQ I/O Register Summary MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA External Interrupt (IRQ) Technical Data 191 External Interrupt (IRQ) 12.5 IRQ1 Pin A logic 0 on the IRQ1 pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ1 pin is both falling-edge-sensitive and low-level-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ1 pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ1 pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ1 pin to logic 1 — As long as the IRQ1 pin is at logic 0, IRQ remains active. The vector fetch or software clear and the return of the IRQ1 pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ1 pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ1 pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ1 pin. NOTE: Technical Data 192 When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 External Interrupt (IRQ) MOTOROLA External Interrupt (IRQ) IRQ Module During Break Interrupts 12.6 IRQ Module During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. See Section 6. Break Module (BRK). To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags. 12.7 IRQ Status and Control Register The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR: • Shows the state of the IRQ flag • Clears the IRQ latch • Masks IRQ interrupt request • Controls triggering sensitivity of the IRQ1 interrupt pin Address: $001D Bit 7 6 5 4 Read: 3 2 IRQF 0 Bit 0 IMASK MODE 0 0 ACK Write: Reset: 1 0 0 0 0 0 0 = Unimplemented Figure 12-3. IRQ Status and Control Register (INTSCR) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA External Interrupt (IRQ) Technical Data 193 External Interrupt (IRQ) IRQF — IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK — IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. IMASK — IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE. 1 = IRQ1 interrupt requests on falling edges and low levels 0 = IRQ1 interrupt requests on falling edges only Technical Data 194 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 External Interrupt (IRQ) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 13. Keyboard Interrupt Module (KBI) 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 200 13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 201 13.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 202 13.2 Introduction The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 195 Keyboard Interrupt Module (KBI) 13.3 Features Features include: • Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask • Hysteresis buffers • Programmable edge-only or edge- and level- interrupt sensitivity • Exit from low-power modes • I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s) 13.4 Functional Description Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. Technical Data 196 • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as long as any keyboard interrupt pin is low and the pin is keyboard interrupt enabled. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA INTERNAL BUS KBD0 VECTOR FETCH DECODER ACKK VDD KEYF RESET . TO PULLUP ENABLE D CLR Q SYNCHRONIZER . CK KB0IE . KEYBOARD INTERRUPT REQUEST IMASKK KBD7 MODEK TO PULLUP ENABLE KB7IE Figure 13-1. Keyboard Module Block Diagram Addr. $001A Register Name Keyboard Interrupt Enable Read: Register Write: $001B (INTKBIER) See page 202. Reset: 6 5 4 3 2 0 0 0 0 KEYF 0 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 197 Technical Data = Unimplemented Figure 13-2. I/O Register Summary Keyboard Interrupt Module (KBI) Functional Description Keyboard Status Read: and Control Register Write: (INTKBSCR) See page 201. Reset: Bit 7 Keyboard Interrupt Module (KBI) If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (INTKBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. • Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. Technical Data 198 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) Keyboard Initialization NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. 13.5 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 199 Keyboard Interrupt Module (KBI) 13.6 Low-Power Modes The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes. 13.6.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 13.6.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. 13.7 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. See 13.8.1 Keyboard Status and Control Register. Technical Data 200 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) I/O Registers 13.8 I/O Registers These registers control and monitor operation of the keyboard module: • Keyboard status and control register (INTKBSCR) • Keyboard interrupt enable register (INTKBIER) 13.8.1 Keyboard Status and Control Register The keyboard status and control register: • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity Address: $001A Read: Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 Bit 0 IMASKK MODEK 0 0 ACKK Write: Reset: 1 0 0 0 0 0 0 = Unimplemented Figure 13-3. Keyboard Status and Control Register (INTKBSCR) Bits 7–4 — Not used These read-only bits always read as logic 0s. KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 201 Keyboard Interrupt Module (KBI) ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only 13.8.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard interrupt pin. Address: $001B Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER) KBIE7–KBIE0 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PTAx pin enabled as keyboard interrupt pin 0 = PTAx pin not enabled as keyboard interrupt pin Technical Data 202 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Keyboard Interrupt Module (KBI) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 14. Low-Voltage Inhibit (LVI) 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 14.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 206 14.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207 14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 14.2 Introduction This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Voltage Inhibit (LVI) Technical Data 203 Low-Voltage Inhibit (LVI) 14.3 Features Features of the LVI module include: • Programmable LVI reset • Selectable LVI trip voltage • Programmable stop mode operation 14.4 Functional Description Figure 14-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip points are shown in Section 23. Electrical Specifications. Technical Data 204 NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3 V. If a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation. Note that this must be done after every poweron reset since the default will revert back to 3-V mode after each poweron reset. If the VDD supply is below the 5-V mode trip voltage but above the 3-V mode trip voltage when POR is released, the part will operate because VTRIPF defaults to 3-V mode after a POR. So, in a 5-V system care must be taken to ensure that VDD is above the 5-V mode trip voltage after POR is released. NOTE: If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on reset while the VDD supply is not above the VTRIPR for 5-V mode, the microcontroller unit (MCU) will immediately go into reset. The LVI in this case will hold the part in reset until either VDD goes above the rising 5-V trip point, VTRIPR, which will release reset or VDD decreases to MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Voltage Inhibit (LVI) MOTOROLA Low-Voltage Inhibit (LVI) Functional Description approximately 0 V which will re-trigger the power-on reset and reset the trip point to 3-V operation. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register (CONFIG1). See Figure 8-2. Configuration Register 1 (CONFIG1) for details of the LVI’s configuration bits. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See 19.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR). An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices. VDD STOP INSTRUCTION LVISTOP FROM CONFIG1 FROM CONFIG1 LVIRSTD LVIPWRD FROM CONFIG VDD > LVITrip = 0 LOW VDD DETECTOR LVI RESET VDD ≤ LVITrip = 1 LVIOUT LVI5OR3 FROM CONFIG1 Figure 14-1. LVI Module Block Diagram Addr. Register Name $FE0C Bit 7 Read: LVIOUT LVI Status Register (LVISR) Write: See page 207. Reset: 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 14-2. LVI I/O Register Summary MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Voltage Inhibit (LVI) Technical Data 205 Low-Voltage Inhibit (LVI) 14.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets. 14.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets. 14.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS. 14.4.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection. NOTE: Technical Data 206 The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. (See Section 23. Electrical Specifications for the actual trip point voltages.) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Voltage Inhibit (LVI) MOTOROLA Low-Voltage Inhibit (LVI) LVI Status Register 14.5 LVI Status Register The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level. Address: $FE0C Bit 7 Read: LVIOUT 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented Figure 14-3. LVI Status Register (LVISR) LVIOUT — LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage (see Table 14-1). Reset clears the LVIOUT bit. Table 14-1. LVIOUT Bit Indication VDD LVIOUT VDD > VTRIPR 0 VDD < VTRIPF 1 VTRIPF < VDD < VTRIPR Previous value MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Low-Voltage Inhibit (LVI) Technical Data 207 Low-Voltage Inhibit (LVI) 14.6 LVI Interrupts The LVI module does not generate interrupt requests. 14.7 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. 14.7.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. 14.7.2 Stop Mode If enabled in stop mode (LVISTOP set), the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. Technical Data 208 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Low-Voltage Inhibit (LVI) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 15. Monitor ROM (MON) 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 15.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 15.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 15.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 15.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 15.2 Introduction This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 209 Monitor ROM (MON) 15.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor readonly memory (ROM) and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in random-access memory (RAM) or FLASH • FLASH memory security feature(1) • FLASH memory programming interface • External 4.92MHz or 9.83MHz clock used to generate internal frequency of 2.4576 MHz • Optional ICG mode of operation (no external clock or high voltage) • 304 bytes monitor ROM code size ($FE20 to $FF4F) • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage is applied to IRQ 15.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 15-1, Figure 15-2, and Figure 15-3 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 210 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description VDDA RST VDD 0.1 µF MAX232 4 + 1 µF VDD 0.1 µF N.C. OSC2 N.C. OSC1 16 C1+ 0.1 µF 5 C1– 15 IRQ VTST 4 1 µF VDD + V– 6 5 C2– 1 µF 10 kΩ 74HC125 5 6 + DB9 2 3 7 10 8 9 N.C. PTC3 N.C. PTC1 N.C. 2 kΩ V+ 2 C2+ + PTC0 74HC125 3 2 PTA0 4 VSS VSSA 1 5 Figure 15-1. Forced Monitor Mode (Low) RST VDDA VDD 0.1 µF 0.1 µF MAX232 4 1 µF + VDD N.C. 16 C1+ 9.8304 MHz CLOCK 0.1 µF 5 15 C1– OSC2 OSC1 PTC0 N.C. PTC3 N.C. PTC1 N.C. VTST 4 1 µF C2+ + 5 C2– V+ 2 V– 6 1 µF VDD + 7 10 3 8 9 5 IRQ 10 kΩ + 74HC125 5 6 DB9 2 N.C. 2 74HC125 3 PTA0 4 VSS VSSA 1 Figure 15-2. Forced Monitor Mode (High) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 211 Monitor ROM (MON) RST VDD 0.1 µF 0.1 µF N.C. 9.8304 MHz CLOCK MAX232 4 1 µF + 16 C1– 15 C2+ + 5 C2– V+ 10 kΩ PTC3 1 kΩ 2 kΩ 2 VDD + V– 6 1 µF 3 10 8 9 5 IRQ PTC1 PTA0 VSSA 9.1 V 10 kΩ + VSS 74HC125 5 6 DB9 7 10 kΩ PTC0 VTST 4 2 VDD OSC1 0.1 µF 5 1 µF OSC2 VDD C1+ VDDA 74HC125 3 2 4 1 Figure 15-3. Standard Monitor Mode The monitor code has been updated from previous versions of the monitor code to allow the ICG to generate the internal clock. This option, which is selected when IRQ is held low out of reset, is intended to support serial communication/ programming at 9600 baud in monitor mode by using the ICG, and the ICG user trim value ICGTR5 (if programmed) to generate the desired internal frequency (2.4576 MHz). If ICGTR5 is not programmed (i.e., the value is $FF) then the ICG will operate at a nominal (untrimmed) 2.45 MHz and communications will be nominally at 9600 baud but the untrimmed rate may cause difficulties with hosts which cannot automatically adjust their data rates to match. Since this feature is enabled only when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. Technical Data 212 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description 15.4.1 Entering Monitor Mode Table 15-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If $FFFE and $FFFF does not contain $FF (programmed state): – The external clock is 4.9152 MHz with PTC3 low or 9.8304 MHz with PTC3 high – IRQ = VTST 2. If $FFFE and $FFFF contain $FF (erased state): – The external clock is 9.8304 MHz – IRQ = VDD (this can be implemented through the internal IRQ pullup) 3. If $FFFE and $FFFF contain $FF (erased state): – IRQ = VSS (ICG is selected, no external clock required) If VTST is applied to IRQ and PTC3 is low upon monitor mode entry (above condition set 1), the bus frequency is a divide-by-two of the input clock. If PTC3 is high with VTST applied to IRQ upon monitor mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the PTC3 pin low when entering monitor mode causes a bypass of a divideby-two stage at the oscillator only if VTST is applied to IRQ. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. If entering monitor mode without high voltage on IRQ (above condition set 2 or 3, where applied voltage is either VDD or VSS), then all port C pin requirements and conditions, including the PTC3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. NOTE: If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ must be used to enter monitor mode. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 213 IRQ RESET $FFFE/ $FFFF ICG External Bus PTC0 PTC1 PTC3 CGMOUT Clock Frequency For Serial Communication COP Comment PTA0 Baud Rate MOTOROLA MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) X GND X X X X X X 0 0 Disabled X 0 No operation until reset goes high VTST VDD X OFF 1 0 0 4.9152 MHz 4.9152 MHz 2.4576 MHz Disabled 1 9600 PTC3 determines frequency divider VTST VDD X OFF 1 0 1 9.8304 MHz 4.9152 MHz 2.4576 MHz Disabled 1 9600 PTC3 determines frequency divider VDD VDD $FF (blank) OFF X X X 9.8304 MHz 4.9152 MHz 2.4576 MHz Disabled 1 9600 External frequency always divided by 4 GND VDD $FF (blank) ON X X X X Nominal 4.91 MHz Nominal 2.45 MHz Disabled 1 VDD or GND VDD or GND Nominal ICG enabled 9600 VDD $FF (blank) OFF X X X X — — Enabled X — Enters user mode — will encounter an illegal address reset VDD Not $FF (programmed) ON X X X X Nominal 3.2 MHz Nominal 1.6 MHz Enabled X — Enters user mode Note: X = don’t care Monitor ROM (MON) Technical Data 214 Table 15-1. Monitor Mode Signal Requirements and Options Monitor ROM (MON) Functional Description The computer operating properly (COP) module is disabled in monitor mode based on these conditions: • If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ or RST. • If monitor mode was entered with VTST on IRQ (condition set 1), then the COP is disabled as long as VTST is applied to either IRQ or RST. The second condition states that as long as VTST is maintained on the IRQ pin after entering monitor mode, or if VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ), then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be removed from the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor mode. Figure 15-4 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. POR RESET IS VECTOR BLANK? NO NORMAL USER MODE YES MONITOR MODE EXECUTE MONITOR CODE POR TRIGGERED? NO YES Figure 15-4. Low-Voltage Monitor Mode Entry Flowchart MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 215 Monitor ROM (MON) Enter monitor mode with pin configuration shown in Figure 15-3 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes (see 15.5 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command. NOTE: The PTA0 pin must remain at logic 1 for 24 bus cycles after the RST pin goes high to enter monitor mode properly. In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. NOTE: Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST low will not exit monitor mode in this situation. Table 15-2 summarizes the differences between user mode and monitor mode. Table 15-2. Mode Differences Functions Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD Modes Technical Data 216 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description 15.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT Figure 15-5. Monitor Data Format 15.4.3 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 15-6. Break Transaction 15.4.4 Baud Rate The communication baud rate is controlled by the crystal frequency and the state of the PTC3 pin (when IRQ is set to VTST) upon entry into monitor mode. When PTC3 is high, the divide by ratio is 1024. If the PTC3 pin is at logic 0 upon entry into monitor mode, the divide by ratio is 512. If monitor mode was entered with VDD on IRQ, then the divide by ratio is set at 1024, regardless of PTC3. If monitor mode was entered with VSS on IRQ, then the ICG generates 2.4576 MHz. These latter two conditions for monitor mode entry require that the reset vector is blank. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 217 Monitor ROM (MON) Table 15-3 lists external frequencies required to achieve a standard baud rate of 9600 bps. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 23.8 5.0-V Control Timing and 23.9 3.0-V Control Timing for this limit. Table 15-3. Monitor Baud Rate Selection External Frequency IRQ PTC3 Internal Frequency Baud Rate (bps) 4.9152 MHz VTST 0 2.4576 MHz 9600 9.8304 MHz VTST 1 2.4576 MHz 9600 9.8304 MHz VDD X 2.4576 MHz 9600 15.4.5 Commands The monitor ROM firmware uses these commands: • READ (read memory) • WRITE (write memory) • IREAD (indexed read) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command. NOTE: Technical Data 218 Wait one bit time after each echo before sending the next byte. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description FROM HOST 4 ADDRESS HIGH READ READ 4 1 ADDRESS HIGH ADDRESS LOW 1 4 ADDRESS LOW DATA 1 3, 2 4 ECHO RETURN Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte. Figure 15-7. Read Transaction FROM HOST WRITE 3 ADDRESS HIGH WRITE 1 3 ADDRESS HIGH 1 ADDRESS LOW 3 ADDRESS LOW 1 DATA 3 DATA 1 2, 3 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte. Figure 15-8. Write Transaction MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 219 Monitor ROM (MON) A brief description of each monitor mode command is given in Table 15-4 through Table 15-9. Table 15-4. READ (Read Memory) Command Description Read byte from memory Operand 2-byte address in high-byte:low-byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ ADDRESS HIGH READ ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA ECHO RETURN Table 15-5. WRITE (Write Memory) Command Description Write byte to memory Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence FROM HOST WRITE WRITE ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA DATA ECHO Technical Data 220 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description Table 15-6. IREAD (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence FROM HOST IREAD IREAD DATA ECHO DATA RETURN Table 15-7. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Single data byte Data Returned None Opcode $19 Command Sequence FROM HOST IWRITE IWRITE DATA DATA ECHO MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 221 Monitor ROM (MON) A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. Table 15-8. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:lowbyte order Opcode $0C Command Sequence FROM HOST READSP SP HIGH READSP ECHO SP LOW RETURN Table 15-9. RUN (Run User Program) Command Description Executes PULH and RTI instructions Operand None Data Returned None Opcode $28 Command Sequence FROM HOST RUN RUN ECHO Technical Data 222 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Security The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6. SP HIGH BYTE OF INDEX REGISTER SP + 1 CONDITION CODE REGISTER SP + 2 ACCUMULATOR SP + 3 LOW BYTE OF INDEX REGISTER SP + 4 HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7 Figure 15-9. Stack Pointer at Monitor Mode Entry 15.5 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data. NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 15-10.) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Monitor ROM (MON) Technical Data 223 Monitor ROM (MON) VDD 4096 + 32 CGMXCLK CYCLES COMMAND BYTE 8 BYTE 2 BYTE 1 RST FROM HOST PA0 4 BREAK 2 1 COMMAND ECHO 1 BYTE 8 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte. 1 BYTE 2 ECHO FROM MCU 4 1 BYTE 1 ECHO 256 BUS CYCLES (MINIMUM) Figure 15-10. Monitor Mode Entry Timing Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank). Technical Data 224 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Monitor ROM (MON) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 16. Input/Output (I/O) Ports 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 230 16.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 232 16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 16.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 16.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 237 16.5.3 Port C Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 239 16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 16.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 16.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 242 16.6.3 Port D Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 244 16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 16.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 16.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . 246 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 225 Input/Output (I/O) Ports 16.2 Introduction Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode. NOTE: Addr. $0000 $0001 $0002 $0003 Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Register Name Read: Port A Data Register (PTA) Write: See page 229. Reset: Read: Port B Data Register (PTB) Write: See page 233. Reset: Read: Port C Data Register (PTC) Write: See page 236. Reset: Read: Port D Data Register (PTD) Write: See page 240. Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset 0 PTC6 PTC5 PTC4 PTC3 Unaffected by reset PTD7 Read: Data Direction Register A DDRA7 $0004 (DDRA) Write: See page 230. Reset: 0 PTD6 PTD5 PTD4 PTD3 Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 = Unimplemented Figure 16-1. I/O Port Register Summary Technical Data 226 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Introduction Addr. Register Name Bit 7 Read: Data Direction Register B DDRB7 $0005 (DDRB) Write: See page 234. Reset: 0 Read: Data Direction Register C $0006 (DDRC) Write: See page 237. Reset: 5 4 3 2 1 Bit 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 0 PTE4 PTE3 PTE2 PTE1 PTE0 0 0 Read: Data Direction Register D DDRD7 $0007 (DDRD) Write: See page 242. Reset: 0 Read: Port E Data Register (PTE) Write: See page 245. Reset: 0 Read: Data Direction Register E $000C (DDRE) Write: See page 246. Reset: 0 $0008 6 Unaffected by reset 0 0 0 0 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 Read: Port A Input Pullup Enable PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 $000D Register (PTAPUE) Write: See page 232. Reset: 0 0 0 0 0 0 0 0 Read: Port C Input Pullup Enable $000E Register (PTCPUE) Write: See page 239. Reset: 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 0 0 0 0 0 0 0 0 Read: Port D Input Pullup Enable PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 $000F Register (PTDPUE) Write: See page 244. Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 16-1. I/O Port Register Summary (Continued) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 227 Input/Output (I/O) Ports Table 16-1. Port Control Register Bits Summary Port A B C D E Technical Data 228 Bit DDR Module Control 0 DDRA0 KBIE0 PTA0/KBD0 1 DDRA1 KBIE1 PTA1/KBD1 2 DDRA2 KBIE2 PTA2/KBD2 3 DDRA3 KBIE3 PTA3/KBD3 4 DDRA4 KBIE4 PTA4/KBD4 5 DDRA5 KBIE5 PTA5/KBD5 6 DDRA6 KBIE6 PTA6/KBD6 7 DDRA7 KBIE7 PTA7/KBD7 0 DDRB0 PTB0/AD0 1 DDRB1 PTB1/AD1 2 DDRB2 PTB2/AD2 3 DDRB3 4 DDRB4 5 DDRB5 PTB5/AD5 6 DDRB6 PTB6/AD6 7 DDRB7 PTB7/AD7 0 DDRC0 PTC0 1 DDRC1 PTC1 2 DDRC2 PTC2 3 DDRC3 PTC3 4 DDRC4 PTC4 5 DDRC5 PTC5 6 DDRC6 PTC6 0 DDRD0 PTD0/SS 1 DDRD1 2 DDRD2 3 DDRD3 4 DDRD4 5 DDRD5 6 DDRD6 7 DDRD7 0 DDRE0 1 DDRE1 2 DDRE2 3 DDRE3 4 DDRE4 KBD ADC SPI ADCH4–ADCH0 SPE Pin PTB3/AD3 PTB4/AD4 PTD1/MISO PTD2/MOSI PTD3/SPSCK TIM1 TIM2 SCI ELS0B:ELS0A PTD4/T1CH0 ELS1B:ELS1A PTD5/T1CH1 ELS0B:ELS0A PTD6/T2CH0 ELS1B:ELS1A PTD7/T2CH1 ENSCI PTE0/TxD PTE1/RxD PTE2 ICG ECGON: EXTXTALEN PTE3/OSC2 ECGON PTE4/OSC1 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A 16.3 Port A Port A is an 8-bit special-function port that shares all eight of its pins with the keyboard interrupt (KBI) module. Port A also has software configurable pullup devices if configured as an input port. 16.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins. Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 KBD2 KBD1 KBD0 Read: Write: Reset: Alternate Function: Unaffected by reset KBD7 KBD6 KBD5 KBD4 KBD3 Figure 16-2. Port A Data Register (PTA) PTA7–PTA0 — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBD7–KBD0 — Keyboard Inputs The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard interrupt control register (KBICR) enable the port A pins as external interrupt pins. See Section 13. Keyboard Interrupt Module (KBI). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 229 Input/Output (I/O) Ports 16.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 16-3. Data Direction Register A (DDRA) DDRA7–DDRA0 — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 16-4 shows the port A I/O logic. Technical Data 230 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A VDD READ DDRA ($0004) PTAPUEx WRITE DDRA ($0004) INTERNAL DATA BUS RESET DDRAx 45 k WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) Figure 16-4. Port A I/O Circuit When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-2 summarizes the operation of the port A pins. Table 16-2. Port A Pin Functions PTAPUE Bit DDRA Bit PTA Bit Accesses to DDRA I/O Pin Mode Accesses to PTA Read/Write Read Write 1 0 X(1) Input, VDD(2) DDRA7–DDRA0 Pin PTA7–PTA0(3) 0 0 X Input, Hi-Z(4) DDRA7–DDRA0 Pin PTA7–PTA0(3) X 1 X Output DDRA7–DDRA0 PTA7–PTA0 PTA7–PTA0 1. X = Don’t care 2. I/O pin pulled up to VDD by internal pullup device 3. Writing affects data register, but does not affect input. 4. Hi-Z = High impedance MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 231 Input/Output (I/O) Ports 16.3.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each of the eight port A pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit’s DDRA is configured for output mode. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 Read: PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 16-5. Port A Input Pullup Enable Register (PTAPUE) PTAPUE7–PTAPUE0 — Port A Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port A pin configured to have internal pullup 0 = Corresponding port A pin has internal pullup disconnected Technical Data 232 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port B 16.4 Port B Port B is an 8-bit special-function port that shares all eight of its pins with the analog-to-digital converter (ADC) module. 16.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 AD2 AD1 AD0 Read: Write: Reset: Alternate Function: Unaffected by reset AD7 AD6 AD5 AD4 AD3 Figure 16-6. Port B Data Register (PTB) PTB7–PTB0 — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. AD7–AD0 — Analog-to-Digital Input Bits AD7–AD0 are pins used for the input channels to the analog-to-digital converter module. The channel select bits in the ADC status and control register define which port B pin will be used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. NOTE: Care must be taken when reading port B while applying analog voltages to AD7–AD0 pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTBx/ADx pin, while PTB is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 233 Input/Output (I/O) Ports 16.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 16-7. Data Direction Register B (DDRB) DDRB7–DDRB0 — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB7–DDRB0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 16-8 shows the port B I/O logic. READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) DDRBx RESET WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 16-8. Port B I/O Circuit Technical Data 234 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port B When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-3 summarizes the operation of the port B pins. Table 16-3. Port B Pin Functions DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Accesses to PTB Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRB7–DDRB0 Pin PTB7–PTB0(3) 1 X Output DDRB7–DDRB0 PTB7–PTB0 PTB7–PTB0 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 235 Input/Output (I/O) Ports 16.5 Port C Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has software configurable pullup devices if configured as an input port. 16.5.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the seven port C pins. NOTE: Bit 6 and bit 5 of PTC are not available in the 42-pin shrink dual in-line package. Address: $0002 Bit 7 Read: 6 5 4 3 2 1 Bit 0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 0 Write: Reset: Unaffected by reset = Unimplemented Figure 16-9. Port C Data Register (PTC) PTC6–PTC0 — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. Technical Data 236 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port C 16.5.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer. Address: $0006 Bit 7 Read: 6 5 4 3 2 1 Bit 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented Figure 16-10. Data Direction Register C (DDRC) DDRC6–DDRC0 — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC6–DDRC0, configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 16-11 shows the port C I/O logic. NOTE: For those devices packaged in a 42-pin shrink dual in-line package, PTC5 and PTC6 are connected to ground internally. DDRC5 and DDRC6 should be set to a 0 to configure PTC5 and PTC6 as inputs. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 237 Input/Output (I/O) Ports VDD READ DDRC ($0006) PTCPUEx INTERNAL DATA BUS WRITE DDRC ($0006) DDRCx 45 k RESET WRITE PTC ($0002) PTCx PTCx READ PTC ($0002) Figure 16-11. Port C I/O Circuit When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-4 summarizes the operation of the port C pins. Table 16-4. Port C Pin Functions PTCPUE Bit DDRC Bit PTC Bit Accesses to DDRC I/O Pin Mode Accesses to PTC Read/Write Read Write 1 0 X(1) Input, VDD(2) DDRC6–DDRC0 Pin PTC6–PTC0(3) 0 0 X Input, Hi-Z(4) DDRC6–DDRC0 Pin PTC6–PTC0(3) X 1 X Output DDRC6–DDRC0 PTC6–PTC0 PTC6–PTC0 1. X = Don’t care 2. I/O pin pulled up to VDD by internal pullup device. 3. Writing affects data register, but does not affect input. 4. Hi-Z = High impedance Technical Data 238 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port C 16.5.3 Port C Input Pullup Enable Register The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each of the seven port C pins. Each bit is individually configurable and requires that the data direction register, DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit’s DDRC is configured for output mode. Address: $000E Bit 7 Read: 6 5 4 3 2 1 Bit 0 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 16-12. Port C Input Pullup Enable Register (PTCPUE) PTCPUE6–PTCPUE0 — Port C Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port C pin configured to have internal pullup 0 = Corresponding port C pin internal pullup disconnected MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 239 Input/Output (I/O) Ports 16.6 Port D Port D is an 8-bit special-function port that shares four of its pins with the serial peripheral interface (SPI) module and four of its pins with two timer interface (TIM1 and TIM2) modules. Port D also has software configurable pullup devices if configured as an input port. 16.6.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the eight port D pins. Address: $0003 Bit 7 6 5 4 3 2 1 Bit 0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 MOSI MISO SS Read: Write: Reset: Alternate Function: Unaffected by reset T2CH1 T2CH0 T1CH1 T1CH0 SPSCK Figure 16-13. Port D Data Register (PTD) PTD7–PTD0 — Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. T2CH1 and T2CH0 — Timer 2 Channel I/O Bits The PTD7/T2CH1–PTD6/T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD7/T2CH1–PTD6/T2CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 22. Timer Interface Module (TIM). Technical Data 240 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port D T1CH1 and T1CH0 — Timer 1 Channel I/O Bits The PTD7/T1CH1–PTD6/T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB and ELSxA, determine whether the PTD7/T1CH1–PTD6/T1CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 22. Timer Interface Module (TIM). SPSCK — SPI Serial Clock The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE bit is clear, the PTD3/SPSCK pin is available for general-purpose I/O. MOSI — Master Out/Slave In The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear, the PTD2/MOSI pin is available for general-purpose I/O. MISO — Master In/Slave Out The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit, SPE, is clear, the SPI module is disabled, and the PTD0/SS pin is available for general-purpose I/O. Data direction register D (DDRD) does not affect the data direction of port D pins that are being used by the SPI module. However, the DDRD bits always determine whether reading port D returns the states of the latches or the states of the pins. See Table 16-5. SS — Slave Select The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the SPI master bit, SPMSTR, is set, the PTD0/SS pin is available for general-purpose I/O. When the SPI is enabled, the DDRB0 bit in data direction register B (DDRB) has no effect on the PTD0/SS pin. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 241 Input/Output (I/O) Ports 16.6.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer. Address: $0007 Bit 7 6 5 4 3 2 1 Bit 0 DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 16-14. Data Direction Register D (DDRD) DDRD7–DDRD0 — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD7–DDRD0, configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 16-15 shows the port D I/O logic. Technical Data 242 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port D VDD READ DDRD ($0007) PTDPUEx WRITE DDRD ($0007) DDRDx INTERNAL DATA BUS RESET 30 k WRITE PTD ($0003) PTDx PTDx READ PTD ($0003) Figure 16-15. Port D I/O Circuit When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-5 summarizes the operation of the port D pins. Table 16-5. Port D Pin Functions PTDPUE Bit DDRD Bit PTD Bit Accesses to DDRD I/O Pin Mode Accesses to PTD Read/Write Read Write 1 0 X(1) Input, VDD(2) DDRD7–DDRD0 Pin PTD7–PTD0(3) 0 0 X Input, Hi-Z(4) DDRD7–DDRD0 Pin PTD7–PTD0(3) X 1 X Output DDRD7–DDRD0 PTD7–PTD0 PTD7–PTD0 1. X = Don’t care 2. I/O pin pulled up to VDD by internal pullup device. 3. Writing affects data register, but does not affect input. 4. Hi-Z = High imp[edance MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 243 Input/Output (I/O) Ports 16.6.3 Port D Input Pullup Enable Register The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each of the eight port D pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit’s DDRD is configured for output mode. Address: $000F Bit 7 6 5 4 3 2 1 Bit 0 Read: PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 16-16. Port D Input Pullup Enable Register (PTDPUE) PTDPUE7–PTDPUE0 — Port D Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port D pin configured to have internal pullup 0 = Corresponding port D pin has internal pullup disconnected Technical Data 244 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port E 16.7 Port E Port E is a 5-bit special-function port that shares two of its pins with the serial communications interface (SCI) module and two of its pins with the internal clock generator (ICG). 16.7.1 Port E Data Register The port E data register contains a data latch for each of the five port E pins. Address: Read: $0008 Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 PTE4 PTE3 PTE2 PTE1 PTE0 RxD TxD Write: Reset: Unaffected by reset Alternate Function: OSC1 OSC2 = Unimplemented Figure 16-17. Port E Data Register (PTE) PTE4-PTE0 — Port E Data Bits These read/write bits are software-programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port Edata. NOTE: Data direction register E (DDRE) does not affect the data direction of port E pins that are being used by the SCI module. However, the DDRE bits always determine whether reading port E returns the states of the latches or the states of the pins. See Table 16-6. OSC2 and OSC1 — OSC2 and OSC1 Bits Under software control, PTE4 and PTE3 can be configured as external clock inputs and outputs. PTE3 will become an output clock, OSC2, if selected in the configuration registers and enabled in the MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 245 Input/Output (I/O) Ports ICG registers. PTE4 will become an external input clock source, OSC1, if selected in the configuration registers and enabled in the ICG registers. See Section 7. Internal Clock Generator (ICG) Module and Section 9. Computer Operating Properly (COP) Module. While configured as oscillator pins, writes have no effect and reads return undefined values. RxD — SCI Receive Data Input The PTE1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See Section 18. Enhanced Serial Communications Interface (ESCI) Module. TxD — SCI Transmit Data Output The PTE0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See Section 18. Enhanced Serial Communications Interface (ESCI) Module. 16.7.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer. Address: Read: $000C Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 Write: Reset: 0 0 0 = Unimplemented Figure 16-18. Data Direction Register E (DDRE) Technical Data 246 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port E DDRE4–DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE4–DDRE0, configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input NOTE: Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 16-19 shows the port E I/O logic. READ DDRE ($000C) INTERNAL DATA BUS WRITE DDRE ($000C) RESET DDREx WRITE PTE ($0008) PTEx PTEx READ PTE ($0008) Figure 16-19. Port E I/O Circuit When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-6 summarizes the operation of the port E pins. Table 16-6. Port E Pin Functions DDRE Bit PTE Bit I/O Pin Mode Accesses to DDRE Accesses to PTE Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRE4–DDRE0 Pin PTE4–PTE0(3) 1 X Output DDRE4–DDRE0 PTE4–PTE0 PTE4–PTE0 1. X = Don’t care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Input/Output (I/O) Ports Technical Data 247 Input/Output (I/O) Ports Technical Data 248 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Input/Output (I/O) Ports MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 17. Random-Access Memory (RAM) 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.2 Introduction This section describes the 512 bytes of RAM (random-access memory). 17.3 Functional Description Addresses $0040 through $023F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805 compatibility, the H register is not stacked. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Random-Access Memory (RAM) Technical Data 249 Random-Access Memory (RAM) During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Technical Data 250 Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Random-Access Memory (RAM) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 18. Enhanced Serial Communications Interface (ESCI) Module 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 18.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 18.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .260 18.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 18.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 18.5.3.8 Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 18.7 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . .270 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 251 Enhanced Serial Communications Interface (ESCI) 18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 271 18.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 18.9.1 ESCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 18.9.2 ESCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 18.9.3 ESCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 18.9.4 ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 18.9.5 ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 18.9.6 ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 18.9.7 ESCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . 284 18.9.8 ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . 286 18.10 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 18.10.1 ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . 290 18.10.2 ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . 292 18.10.3 Bit Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 18.10.4 Arbitration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 18.2 Introduction The enhanced serial communications interface (ESCI) module allows asynchronous communications with peripheral devices and other microcontroller units (MCU). Technical Data 252 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Features 18.3 Features Features include: • Full-duplex operation • Standard mark/space non-return-to-zero (NRZ) format • Programmable baud rates • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Separate receiver and transmitter central processor unit (CPU) interrupt requests • Programmable transmitter output polarity • Two receiver wakeup methods: – Idle line wakeup – address mark wakeup • Interrupt-driven operation with eight interrupt flags: – Transmitter empty – Transmission complete – Receiver full – Idle receiver input – Receiver overrun – Noise error – Framing error – Parity error • Receiver framing error detection • Hardware parity checking • 1/16 bit-time noise detection MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 253 Enhanced Serial Communications Interface (ESCI) 18.4 Pin Name Conventions The generic names of the ESCI input/output (I/O) pins are: • RxD (receive data) • TxD (transmit data) ESCI I/O lines are implemented by sharing parallel I/O port pins. The full name of an ESCI input or output reflects the name of the shared port pin. Table 18-1 shows the full names and the generic names of the ESCI I/O pins. The generic pin names appear in the text of this section. Table 18-1. Pin Name Conventions Generic Pin Names Full Pin Names RxD TxD PTE1/RxD PTE0/TxD 18.5 Functional Description Figure 18-1 shows the structure of the ESCI module. The ESCI allows full-duplex, asynchronous, NRZ serial communication between the MCU and remote devices, including other MCUs. The transmitter and receiver of the ESCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the ESCI, writes the data to be transmitted, and processes received data. For reference, a summary of the ESCI module input/output registers is provided in Figure 18-2. Technical Data 254 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description INTERNAL BUS ERROR INTERRUPT CONTROL RECEIVE SHIFT REGISTER RxD ESCI DATA REGISTER RECEIVER INTERRUPT CONTROL TRANSMITTER INTERRUPT CONTROL ESCI DATA REGISTER TRANSMIT SHIFT REGISTER RxD ARBITER- TxD SCI_TxD TXINV LINR SCTIE R8 TCIE T8 SCRIE ILIE TE SCTE RE TC RWU SBK SCRF OR ORIE IDLE NF NEIE FE FEIE PE PEIE LOOPS LOOPS WAKEUP CONTROL RECEIVE CONTROL ENSCI ENSCI TRANSMIT CONTROL FLAG CONTROL BKF M RPF WAKE LINT ILTY BUS CLOCK PRESCALER ÷4 PRESCALER BAUD RATE GENERATOR ÷ 16 PEN PTY DATA SELECTION CONTROL Figure 18-1. ESCI Module Block Diagram MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 255 Enhanced Serial Communications Interface (ESCI) Addr. $0009 $000A $000B $0013 $0014 $0015 $0016 $0017 $0018 Register Name Read: ESCI Prescaler Register (SCPSC) Write: See page 286. Reset: Read: ESCI Arbiter Control Register (SCIACTL) Write: See page 290. Reset: Read: ESCI Arbiter Data Register (SCIADAT) Write: See page 292. Reset: Bit 7 6 5 4 3 2 1 Bit 0 PDS2 PDS1 PDS0 PSSB4 PSSB3 PSSB2 PSSB1 PSSB0 0 0 0 0 0 0 0 0 AM0 ACLK AFIN ARUN AROVFL ARD8 AM1 0 0 0 0 0 0 0 0 ARD7 ARD6 ARD5 ARD4 ARD3 ARD2 ARD1 ARD0 0 0 0 0 0 0 0 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 R R ORIE NEIE FEIE PEIE Read: ESCI Control Register 1 LOOPS (SCC1) Write: See page 272. Reset: 0 Read: ESCI Control Register 2 (SCC2) Write: See page 275. Reset: ALOST Read: ESCI Control Register 3 (SCC3) Write: See page 278. Reset: R8 U 0 0 0 0 0 0 0 Read: ESCI Status Register 1 (SCS1) Write: See page 279. Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Read: ESCI Status Register 2 (SCS2) Write: See page 283. Reset: 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Read: ESCI Data Register (SCDR) Write: See page 284. Reset: Read: ESCI Baud Rate Register $0019 (SCBR) Write: See page 284. Reset: Unaffected by reset R LINR SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 18-2. ESCI I/O Register Summary Technical Data 256 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description 18.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 18-3. START BIT START BIT 8-BIT DATA FORMAT (BIT M IN SCC1 CLEAR) BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 PARITY OR DATA BIT BIT 7 PARITY OR DATA BIT 9-BIT DATA FORMAT (BIT M IN SCC1 SET) BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 STOP BIT BIT 6 BIT 7 BIT 8 NEXT START BIT NEXT START BIT STOP BIT Figure 18-3. SCI Data Formats 18.5.2 Transmitter Figure 18-4 shows the structure of the SCI transmitter and the registers are summarized in Figure 18-2. 18.5.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8). 18.5.2.2 Character Transmission During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI data register (SCDR) is the writeonly buffer between the internal data bus and the transmit shift register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 257 Enhanced Serial Communications Interface (ESCI) INTERNAL BUS BAUD DIVIDER ÷ 16 ESCI DATA REGISTER SCP1 11-BIT TRANSMIT SHIFT REGISTER STOP SCP0 SCR1 H SCR2 8 7 6 5 4 3 2 START PRESCALER ÷4 1 0 L SCI_TxD PSSB3 PTY MSB PARITY GENERATION T8 BREAK (ALL ZEROS) PSSB4 PEN PREAMBLE (ALL ONES) PDS0 M SHIFT ENABLE PDS1 TXINV LOAD FROM SCDR PDS2 TRANSMITTER CPU INTERRUPT REQUEST BUS CLOCK PRESCALER SCR0 TRANSMITTER CONTROL LOGIC PSSB2 PSSB1 PSSB0 SCTE SCTE SCTIE TC TCIE SBK LOOPS SCTIE ENSCI TC TE TCIE LINT Figure 18-4. ESCI Transmitter To initiate an ESCI transmission: 1. Enable the ESCI by writing a logic 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in ESCI control register 2 (SCC2). 3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3. 4. Repeat step 3 for each subsequent transmission. Technical Data 258 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift register. A logic 1 stop bit goes into the most significant bit (MSB) position. The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins. 18.5.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. For TXINV = 0 (output not inverted), a transmitted break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive logic 0 data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed by 9 or 10 logic 0 data bits and a logic 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive logic 0 data bits. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 259 Enhanced Serial Communications Interface (ESCI) Receiving a break character has these effects on ESCI registers: • Sets the framing error bit (FE) in SCS1 • Sets the ESCI receiver full bit (SCRF) in SCS1 • Clears the ESCI data register (SCDR) • Clears the R8 bit in SCC3 • Sets the break flag bit (BKF) in SCS2 • May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits 18.5.2.4 Idle Characters For TXINV = 0 (output not inverted), a transmitted idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. NOTE: When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. A good time to toggle the TE bit for a queued idle character is when the SCTE bit becomes set and just before writing the next byte to the SCDR. 18.5.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. See 18.9.1 ESCI Control Register 1. Technical Data 260 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description 18.5.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the ESCI transmitter: • ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. • Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests. 18.5.3 Receiver Figure 18-5 shows the structure of the ESCI receiver. The receiver I/O registers are summarized in Figure 18-2. 18.5.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). 18.5.3.2 Character Reception During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 261 Enhanced Serial Communications Interface (ESCI) INTERNAL BUS SCP1 SCR2 SCP0 SCR0 BUS CLOCK BAUD DIVIDER DATA RECOVERY RxD BKF PDS2 ALL ZEROS RPF H 11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 3 2 1 0 L PDS1 PDS0 PSSB4 PSSB3 PSSB2 M WAKE ILTY PSSB1 PEN PSSB0 PTY SCRF WAKEUP LOGIC PARITY CHECKING IDLE ILIE CPU INTERRUPT REQUEST SCRF SCRIE OR ORIE ERROR CPU INTERRUPT REQUEST STOP ÷ 16 ALL ONES PRESCALER PRESCALER ÷4 ESCI DATA REGISTER START SCR1 MSB LINR NF NEIE FE FEIE PE PEIE RWU IDLE R8 ILIE SCRIE OR ORIE NF NEIE FE FEIE PE PEIE Figure 18-5. ESCI Receiver Block Diagram Technical Data 262 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request. 18.5.3.3 Data Sampling The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times (see Figure 18-6): • After every start bit • After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0) To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. START BIT RxD START BIT QUALIFICATION SAMPLES LSB START BIT DATA VERIFICATION SAMPLING RT CLOCK STATE RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16 RT1 RT2 RT3 RT4 RT CLOCK RT CLOCK RESET Figure 18-6. Receiver Data Sampling MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 263 Enhanced Serial Communications Interface (ESCI) To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 18-2 summarizes the results of the start bit verification samples. Table 18-2. Start Bit Verification RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 101 No 0 110 No 0 111 No 0 If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-3 summarizes the results of the data bit samples. Table 18-3. Data Bit Recovery NOTE: Technical Data 264 RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag 000 0 0 001 0 1 010 0 1 011 1 1 100 0 1 101 1 1 110 1 1 111 1 0 The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-4 summarizes the results of the stop bit samples. Table 18-4. Stop Bit Recovery RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag 000 1 0 001 1 1 010 1 1 011 0 1 100 1 1 101 0 1 110 0 1 111 0 0 18.5.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. 18.5.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur. As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 265 Enhanced Serial Communications Interface (ESCI) Slow Data Tolerance Figure 18-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. MSB STOP RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RECEIVER RT CLOCK DATA SAMPLES Figure 18-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is: 154 – 147 × 100 = 4.54% -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 18-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is: 170 – 163 × 100 = 4.12% -------------------------170 Technical Data 266 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description Fast Data Tolerance Figure 18-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. STOP IDLE OR NEXT CHARACTER RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RECEIVER RT CLOCK DATA SAMPLES Figure 18-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors:is 154 – 160 × 100 = 3.90%. -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is: 170 – 176 × 100 = 3.53%. -------------------------170 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 267 Enhanced Serial Communications Interface (ESCI) 18.5.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: 1. Address mark — An address mark is a logic 1 in the MSB position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the ESCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. 2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. NOTE: Technical Data 268 With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle will cause the receiver to wake up. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Functional Description 18.5.3.7 Receiver Interrupts These sources can generate CPU interrupt requests from the ESCI receiver: • ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. • Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests. 18.5.3.8 Error Interrupts These receiver error flags in SCS1 can generate CPU interrupt requests: • Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate ESCI error CPU interrupt requests. • Noise flag (NF) — The NF bit is set when the ESCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate ESCI error CPU interrupt requests. • Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error CPU interrupt requests. • Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error CPU interrupt requests. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 269 Enhanced Serial Communications Interface (ESCI) 18.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 18.6.1 Wait Mode The ESCI module remains active in wait mode. Any enabled CPU interrupt request from the ESCI module can bring the MCU out of wait mode. If ESCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. 18.6.2 Stop Mode The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states. ESCI module operation resumes after the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission or reception results in invalid data. 18.7 ESCI During Break Module Interrupts The BCFE bit in the break flag control register (SBFCR) enables software to clear status bits during the break state. See Section 6. Break Module (BRK). To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software Technical Data 270 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Signals does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 18.8 I/O Signals Port E shares two of its pins with the ESCI module. The two ESCI I/O pins are: • PTE0/TxD — transmit data • PTE1/RxD — receive data 18.8.1 PTE0/TxD (Transmit Data) The PTE0/TxD pin is the serial data output from the ESCI transmitter. The ESCI shares the PTE0/TxD pin with port E. When the ESCI is enabled, the PTE0/TxD pin is an output regardless of the state of the DDRE0 bit in data direction register E (DDRE). 18.8.2 PTE1/RxD (Receive Data) The PTE1/RxD pin is the serial data input to the ESCI receiver. The ESCI shares the PTE1/RxD pin with port E. When the ESCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit in data direction register E (DDRE). 18.9 I/O Registers These I/O registers control and monitor ESCI operation: • ESCI control register 1, SCC1 • ESCI control register 2, SCC2 • ESCI control register 3, SCC3 • ESCI status register 1, SCS1 • ESCI status register 2, SCS2 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 271 Enhanced Serial Communications Interface (ESCI) • ESCI data register, SCDR • ESCI baud rate register, SCBR • ESCI prescaler register, SCPSC • ESCI arbiter control register, SCIACTL • ESCI arbiter data register, SCIADAT 18.9.1 ESCI Control Register 1 ESCI control register 1 (SCC1): • Enables loop mode operation • Enables the ESCI • Controls output polarity • Controls character length • Controls ESCI wakeup method • Controls idle character detection • Enables parity function • Controls parity type Address: $0013 Bit 7 6 5 4 3 2 1 Bit 0 LOOPS ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-9. ESCI Control Register 1 (SCC1) LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled Technical Data 272 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers ENSCI — Enable ESCI Bit This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in ESCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = ESCI enabled 0 = ESCI disabled TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted NOTE: Setting the TXINV bit inverts all transmitted values including idle, break, start, and stop bits. M — Mode (Character Length) Bit This read/write bit determines whether ESCI characters are eight or nine bits long (See Table 18-5).The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the M bit. 1 = 9-bit ESCI characters 0 = 8-bit ESCI characters Table 18-5. Character Format Selection Control Bits Character Format M PEN:PTY Start Bits Data Bits Parity Stop Bits Character Length 0 0 X 1 8 None 1 10 bits 1 0 X 1 9 None 1 11 bits 0 1 0 1 7 Even 1 10 bits 0 1 1 1 7 Odd 1 10 bits 1 1 0 1 8 Even 1 11 bits 1 1 1 1 8 Odd 1 11 bits MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 273 Enhanced Serial Communications Interface (ESCI) WAKE — Wakeup Condition Bit This read/write bit determines which condition wakes up the ESCI: a logic 1 (address mark) in the MSB position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY — Idle Line Type Bit This read/write bit determines when the ESCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit PEN — Parity Enable Bit This read/write bit enables the ESCI parity function (see Table 18-5). When enabled, the parity function inserts a parity bit in the MSB position (see Table 18-3). Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled PTY — Parity Bit This read/write bit determines whether the ESCI generates and checks for odd parity or even parity (see Table 18-5). Reset clears the PTY bit. 1 = Odd parity 0 = Even parity NOTE: Technical Data 274 Changing the PTY bit in the middle of a transmission or reception can generate a parity error. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers 18.9.2 ESCI Control Register 2 ESCI control register 2 (SCC2): • Enables these CPU interrupt requests: – SCTE bit to generate transmitter CPU interrupt requests – TC bit to generate transmitter CPU interrupt requests – SCRF bit to generate receiver CPU interrupt requests – IDLE bit to generate receiver CPU interrupt requests • Enables the transmitter • Enables the receiver • Enables ESCI wakeup • Transmits ESCI break characters Address: $0014 Bit 7 6 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-10. ESCI Control Register 2 (SCC2) SCTIE — ESCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate ESCI transmitter CPU interrupt requests. Setting the SCTIE bit in SCC2 enables the SCTE bit to generate CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate ESCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 275 Enhanced Serial Communications Interface (ESCI) SCRIE — ESCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate ESCI receiver CPU interrupt requests. Setting the SCRIE bit in SCC2 enables the SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled NOTE: Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1. RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled NOTE: Technical Data 276 Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the ESCI to send a break character instead of a preamble. 18.9.3 ESCI Control Register 3 ESCI control register 3 (SCC3): • Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted. • Enables these interrupts: – Receiver overrun – Noise error – Framing error – Parity error MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 277 Enhanced Serial Communications Interface (ESCI) Address: $0015 Bit 7 Read: 6 5 4 3 2 1 Bit 0 T8 R R ORIE NEIE FEIE PEIE 0 0 0 0 0 0 0 = Unimplemented R R8 Write: Reset: U = Reserved U = Unaffected Figure 18-11. ESCI Control Register 3 (SCC3) R8 — Received Bit 8 When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 — Transmitted Bit 8 When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset clears the T8 bit. ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables ESCI error CPU interrupt requests generated by the receiver overrun bit, OR. Reset clears ORIE. 1 = ESCI error CPU interrupt requests from OR bit enabled 0 = ESCI error CPU interrupt requests from OR bit disabled NEIE — Receiver Noise Error Interrupt Enable Bit This read/write bit enables ESCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = ESCI error CPU interrupt requests from NE bit enabled 0 = ESCI error CPU interrupt requests from NE bit disabled Technical Data 278 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables ESCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = ESCI error CPU interrupt requests from FE bit enabled 0 = ESCI error CPU interrupt requests from FE bit disabled PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables ESCI receiver CPU interrupt requests generated by the parity error bit, PE. Reset clears PEIE. 1 = ESCI error CPU interrupt requests from PE bit enabled 0 = ESCI error CPU interrupt requests from PE bit disabled 18.9.4 ESCI Status Register 1 ESCI status register 1 (SCS1) contains flags to signal these conditions: • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error • Parity error Address: Read: $0016 Bit 7 6 5 4 3 2 1 Bit 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 18-12. ESCI Status Register 1 (SCS1) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 279 Enhanced Serial Communications Interface (ESCI) SCTE — ESCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an ESCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an ESCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register TC — Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF — ESCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data register. SCRF can generate an ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an ESCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the Technical Data 280 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared) OR — Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an ESCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 18-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF — Receiver Noise Flag Bit This clearable, read-only bit is set when the ESCI detects noise on the RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 281 Enhanced Serial Communications Interface (ESCI) BYTE 1 BYTE 2 BYTE 3 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 NORMAL FLAG CLEARING SEQUENCE BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1 READ SCDR BYTE 2 READ SCDR BYTE 3 BYTE 1 BYTE 2 BYTE 3 SCRF = 0 OR = 0 SCRF = 1 OR = 1 SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 DELAYED FLAG CLEARING SEQUENCE BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 1 READ SCDR BYTE 3 Figure 18-13. Flag Clearing Sequence FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an ESCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected PE — Receiver Parity Error Bit This clearable, read-only bit is set when the ESCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected Technical Data 282 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers 18.9.5 ESCI Status Register 2 ESCI status register 2 (SCS2) contains flags to signal these conditions: • Break character detected • Incoming data Address: Read: $0017 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 18-14. ESCI Status Register 2 (SCS2) BKF — Break Flag Bit This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF — Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling RPF before disabling the ESCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 283 Enhanced Serial Communications Interface (ESCI) 18.9.6 ESCI Data Register The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the ESCI data register. Address: $0018 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 18-15. ESCI Data Register (SCDR) R7/T7:R0/T0 — Receive/Transmit Data Bits Reading address $0018 accesses the read-only received data bits, R7:R0. Writing to address $0018 writes the data to be transmitted, T7:T0. Reset has no effect on the ESCI data register. NOTE: Do not use read-modify-write instructions on the ESCI data register. 18.9.7 ESCI Baud Rate Register The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for both the receiver and the transmitter. NOTE: There are two prescalers available to adjust the baud rate. One in the ESCI baud rate register and one in the ESCI prescaler register. Address: $0019 Bit 7 6 5 4 3 2 1 Bit 0 R LINR SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 0 0 = Unimplemented R Read: Write: Reset: = Reserved Figure 18-16. ESCI Baud Rate Register (SCBR) Technical Data 284 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers LINR — LIN Receiver Bits This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol as shown in Table 18-6. Reset clears LINR. Table 18-6. ESCI LIN Control Bits LINR M Functionality 0 X Normal ESCI functionality 1 0 11-bit break detect enabled for LIN receiver 1 1 12-bit break detect enabled for LIN receiver SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits These read/write bits select the baud rate register prescaler divisor as shown in Table 18-7. Reset clears SCP1 and SCP0. Table 18-7. ESCI Baud Rate Prescaling SCP[1:0] Baud Rate Register Prescaler Divisor (BPD) 0 0 1 0 1 3 1 0 4 1 1 13 SCR2–SCR0 — ESCI Baud Rate Select Bits These read/write bits select the ESCI baud rate divisor as shown in Table 18-8. Reset clears SCR2–SCR0. Table 18-8. ESCI Baud Rate Selection SCR[2:1:0] Baud Rate Divisor (BD) 0 0 0 1 0 0 1 2 0 1 0 4 0 1 1 8 1 0 0 16 1 0 1 32 1 1 0 64 1 1 1 128 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 285 Enhanced Serial Communications Interface (ESCI) 18.9.8 ESCI Prescaler Register The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for both the receiver and the transmitter. NOTE: There are two prescalers available to adjust the baud rate. One in the ESCI baud rate register and one in the ESCI prescaler register. Address: $0017 Bit 7 6 5 4 3 2 1 Bit 0 PDS2 PDS1 PDS0 PSSB4 PSSB3 PSSB2 PSSB1 PSSB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-17. ESCI Prescaler Register (SCPSC) PDS2–PDS0 — Prescaler Divisor Select Bits These read/write bits select the prescaler divisor as shown in Table 18-9. Reset clears PDS2–PDS0. NOTE: The setting of ‘000’ will bypass this prescaler. It is not recommended to bypass the prescaler while ENSCI is set, because the switching is not glitch free. Table 18-9. ESCI Prescaler Division Ratio Technical Data 286 PS[2:1:0] Prescaler Divisor (PD) 0 0 0 Bypass this prescaler 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 8 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers PSSB4–PSSB0 — Clock Insertion Select Bits These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve more timing resolution on the average prescaler frequency as shown in Table 18-10. Reset clears PSSB4–PSSB0. Table 18-10. ESCI Prescaler Divisor Fine Adjust PSSB[4:3:2:1:0] Prescaler Divisor Fine Adjust (PDFA) 0 0 0 0 0 0/32 = 0 0 0 0 0 1 1/32 = 0.03125 0 0 0 1 0 2/32 = 0.0625 0 0 0 1 1 3/32 = 0.09375 0 0 1 0 0 4/32 = 0.125 0 0 1 0 1 5/32 = 0.15625 0 0 1 1 0 6/32 = 0.1875 0 0 1 1 1 7/32 = 0.21875 0 1 0 0 0 8/32 = 0.25 0 1 0 0 1 9/32 = 0.28125 0 1 0 1 0 10/32 = 0.3125 0 1 0 1 1 11/32 = 0.34375 0 1 1 0 0 12/32 = 0.375 0 1 1 0 1 13/32 = 0.40625 0 1 1 1 0 14/32 = 0.4375 0 1 1 1 1 15/32 = 0.46875 1 0 0 0 0 16/32 = 0.5 1 0 0 0 1 17/32 = 0.53125 1 0 0 1 0 18/32 = 0.5625 1 0 0 1 1 19/32 = 0.59375 1 0 1 0 0 20/32 = 0.625 1 0 1 0 1 21/32 = 0.65625 1 0 1 1 0 22/32 = 0.6875 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 287 Enhanced Serial Communications Interface (ESCI) Table 18-10. ESCI Prescaler Divisor Fine Adjust (Continued) PSSB[4:3:2:1:0] Prescaler Divisor Fine Adjust (PDFA) 1 0 1 1 1 23/32 = 0.71875 1 1 0 0 0 24/32 = 0.75 1 1 0 0 1 25/32 = 0.78125 1 1 0 1 0 26/32 = 0.8125 1 1 0 1 1 27/32 = 0.84375 1 1 1 0 0 28/32 = 0.875 1 1 1 0 1 29/32 = 0.90625 1 1 1 1 0 30/32 = 0.9375 1 1 1 1 1 31/32 = 0.96875 Use the following formula to calculate the ESCI baud rate: f Bus Baud rate = -----------------------------------------------------------------------------------64 × BPD × BD × ( PD + PDFA ) where: fBus = Bus frequency BPD = Baud rate register prescaler divisor BD = Baud rate divisor PD = Prescaler divisor PDFA = Prescaler divisor fine adjust Table 18-11 shows the ESCI baud rates that can be generated with a 4.9152-MHz bus frequency. Technical Data 288 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module I/O Registers Table 18-11. ESCI Baud Rate Selection Examples PS[2:1:0] PSSB[4:3:2:1:0] SCP[1:0] Prescaler Divisor (BPD) SCR[2:1:0] Baud Rate Divisor (BD) Baud Rate (f Bus= 4.9152 MHz) 0 0 0 X X X X X 0 0 1 0 0 0 1 76,800 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 9600 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 9562.65 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 9525.58 1 1 1 1 1 0 0 1 0 0 0 1 8563.07 0 0 0 X X X X X 0 0 1 0 0 1 2 38,400 0 0 0 X X X X X 0 0 1 0 1 0 4 19,200 0 0 0 X X X X X 0 0 1 0 1 1 8 9600 0 0 0 X X X X X 0 0 1 1 0 0 16 4800 0 0 0 X X X X X 0 0 1 1 0 1 32 2400 0 0 0 X X X X X 0 0 1 1 1 0 64 1200 0 0 0 X X X X X 0 0 1 1 1 1 128 600 0 0 0 X X X X X 0 1 3 0 0 0 1 25,600 0 0 0 X X X X X 0 1 3 0 0 1 2 12,800 0 0 0 X X X X X 0 1 3 0 1 0 4 6400 0 0 0 X X X X X 0 1 3 0 1 1 8 3200 0 0 0 X X X X X 0 1 3 1 0 0 16 1600 0 0 0 X X X X X 0 1 3 1 0 1 32 800 0 0 0 X X X X X 0 1 3 1 1 0 64 400 0 0 0 X X X X X 0 1 3 1 1 1 128 200 0 0 0 X X X X X 1 0 4 0 0 0 1 19,200 0 0 0 X X X X X 1 0 4 0 0 1 2 9600 0 0 0 X X X X X 1 0 4 0 1 0 4 4800 0 0 0 X X X X X 1 0 4 0 1 1 8 2400 0 0 0 X X X X X 1 0 4 1 0 0 16 1200 0 0 0 X X X X X 1 0 4 1 0 1 32 600 0 0 0 X X X X X 1 0 4 1 1 0 64 300 0 0 0 X X X X X 1 0 4 1 1 1 128 150 0 0 0 X X X X X 1 1 13 0 0 0 1 5908 0 0 0 X X X X X 1 1 13 0 0 1 2 2954 0 0 0 X X X X X 1 1 13 0 1 0 4 1477 0 0 0 X X X X X 1 1 13 0 1 1 8 739 0 0 0 X X X X X 1 1 13 1 0 0 16 369 0 0 0 X X X X X 1 1 13 1 0 1 32 185 0 0 0 X X X X X 1 1 13 1 1 0 64 92 0 0 0 X X X X X 1 1 13 1 1 1 128 46 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 289 Enhanced Serial Communications Interface (ESCI) 18.10 ESCI Arbiter The ESCI module comprises an arbiter module designed to support software for communication tasks as bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit counter with 1-bit overflow and control logic. The CPU can control operation mode via the ESCI arbiter control register (SCIACTL). 18.10.1 ESCI Arbiter Control Register Address: $000A Bit 7 6 Read: 5 4 AM0 ACLK 0 0 ALOST AM1 3 2 1 Bit 0 AFIN ARUN AROVFL ARD8 0 0 0 0 Write: Reset: 0 0 = Unimplemented Figure 18-18. ESCI Arbiter Control Register (SCIACTL) AM1 and AM0 — Arbiter Mode Select Bits These read/write bits select the mode of the arbiter module as shown in Table 18-12. Reset clears AM1 and AM0. Table 18-12. ESCI Arbiter Selectable Modes AM[1:0] ESCI Arbiter Mode 0 0 Idle / counter reset 0 1 Bit time measurement 1 0 Bus arbitration 1 1 Reserved / do not use ALOST — Arbitration Lost Flag This read-only bit indicates loss of arbitration. Clear ALOST by writing a logic 0 to AM1. Reset clears ALOST. Technical Data 290 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module ESCI Arbiter ACLK — Arbiter Counter Clock Select Bit This read/write bit selects the arbiter counter clock source. Reset clears ACLK. 1 = Arbiter counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler 0 = Arbiter counter is clocked with one half of the bus clock AFIN— Arbiter Bit Time Measurement Finish Flag This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to SCIACTL. Reset clears AFIN. 1 = Bit time measurement has finished 0 = Bit time measurement not yet finished ARUN— Arbiter Counter Running Flag This read-only bit indicates the arbiter counter is running. Reset clears ARUN. 1 = Arbiter counter running 0 = Arbiter counter stopped AROVFL— Arbiter Counter Overflow Bit This read-only bit indicates an arbiter counter overflow. Clear AROVFL by writing any value to SCIACTL. Writing logic 0s to AM1 and AM0 resets the counter keeps it in this idle state. Reset clears AROVFL. 1 = Arbiter counter overflow has occurred 0 = No arbiter counter overflow has occurred ARD8— Arbiter Counter MSB This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing any value to SCIACTL. Reset clears ARD8. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 291 Enhanced Serial Communications Interface (ESCI) 18.10.2 ESCI Arbiter Data Register Address: $000B Read: Bit 7 6 5 4 3 2 1 Bit 0 ARD7 ARD6 ARD5 ARD4 ARD3 ARD2 ARD1 ARD0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 18-19. ESCI Arbiter Data Register (SCIADAT) ARD7–ARD0 — Arbiter Least Significant Counter Bits These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear ARD7–ARD0 by writing any value to SCIACTL. Writing logic 0s to AM1 and AM0 permanently resets the counter and keeps it in this idle state. Reset clears ARD7–ARD0. 18.10.3 Bit Time Measurement Two bit time measurement modes, described here, are available according to the state of ACLK. 1. ACLK = 0 — The counter is clocked with one half of the bus clock. The counter is started when a falling edge on the RxD pin is detected. The counter will be stopped on the next falling edge. ARUN is set while the counter is running, AFIN is set on the second falling edge on RxD (for instance, the counter is stopped). This mode is used to recover the received baud rate. See Figure 18-20. 2. ACLK = 1 — The counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler. The counter is started when a logic 0 is detected on RxD (see Figure 18-21). A logic 0 on RxD on enabling the bit time measurement with ACLK = 1 leads to immediate start of the counter (see Figure 18-22). The counter will be stopped on the next rising edge of RxD. This mode is used to measure the length of a received break. Technical Data 292 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Enhanced Serial Communications Interface (ESCI) Module ESCI Arbiter MEASURED TIME CPU READS RESULT OUT OF SCIADAT COUNTER STOPS, AFIN = 1 COUNTER STARTS, ARUN = 1 CPU WRITES SCIACTL WITH $20 RXD Figure 18-20. Bit Time Measurement with ACLK = 0 MEASURED TIME CPU READS RESULT OUT OF SCIADAT COUNTER STOPS, AFIN = 1 CPU WRITES SCIACTL WITH $30 COUNTER STARTS, ARUN = 1 RXD Figure 18-21. Bit Time Measurement with ACLK = 1, Scenario A MEASURED TIME CPU READS RESULT OUT OF SCIADAT COUNTER STOPS, AFIN = 1 COUNTER STARTS, ARUN = 1 CPU WRITES SCIACTL WITH $30 RXD Figure 18-22. Bit Time Measurement with ACLK = 1, Scenario B MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Enhanced Serial Communications Interface (ESCI) Module Technical Data 293 Enhanced Serial Communications Interface (ESCI) 18.10.4 Arbitration Mode If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD (output of the ESCI module, internal chip signal), the counter is started. When the counter reaches $38 (ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for example, another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced to 1, resulting in a seized transmission. If SCI_TxD is sensed logic 0 without having sensed a logic 0 before on RxD, the counter will be reset, arbitration operation will be restarted after the next rising edge of SCI_TxD. Technical Data 294 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Enhanced Serial Communications Interface (ESCI) Module MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 19. System Integration Module (SIM) 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 299 19.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 19.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . 299 19.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 300 19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 300 19.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 19.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 302 19.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 19.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 304 19.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 19.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 19.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .305 19.4.2.6 Monitor Mode Entry Module Reset (MODRST) . . . . . . . 305 19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 19.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 305 19.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 306 19.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 306 19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 19.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 19.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 19.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 19.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .310 19.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 19.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 19.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 312 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 295 System Integration Module (SIM) 19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 19.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313 19.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 19.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 316 19.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 318 19.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 319 19.2 Introduction This section describes the system integration module (SIM). Together with the central processor unit (CPU), the SIM controls all microconroller unit (MCU) activities. A block diagram of the SIM is shown in Figure 19-1. Table 19-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources Table 19-1 shows the internal signal names used in this section. Technical Data 296 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO ICG) SIM COUNTER CGMXCLK (FROM ICG) CGMOUT (FROM ICG) ÷2 CLOCK CONTROL VDD CLOCK GENERATORS INTERNAL PULLUP DEVICE RESET PIN LOGIC INTERNAL CLOCKS FORCED MONITOR MODE ENTRY LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) RESET INTERRUPT SOURCES INTERRUPT CONTROL AND PRIORITY DECODE CPU INTERFACE Figure 19-1. SIM Block Diagram Table 19-1. Signal Name Conventions Signal Name Description CGMXCLK Selected clock source from internal clock generator module (ICG) CGMOUT Clock output from ICG module (Bus clock = CGMOUT divided by two) IAB Internal address bus IDB Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 297 System Integration Module (SIM) Addr. Register Name Read: SIM Break Status Register $FE00 (SBSR) Write: See page 316. Reset: Bit 7 6 5 4 3 2 R R R R R R 1 Bit 0 SBSW R NOTE 0 0 0 0 0 0 0 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 R R R R R R R R BCFE R R R R R R R Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 318. POR: Read: SIM Upper Byte Address $FE02 Write: Register (SUBAR) Reset: $FE03 $FE04 $FE05 $FE06 Read: SIM Break Flag Control Register (SBFCR) Write: See page 319. Reset: 0 Read: Interrupt Status Register 1 (INT1) Write: See page 311. Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 (INT2) Write: See page 311. Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 (INT3) Write: See page 312. Reset: 0 0 0 0 0 0 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 = Unimplemented Figure 19-2. SIM I/O Register Summary Technical Data 298 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Bus Clock Control and Generation 19.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 19-3. This clock originates from either an external oscillator or from the internal clock generator. COPCLK TBMCLK ECLK CLOCK SELECT CIRCUIT CGMXCLK ICLK ÷2 ICG GENERATOR A CGMOUT B S* *WHEN S = 1, CGMOUT = B CS COP PRESCALER TBM PRESCALER SIM COUNTER BUS CLOCK GENERATORS ÷2 SIM MONITOR MODE USER MODE ICG Figure 19-3. System Clock Signals 19.3.1 Bus Timing In user mode, the internal bus frequency is the internal clock generator output (CGMXCLK) divided by four. 19.3.2 Clock Startup from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 299 System Integration Module (SIM) 19.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. See 19.7.2 Stop Mode. In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 19.4 Reset and System Initialization The MCU has these reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address • Forced monitor mode entry reset (MODRST) All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 19.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See 19.8 SIM Registers. Technical Data 300 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 19.4.1 External Pin Reset The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 19-2 for details. Figure 19-4 shows the relative timing. Table 19-2. PIN Bit Set Timing Reset Type Number of Cycles Required to Set PIN POR/LVI 4163 (4096 + 64 + 3) All others 67 (64 + 3) CGMOUT RST IAB VECT H VECT L PC Figure 19-4. External Reset Timing MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 301 System Integration Module (SIM) 19.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles. See Figure 19-5. An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR. See Figure 19-6. NOTE: For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 19-5. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES CGMXCLK IAB VECTOR HIGH Figure 19-5. Internal Reset Timing The COP reset is asynchronous to the bus clock. ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR MODRST INTERNAL RESET Figure 19-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. Technical Data 302 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 19.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables CGMOUT. • Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES CGMXCLK CGMOUT RST IRST $FFFE IAB $FFFF Figure 19-7. POR Recovery MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 303 System Integration Module (SIM) 19.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. The COP module is disabled if the RST pin or the IRQ pin is held at VDD + VHI while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VDD + VHI on the RST pin disables the COP module. 19.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 19.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. Technical Data 304 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Counter 19.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. 19.4.2.6 Monitor Mode Entry Module Reset (MODRST) The monitor mode entry module reset (MODRST) asserts its output to the SIM when monitor mode is entered in the condition where the reset vectors are erased ($FF). (See 15.4.1 Entering Monitor Mode.) When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal reset sources. 19.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter is 13 bits long. 19.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 305 System Integration Module (SIM) 19.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. 19.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. See 19.7.2 Stop Mode for details. The SIM counter is free-running after all reset states. See 19.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences. 19.6 Exception Control Normal, sequential program execution can be changed in three different ways: • Interrupts: – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) Technical Data 306 • Reset • Break interrupts MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control 19.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 19-8 shows interrupt entry timing. Figure 19-9 shows interrupt recovery timing. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). See Figure 19-10. MODULE INTERRUPT I BIT IAB IDB SP DUMMY DUMMY SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 19-8. Interrupt Entry Timing MODULE INTERRUPT I BIT IAB IDB SP – 4 SP – 3 CCR SP – 2 A SP – 1 X SP PC PC + 1 PC – 1 [7:0] PC – 1 [15:8] OPCODE OPERAND R/W Figure 19-9. Interrupt Recovery Timing MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 307 System Integration Module (SIM) FROM RESET BREAK I BIT SET? INTERRUPT? YES NO YES I BIT SET? NO IRQ INTERRUPT? YES NO AS MANY INTERRUPTS AS EXIST ON CHIP STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 19-10. Interrupt Processing 19.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the Technical Data 308 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 19-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI LDA #$FF INT1 BACKGROUND ROUTINE PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 19-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 309 System Integration Module (SIM) 19.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 19.6.1.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 19-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 19-3. Interrupt Sources Priority Interrupt Source Interrupt Status Register Flag Highest Reset — SWI instruction — IRQ pin I1 ICG clock monitor I2 TIM1 channel 0 I3 TIM1 channel 1 I4 TIM1 overflow I5 TIM2 channel 0 I6 TIM2 channel 1 I7 TIM2 overflow I8 SPI receiver full I9 SPI transmitter empty I10 SCI receive error I11 SCI receive I12 SCI transmit I13 Keyboard I14 ADC conversion complete I15 Timebase module I16 Lowest Technical Data 310 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: I6 I5 I4 I3 I2 I1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 19-12. Interrupt Status Register 1 (INT1) I6–I1 — Interrupt Flags 1–6 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0 and Bit 1 — Always read 0 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: I14 I13 I12 I11 I10 I9 I8 I7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 19-13. Interrupt Status Register 2 (INT2) I14–I7 — Interrupt Flags 14–7 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 311 System Integration Module (SIM) Interrupt Status Register 3 Address: $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 0 0 I16 I15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 19-14. Interrupt Status Register 3 (INT3) Bits 7–2 — Always read 0 I16–I15 — Interrupt Flags 16–15 These flags indicate the presence of an interrupt request from the source shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present 19.6.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 19.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output (see Section 22. Timer Interface Module (TIM)). The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. 19.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are Technical Data 312 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Low-Power Modes protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. 19.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 19.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 19-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode also can be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 313 System Integration Module (SIM) break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB WAIT ADDR IDB WAIT ADDR + 1 PREVIOUS DATA SAME SAME NEXT OPCODE SAME SAME R/W Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 19-15. Wait Mode Entry Timing Figure 19-16 and Figure 19-17 show the timing for WAIT recovery. IAB $6E0B IDB $A6 $A6 $6E0C $A6 $01 $00FF $0B $00FE $00FD $00FC $6E EXITSTOPWAIT Note: EXITSTOPWAIT = RST pin, CPU interrupt, or break interrupt Figure 19-16. Wait Recovery from Interrupt or Break 32 CYCLES IAB IDB $6E0B $A6 $A6 32 CYCLES RSTVCT H RSTVCTL $A6 RST CGMXCLK Figure 19-17. Wait Recovery from Internal Reset Technical Data 314 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Low-Power Modes 19.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the mask option register (MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 19-18 shows stop mode entry timing. NOTE: To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0. CPUSTOP IAB STOP ADDR IDB STOP ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W Note: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 19-18. Stop Mode Entry Timing MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 315 System Integration Module (SIM) STOP RECOVERY PERIOD CGMXCLK INT/BREAK IAB STOP + 2 STOP +1 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 19-19. Stop Mode Recovery from Interrupt or Break 19.8 SIM Registers The SIM has three memory-mapped registers. Table 19-4 shows the mapping of these registers. Table 19-4. SIM Registers Address Register Access Mode $FE00 SBSR User $FE01 SRSR User $FE03 SBFCR User 19.8.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop mode or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R 0 0 0 0 0 0 Read: Bit 0 SBSW Write: Reset: 1 R Note(1) 0 R 0 = Reserved Note: 1. Writing a logic 0 clears SBSW. Figure 19-20. SIM Break Status Register (SBSR) Technical Data 316 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt. 0 = Stop mode or wait mode was not exited by break interrupt. SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI ;Restore H register. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 317 System Integration Module (SIM) 19.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset provided all previous reset status bits have been cleared. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 19-21. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MODRST — Monitor Mode Entry Module Reset Bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQ = VDD 0 = POR or read of SRSR Technical Data 318 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset caused by the LVI circuit 0 = POR or read of SRSR 19.8.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 19-22. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA System Integration Module (SIM) Technical Data 319 System Integration Module (SIM) Technical Data 320 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 System Integration Module (SIM) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 20. Serial Peripheral Interface Module (SPI) 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 20.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 20.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .327 20.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 328 20.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 329 20.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 330 20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 332 20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 20.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 20.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335 20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 20.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 341 20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 342 20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 342 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 321 Serial Peripheral Interface Module (SPI) 20.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 20.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 347 20.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 20.2 Introduction This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous, serial communications with peripheral devices. 20.3 Features Features of the SPI module include: Technical Data 322 • Full-duplex operation • Master and slave modes • Double-buffered operation with separate transmit and receive registers • Four master mode frequencies (maximum = bus frequency ÷ 2) • Maximum slave mode frequency = bus frequency • Serial clock with programmable polarity and phase • Two separately enabled interrupts: – SPRF (SPI receiver full) – SPTE (SPI transmitter empty) • Mode fault error flag with CPU interrupt capability • Overflow error flag with CPU interrupt capability • Programmable wired-OR mode • I2C (inter-integrated circuit) compatibility • I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Pin Name Conventions 20.4 Pin Name Conventions The text that follows describes the SPI. The SPI I/O pin names are SS (slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel I/O ports. The full names of the SPI I/O pins are shown in Table 20-1. The generic pin names appear in the text that follows. Table 20-1. Pin Name Conventions SPI Generic Pin Names: MISO MOSI SS Full SPI PTD0/KB SPI PTD1/KBD1 PTD2/KBD2 Pin Names: D0 SPSCK CGND PTD3/KBD3 VSS 20.5 Functional Description Figure 20-1 summarizes the SPI I/O registers and Figure 20-2 shows the structure of the SPI module. Addr. $0010 $0011 Register Name Bit 7 Read: SPI Control Register (SPCR) Write: See page 345. Reset: Read: SPI Status and Control Register (SPSCR) Write: See page 347. Reset: $0012 Read: SPI Data Register (SPDR) Write: See page 350. Reset: 6 5 4 3 2 1 Bit 0 SPMSTR CPOL CPHA SPWOM SPE SPTIE 1 0 1 0 0 0 OVRF MODF SPTE MODFEN SPR1 SPR0 DMAS SPRIE 0 0 SPRF ERRIE 0 0 0 0 1 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Unaffected by reset = Unimplemented Figure 20-1. SPI I/O Register Summary MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 323 Serial Peripheral Interface Module (SPI) INTERNAL BUS TRANSMIT DATA REGISTER CGMOUT ÷ 2 FROM SIM SHIFT REGISTER 7 6 5 4 3 2 1 MISO 0 ÷2 CLOCK DIVIDER MOSI ÷8 RECEIVE DATA REGISTER ÷ 32 PIN CONTROL LOGIC ÷ 128 SPMSTR SPE CLOCK SELECT SPR1 SPSCK M CLOCK LOGIC S SS SPR0 SPMSTR RESERVED MODFEN TRANSMITTER CPU INTERRUPT REQUEST RESERVED CPHA CPOL SPWOM ERRIE SPI CONTROL SPTIE SPRIE RECEIVER/ERROR CPU INTERRUPT REQUEST DMAS SPE SPRF SPTE OVRF MODF Figure 20-2. SPI Module Block Diagram The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt driven. If a port bit is configured for input, then an internal pullup device may be enabled for that port bit. See 16.5.3 Port C Input Pullup Enable Register. Technical Data 324 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Functional Description The following paragraphs describe the operation of the SPI module. 20.5.1 Master Mode The SPI operates in master mode when the SPI master bit, SPMSTR, is set. NOTE: Configure the SPI modules as master or slave before enabling them. Enable the master SPI before enabling the slave SPI. Disable the slave SPI before disabling the master SPI. See 20.14.1 SPI Control Register. Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI pin under the control of the serial clock. See Figure 20-3. MASTER MCU SHIFT REGISTER SLAVE MCU MISO MISO MOSI MOSI SPSCK BAUD RATE GENERATOR SS SHIFT REGISTER SPSCK VDD SS Figure 20-3. Full-Duplex Master-Slave Connections The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register. (See 20.14.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the master also controls the shift register of the slave peripheral. As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that SPRF becomes set, the byte from the slave transfers to the receive data MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 325 Serial Peripheral Interface Module (SPI) register. In normal operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the SPTE bit. 20.5.2 Slave Mode The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain low until the transmission is complete. See 20.8.2 Mode Fault Error. In a slave SPI module, data enters the shift register under the control of the serial clock from the master SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register, and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data register before another full byte enters the shift register. The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed. When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its transmit data register. The slave must write to its transmit data register at least one bus cycle before the master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of the transmission. Technical Data 326 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Transmission Formats When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is clear, the falling edge of SS starts a transmission. See 20.6 Transmission Formats. NOTE: SPSCK must be in the proper idle state before the slave is enabled to prevent SPSCK from appearing as a clock edge. 20.6 Transmission Formats During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate multiplemaster bus contention. 20.6.1 Clock Phase and Polarity Controls Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or low clock and has no significant effect on the transmission format. The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements. NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing the SPI enable bit (SPE). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 327 Serial Peripheral Interface Module (SPI) 20.6.2 Transmission Format When CPHA = 0 Figure 20-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s SS pin must be toggled back to high and then low again between each byte transmitted as shown in Figure 20-5. SPSCK CYCLE # FOR REFERENCE 1 2 3 4 5 6 7 8 MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB SPSCK; CPOL = 0 SPSCK; CPOL =1 MOSI FROM MASTER MISO FROM SLAVE MSB SS; TO SLAVE CAPTURE STROBE Figure 20-4. Transmission Format (CPHA = 0) Technical Data 328 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Transmission Formats MISO/MOSI BYTE 1 BYTE 2 BYTE 3 MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1 Figure 20-5. CPHA/SS Timing When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift register after the current transmission. 20.6.3 Transmission Format When CPHA = 1 Figure 20-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can remain low between transmissions. This format may be preferable in systems having only one master and only one slave driving the MISO data line. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 329 Serial Peripheral Interface Module (SPI) SPSCK CYCLE # FOR REFERENCE 1 2 3 4 5 6 7 8 MOSI FROM MASTER MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB MISO FROM SLAVE MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 SPSCK; CPOL = 0 SPSCK; CPOL =1 LSB SS; TO SLAVE CAPTURE STROBE Figure 20-6. Transmission Format (CPHA = 1) When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the shift register after the current transmission. 20.6.4 Transmission Initiation Latency When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and the start of the SPI transmission. (See Figure 20-7.) The internal SPI clock in the master is a free-running derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since the SPI clock is free-running, it is uncertain where the write to the SPDR occurs Technical Data 330 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Transmission Formats relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 20-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128. WRITE TO SPDR INITIATION DELAY BUS CLOCK MOSI MSB BIT 6 BIT 5 SPSCK CPHA = 1 SPSCK CPHA = 0 SPSCK CYCLE NUMBER 1 2 3 INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN WRITE TO SPDR BUS CLOCK EARLIEST WRITE TO SPDR LATEST SPSCK = INTERNAL CLOCK ÷ 2; 2 POSSIBLE START POINTS BUS CLOCK EARLIEST WRITE TO SPDR SPSCK = INTERNAL CLOCK ÷ 8; 8 POSSIBLE START POINTS LATEST SPSCK = INTERNAL CLOCK ÷ 32; 32 POSSIBLE START POINTS LATEST SPSCK = INTERNAL CLOCK ÷ 128; 128 POSSIBLE START POINTS LATEST BUS CLOCK EARLIEST WRITE TO SPDR BUS CLOCK EARLIEST Figure 20-7. Transmission Start Delay (Master) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 331 Serial Peripheral Interface Module (SPI) 20.7 Queuing Transmission Data The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 20-8 shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0). WRITE TO SPDR SPTE 1 3 8 5 2 10 SPSCK CPHA:CPOL = 1:0 MOSI MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 BYTE 1 BYTE 2 BYTE 3 9 4 SPRF 6 READ SPSCR 11 7 READ SPDR 12 1 CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT. 7 CPU READS SPDR, CLEARING SPRF BIT. 2 BYTE 1 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 8 CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE 3 AND CLEARING SPTE BIT. 9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 10 BYTE 3 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 11 CPU READS SPSCR WITH SPRF BIT SET. 3 CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2 AND CLEARING SPTE BIT. 4 FIRST INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 5 BYTE 2 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 6 CPU READS SPSCR WITH SPRF BIT SET. 12 CPU READS SPDR, CLEARING SPRF BIT. Figure 20-8. SPRF/SPTE CPU Interrupt Timing The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted. Technical Data 332 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Error Conditions For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. The SPTE indicates when the next write can occur. 20.8 Error Conditions The following flags signal SPI error conditions: • Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and the unread byte still can be read. OVRF is in the SPI status and control register. • Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register. 20.8.1 Overflow Error The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK cycle 7. (See Figure 20-4 and Figure 20-6.) If an overflow occurs, all data received after the overflow and before the OVRF bit is cleared does not transfer to the receive data register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive data register before the overflow occurred can still be read. Therefore, an overflow error always indicates the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading the SPI data register. OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 20-11.) It is MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 333 Serial Peripheral Interface Module (SPI) not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition. Figure 20-9 shows how it is possible to miss an overflow. The first part of Figure 20-9 shows how it is possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR are read. BYTE 1 BYTE 2 BYTE 3 BYTE 4 1 4 6 8 SPRF OVRF READ SPSCR 2 READ SPDR 5 3 7 1 BYTE 1 SETS SPRF BIT. 2 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. BYTE 2 SETS SPRF BIT. 3 4 5 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. 6 BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. 7 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT, BUT NOT OVRF BIT. 8 BYTE 4 FAILS TO SET SPRF BIT BECAUSE OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST. Figure 20-9. Missed Read of Overflow Condition In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future transmissions can set the SPRF bit. Figure 20-10 illustrates this process. Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit. Technical Data 334 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Error Conditions BYTE 1 SPI RECEIVE COMPLETE BYTE 2 5 1 BYTE 3 7 BYTE 4 11 SPRF OVRF READ SPSCR 2 READ SPDR 4 6 3 1 BYTE 1 SETS SPRF BIT. 2 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. 3 9 8 12 10 14 13 8 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT. 9 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. 10 CPU READS BYTE 2 SPDR, CLEARING OVRF BIT. 4 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. 11 BYTE 4 SETS SPRF BIT. 5 BYTE 2 SETS SPRF BIT. 12 CPU READS SPSCR. 6 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. 13 CPU READS BYTE 4 IN SPDR, CLEARING SPRF BIT. 7 BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. 14 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. Figure 20-10. Clearing SPRF When OVRF Interrupt Is Not Enabled 20.8.2 Mode Fault Error Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of the slave select pin, SS, is inconsistent with the mode selected by SPMSTR. To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if: • The SS pin of a slave SPI goes high during a transmission • The SS pin of a master SPI goes low at any time For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is cleared. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 335 Serial Peripheral Interface Module (SPI) MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 20-11.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes the following events to occur: NOTE: • If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request. • The SPE bit is cleared. • The SPTE bit is set. • The SPI state counter is cleared. • The data direction register of the shared I/O port regains control of port drivers. To prevent bus contention with another master SPI after a mode fault error, clear all SPI bits of the data direction register of the shared I/O port before enabling the SPI. When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission. When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns to its idle level following the shift of the last data bit. See 20.6 Transmission Formats. NOTE: Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows the difference between a MODF occurring when the SPI is a master and when it is a slave. When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and later unselected (SS is at logic 1) even if no SPSCK is sent to that Technical Data 336 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Interrupts slave. This happens because SS at logic 0 indicates the start of the transmission (MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and then later unselected with no transmission occurring. Therefore, MODF does not occur since a transmission was never begun. In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI transmission by clearing the SPE bit of the slave. NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared. 20.9 Interrupts Four SPI status flags can be enabled to generate CPU interrupt requests. Table 20-2. SPI Interrupts Flag Request SPTE Transmitter empty SPI transmitter CPU interrupt request (DMAS = 0, SPTIE = 1, SPE = 1) SPRF Receiver full SPI receiver CPU interrupt request (DMAS = 0, SPRIE = 1) OVRF Overflow SPI receiver/error interrupt request (ERRIE = 1) MODF Mode fault SPI receiver/error interrupt request (ERRIE = 1) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 337 Serial Peripheral Interface Module (SPI) Reading the SPI status and control register with SPRF set and then reading the receive data register clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data register. The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU interrupt requests, provided that the SPI is enabled (SPE = 1). The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt requests, regardless of the state of the SPE bit. See Figure 20-11. The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error CPU interrupt request. The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests. NOT AVAILABLE SPTE SPTIE SPE SPI TRANSMITTER CPU INTERRUPT REQUEST DMAS NOT AVAILABLE SPRIE SPRF SPI RECEIVER/ERROR CPU INTERRUPT REQUEST ERRIE MODF OVRF Figure 20-11. SPI Interrupt Request Generation Technical Data 338 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) Resetting the SPI The following sources in the SPI status and control register can generate CPU interrupt requests: • SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF generates an SPI receiver/error CPU interrupt request. • SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set, SPTE generates an SPTE CPU interrupt request. 20.10 Resetting the SPI Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the following occurs: • The SPTE flag is set. • Any transmission currently in progress is aborted. • The shift register is cleared. • The SPI state counter is cleared, making it ready for a new complete transmission. • All the SPI port logic is defaulted back to being general-purpose I/O. These items are reset only by a system reset: • All control bits in the SPCR register • All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0) • The status flags SPRF, OVRF, and MODF By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without having to set all control bits again when SPE is set back high for the next transmission. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 339 Serial Peripheral Interface Module (SPI) By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set. 20.11 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 20.11.1 Wait Mode The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt requests by setting the error interrupt enable bit (ERRIE). See 20.9 Interrupts. 20.11.2 Stop Mode The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset. Technical Data 340 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) SPI During Break Interrupts 20.12 SPI During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See Section 19. System Integration Module (SIM). To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit data register in break mode does not initiate a transmission nor is this data transferred into the shift register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect. 20.13 I/O Signals The SPI module has five I/O pins and shares four of them with a parallel I/O port. They are: • MISO — Data received • MOSI — Data transmitted • SPSCK — Serial clock • SS — Slave select • CGND — Clock ground (internally connected to VSS) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 341 Serial Peripheral Interface Module (SPI) The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD. 20.13.1 MISO (Master In/Slave Out) MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin. Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state. When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port. 20.13.2 MOSI (Master Out/Slave In) MOSI is one of the two SPI module pins that transmits serial data. In fullduplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin. When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction register of the shared I/O port. Technical Data 342 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) I/O Signals 20.13.3 SPSCK (Serial Clock) The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles. When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port. 20.13.4 SS (Slave Select) The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission. (See 20.6 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 20-12. MISO/MOSI BYTE 1 BYTE 2 BYTE 3 MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1 Figure 20-12. CPHA/SS Timing When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can still prevent the state of the SS from creating a MODF error. See 20.14.2 SPI Status and Control Register. NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 343 Serial Peripheral Interface Module (SPI) When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to prevent multiple masters from driving MOSI and SPSCK. (See 20.8.2 Mode Fault Error.) For the state of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless of the state of the data direction register of the shared I/O port. The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and reading the port data register. See Table 20-3. Table 20-3. SPI Configuration SPE SPMSTR MODFEN SPI Configuration State of SS Logic 0 X(1)) X Not enabled General-purpose I/O; SS ignored by SPI 1 0 X Slave Input-only to SPI 1 1 0 Master without MODF General-purpose I/O; SS ignored by SPI 1 1 1 Master with MODF Input-only to SPI 1. X = Don’t care 20.13.5 CGND (Clock Ground) CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It is internally connected to VSS as shown in Table 20-1. Technical Data 344 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) I/O Registers 20.14 I/O Registers Three registers control and monitor SPI operation: • SPI control register (SPCR) • SPI status and control register (SPSCR) • SPI data register (SPDR) 20.14.1 SPI Control Register The SPI control register: • Enables SPI module interrupt requests • Configures the SPI module as master or slave • Selects serial clock polarity and phase • Configures the SPSCK, MOSI, and MISO pins as open-drain outputs • Enables the SPI module Address: $0010 Bit 7 6 Read: 5 4 3 2 1 Bit 0 SPMSTR CPOL CPHA SPWOM SPE SPTIE 1 0 1 0 0 0 DMAS SPRIE Write: Reset: 0 0 = Unimplemented Figure 20-13. SPI Control Register (SPCR) SPRIE — SPI Receiver Interrupt Enable Bit This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit. 1 = SPRF CPU interrupt requests enabled 0 = SPRF CPU interrupt requests disabled MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 345 Serial Peripheral Interface Module (SPI) DMAS — DMA Select Bit This read only bit has no effect on this version of the SPI. This bit always reads as a 0. 0 = SPRF DMA and SPTE DMA service requests disabled (SPRF CPU and SPTE CPU interrupt requests enabled) SPMSTR — SPI Master Bit This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR bit. 1 = Master mode 0 = Slave mode CPOL — Clock Polarity Bit This read/write bit determines the logic state of the SPSCK pin between transmissions. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPOL values. Reset clears the CPOL bit. CPHA — Clock Phase Bit This read/write bit controls the timing relationship between the serial clock and SPI data. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1 between bytes. (See Figure 20-12.) Reset sets the CPHA bit. SPWOM — SPI Wired-OR Mode Bit This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins become open-drain outputs. 1 = Wired-OR SPSCK, MOSI, and MISO pins 0 = Normal push-pull SPSCK, MOSI, and MISO pins SPE — SPI Enable This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 20.10 Resetting the SPI.) Reset clears the SPE bit. 1 = SPI module enabled 0 = SPI module disabled Technical Data 346 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) I/O Registers SPTIE— SPI Transmit Interrupt Enable This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte transfers from the transmit data register to the shift register. Reset clears the SPTIE bit. 1 = SPTE CPU interrupt requests enabled 0 = SPTE CPU interrupt requests disabled 20.14.2 SPI Status and Control Register The SPI status and control register contains flags to signal these conditions: • Receive data register full • Failure to clear SPRF bit before next byte is received (overflow error) • Inconsistent logic level on SS pin (mode fault error) • Transmit data register empty The SPI status and control register also contains bits that perform these functions: • Enable error interrupts • Enable mode fault error detection • Select master SPI baud rate Address: $0011 Bit 7 Read: 6 SPRF 5 4 3 OVRF MODF SPTE ERRIE 2 1 Bit 0 MODFEN SPR1 SPR0 0 0 0 Write: Reset: 0 0 0 0 1 = Unimplemented Figure 20-14. SPI Status and Control Register (SPSCR) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 347 Serial Peripheral Interface Module (SPI) SPRF — SPI Receiver Full Bit This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also. During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Reset clears the SPRF bit. 1 = Receive data register full 0 = Receive data register not full ERRIE — Error Interrupt Enable Bit This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit. 1 = MODF and OVRF can generate CPU interrupt requests 0 = MODF and OVRF cannot generate CPU interrupt requests OVRF — Overflow Bit This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. Reset clears the OVRF bit. 1 = Overflow 0 = No overflow MODF — Mode Fault Bit This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit. 1 = SS pin at inappropriate logic level 0 = SS pin at appropriate logic level Technical Data 348 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Serial Peripheral Interface Module (SPI) I/O Registers SPTE — SPI Transmitter Empty Bit This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt request or an SPTE DMA service request if the SPTIE bit in the SPI control register is set also. NOTE: Do not write to the SPI data register unless the SPTE bit is high. During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register. Reset sets the SPTE bit. 1 = Transmit data register empty 0 = Transmit data register not empty MODFEN — Mode Fault Enable Bit This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low, then the SS pin is available as a general-purpose I/O. If the MODFEN bit is set, then this pin is not available as a generalpurpose I/O. When the SPI is enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN. See 20.13.4 SS (Slave Select). If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents the MODF flag from being set. It does not affect any other part of SPI operation. See 20.8.2 Mode Fault Error. SPR1 and SPR0 — SPI Baud Rate Select Bits In master mode, these read/write bits select one of four baud rates as shown in Table 20-4. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Serial Peripheral Interface Module (SPI) Technical Data 349 Serial Peripheral Interface Module (SPI) Table 20-4. SPI Master Baud Rate Selection SPR1 and SPR0 Baud Rate Divisor (BD) 00 2 01 8 10 32 11 128 Use this formula to calculate the SPI baud rate: CGMOUT Baud rate = -------------------------2 × BD where: CGMOUT = base clock output of the clock generator module (CGM) BD = baud rate divisor 20.14.3 SPI Data Register The SPI data register consists of the read-only receive data register and the write-only transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate registers that can contain different values. See Figure 20-2. Address: $0012 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 20-15. SPI Data Register (SPDR) R7–R0/T7–T0 — Receive/Transmit Data Bits NOTE: Technical Data 350 Do not use read-modify-write instructions on the SPI data register since the register read is not the same as the register written. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Serial Peripheral Interface Module (SPI) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 21. Timebase Module (TBM) 21.1 Contents 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 353 21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 21.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 21.2 Introduction This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external crystal clock. This TBM version uses 15 divider stages, eight of which are user selectable. 21.3 Features Features of the TBM include: • Software programmable 1-Hz, 4-Hz, 16-Hz, 256-Hz, 512-Hz, 1024-Hz, 2048-Hz, and 4096-Hz periodic interrupt using external 32.768-kHz crystal • User selectable oscillator clock source enable during stop mode to allow periodic wakeup from stop MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timebase Module (TBM) Technical Data 351 Timebase Module (TBM) 21.4 Functional Description NOTE: This module is designed for a 32.768-kHz oscillator. This module can generate a periodic interrupt by dividing the clock TBMCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 21-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. TBON ÷2 TBMCLK ÷2 ÷2 ÷2 ÷8 ÷2 ÷ 16 ÷2 ÷2 ÷ 32 ÷ 64 ÷ 128 ÷2 ÷2 ÷ 2048 ÷2 ÷2 ÷ 8192 ÷2 TACK ÷2 TBR0 ÷2 TBR1 ÷2 TBR2 TBMINT ÷ 32768 TBIF 000 TBIE R 001 010 011 100 SEL 101 110 111 Figure 21-1. Timebase Block Diagram Technical Data 352 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timebase Module (TBM) MOTOROLA Timebase Module (TBM) Timebase Register Description 21.5 Timebase Register Description The timebase has one register, the timebase control regster (TBCR), which is used to enable the timebase interrupts and set the rate. Address: $001C Bit 7 Read: 6 5 4 TBR2 TBR1 TBR0 TBIF 2 1 Bit 0 TBIE TBON R 0 0 0 0 TACK Write: Reset: 3 0 0 0 0 = Unimplemented 0 R = Reserved Figure 21-2. Timebase Control Register (TBCR) TBIF — Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBR2:TBR0 — Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 21-1. Table 21-1. Timebase Rate Selection for OSC1 = 32.768 kHz Timebase Interrupt Rate TBR2 TBR1 TBR0 Divider 0 0 0 0 0 0 Hz ms 32768 1 1000 1 8192 4 250 1 0 2048 16 62.5 0 1 1 128 256 ~ 3.9 1 0 0 64 512 ~2 1 0 1 32 1024 ~1 1 1 0 16 2048 ~0.5 1 1 1 8 4096 ~0.24 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timebase Module (TBM) Technical Data 353 Timebase Module (TBM) NOTE: Do not change TBR2:TBR0 bits while the timebase is enabled (TBON = 1). TACK — Timebase ACKnowledge The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect TBIE — Timebase Interrupt Enabled This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. 1 = Timebase interrupt enabled 0 = Timebase interrupt disabled TBON — Timebase Enabled This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. 1 = Timebase enabled 0 = Timebase disabled and the counter initialized to 0s 21.6 Interrupts The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2:TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. Technical Data 354 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timebase Module (TBM) MOTOROLA Timebase Module (TBM) Low-Power Modes 21.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 21.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. 21.7.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during STOP mode. In stop mode the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timebase Module (TBM) Technical Data 355 Timebase Module (TBM) Technical Data 356 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timebase Module (TBM) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 22. Timer Interface Module (TIM) 22.1 Contents 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 22.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 22.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 22.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 22.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 363 22.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .364 22.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 365 22.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 366 22.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 367 22.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369 22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 370 22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 22.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 371 22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 375 22.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 376 22.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .379 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 357 Timer Interface Module (TIM) 22.2 Introduction This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 22-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2. PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE INTERRUPT LOGIC 16-BIT COMPARATOR TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX PORT LOGIC T[1,2]CH0 16-BIT COMPARATOR TCH0H:TCH0L CH0F 16-BIT LATCH CH0IE MS0A INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 CHANNEL 1 ELS1B ELS1A CH1MAX PORT LOGIC T[1,2]CH1 16-BIT COMPARATOR TCH1H:TCH1L CH1F 16-BIT LATCH CH1IE MS1A INTERRUPT LOGIC Figure 22-1. TIM Block Diagram Technical Data 358 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Features 22.3 Features Features of the TIM include: • Two input capture/output compare channels: – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action • Buffered and unbuffered pulse-width-modulation (PWM) signal generation • Programmable TIM clock input with 7-frequency internal bus clock prescaler selection • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits 22.4 Pin Name Conventions The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2” is used to indicate TIM2. The two TIMs share four I/O pins with four port D I/O port pins. The full names of the TIM I/O pins are listed in Table 22-1. The generic pin names appear in the text that follows. Table 22-1. Pin Name Conventions TIM Generic Pin Names: T[1,2]CH0 T[1,2]CH1 TIM1 PTD4/KBD4 PTD5/KBD5 TIM2 PTD6/KBD6 PTD7/KBD7 Full TIM Pin Names: NOTE: References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 359 Timer Interface Module (TIM) 22.5 Functional Description Figure 22-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels. If a channel is configured as input capture, then an internal pullup device may be enabled for that channel. See 16.6.3 Port D Input Pullup Enable Register. Figure 22-2 summarizes the timer registers. NOTE: Addr. References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC. Register Name Bit 7 Read: Timer 1 Status and Control $0020 Register (T1SC) Write: See page 371. Reset: TOF 0 0 1 0 Read: Timer 1 Counter Register High (T1CNTH) Write: See page 374. Reset: Bit 15 14 13 0 0 Read: Timer 1 Counter Register Low (T1CNTL) Write: See page 374. Reset: Bit 7 $0021 $0022 Read: Timer 1 Counter Modulo $0023 Register High (T1MODH) Write: See page 375. Reset: 6 5 TOIE TSTOP 2 1 Bit 0 PS2 PS1 PS0 0 0 0 0 12 11 10 9 Bit 8 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 0 4 3 0 0 TRST = Unimplemented Figure 22-2. TIM I/O Register Summary (Sheet 1 of 3) Technical Data 360 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description Addr. Register Name Read: Timer 1 Counter Modulo $0024 Register Low (T1MODL) Write: See page 375. Reset: Timer 1 Channel 0 Status Read: and Control Register Write: $0025 (T1SC0) See page 376. Reset: $0026 $0027 Read: Timer 1 Channel 0 Register High (T1CH0H) Write: See page 380. Reset: Read: Timer 1 Channel 0 Register Low (T1CH0L) Write: See page 380. Reset: Timer 1 Channel 1 Status Read: and Control Register Write: $0028 (T1SC1) See page 376. Reset: $0029 $002A Read: Timer 1 Channel 1 Register High (T1CH1H) Write: See page 380. Reset: Read: Timer 1 Channel 1 Register Low (T1CH1L) Write: See page 380. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 PS2 PS1 PS0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset Read: Timer 2 Status and Control $002B Register (T2SC) Write: See page 371. Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer 2 Counter Register High (T2CNTH) Write: See page 374. Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer 2 Counter Register Low (T2CNTL) Write: See page 374. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 $002C $002D TOIE TSTOP 0 0 0 TRST = Unimplemented Figure 22-2. TIM I/O Register Summary (Sheet 2 of 3) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 361 Timer Interface Module (TIM) Addr. Register Name Read: Timer 2 Counter Modulo $002E Register High (T2MODH) Write: See page 375. Reset: $002F Read: Timer 2 Counter Modulo Register Low (T2MODL) Write: See page 375. Reset: Timer 2 Channel 0 Status Read: and Control Register Write: $0030 (T2SC0) See page 376. Reset: $0031 $0032 Read: Timer 2 Channel 0 Register High (T2CH0H) Write: See page 380. Reset: Read: Timer 2 Channel 0 Register Low (T2CH0L) Write: See page 380. Reset: Timer 2 Channel 1 Status Read: and Control Register Write: $0033 (T2SC1) See page 376. Reset: $0034 $0035 Read: Timer 2 Channel 1 Register High (T2CH1H) Write: See page 380. Reset: Read: Timer 2 Channel 1 Register Low (T2CH1L) Write: See page 380. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 22-2. TIM I/O Register Summary (Sheet 3 of 3) Technical Data 362 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description 22.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. 22.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. 22.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. 22.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 22.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 363 Timer Interface Module (TIM) compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. 22.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: Technical Data 364 In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description active channel. Writing to the active channel registers is the same as generating unbuffered output compares. 22.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 22-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 22.10.1 TIM Status and Control Register. OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 22-3. PWM Period and Pulse Width MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 365 Timer Interface Module (TIM) The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 22.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 22.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: Technical Data 366 • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 22.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. 22.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 367 Timer Interface Module (TIM) 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 22-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 22-3.) NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 22.10.4 TIM Channel Status and Control Registers.) Technical Data 368 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Interrupts 22.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register. 22.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 22.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 22.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 369 Timer Interface Module (TIM) 22.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See 19.8.3 SIM Break Flag Control Register. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 22.9 I/O Signals Port D shares four of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1 as described in 22.4 Pin Name Conventions. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins. Technical Data 370 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers 22.10 I/O Registers NOTE: References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: • TIM status and control register (TSC) • TIM counter registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0, TSC1) • TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L) 22.10.1 TIM Status and Control Register The TIM status and control register (TSC): • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: T1SC, $0020 and T2SC, $002B Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 22-4. TIM Status and Control Register (TSC) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 371 Timer Interface Module (TIM) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Technical Data 372 Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers PS[2:0] — Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 22-2 shows. Reset clears the PS[2:0] bits. Table 22-2. Prescaler Selection PS2 PS1 PS0 TIM Clock Source 0 0 0 Internal bus clock ÷ 1 0 0 1 Internal bus clock ÷ 2 0 1 0 Internal bus clock ÷ 4 0 1 1 Internal bus clock ÷ 8 1 0 0 Internal bus clock ÷ 16 1 0 1 Internal bus clock ÷ 32 1 1 0 Internal bus clock ÷ 64 1 1 1 Not available MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 373 Timer Interface Module (TIM) 22.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Address: T1CNTH, $0021 and T2CNTH, $002C Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 22-5. TIM Counter Registers High (TCNTH) Address: T1CNTL, $0022 and T2CNTL, $002D Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 22-6. TIM Counter Registers Low (TCNTL) Technical Data 374 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers 22.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Address: T1MODH, $0023 and T2MODH, $002E Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 22-7. TIM Counter Modulo Register High (TMODH) Address: T1MODL, $0024 and T2MODL, $002F Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 22-8. TIM Counter Modulo Register Low (TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 375 Timer Interface Module (TIM) 22.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 0% and 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Address: T1SC0, $0025 and T2SC0, $0030 Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 Figure 22-9. TIM Channel 0 Status and Control Register (TSC0) Address: T1SC1, $0028 and T2SC1, $0033 Bit 7 Read: 6 CH1F 5 0 Reset: 0 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 CH1IE Write: 4 0 0 Figure 22-10. TIM Channel 1 Status and Control Register (TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. Technical Data 376 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 22-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 22-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 377 Timer Interface Module (TIM) NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 22-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 22-3. Mode, Edge, and Level Selection MSxB:MSxA ELSxB:ELSxA X0 00 Mode Configuration Pin under port control; initial output level high Output preset NOTE: Technical Data 378 X1 00 Pin under port control; initial output level low 00 01 Capture on rising edge only 00 10 00 11 01 01 01 10 01 11 1X 01 1X 10 1X 11 Input capture Capture on falling edge only Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Before enabling a TIM channel register for input capture operation, make sure that the PTD/TCHx pin is stable for at least two bus clocks. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 22-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 22-11. CHxMAX Latency 22.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Timer Interface Module (TIM) Technical Data 379 Timer Interface Module (TIM) In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: T1CH0H, $0026 and T2CH0H, $0031 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 22-12. TIM Channel 0 Register High (TCH0H) Address: T1CH0L, $0027 and T2CH0L $0032 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 22-13. TIM Channel 0 Register Low (TCH0L) Address: T1CH1H, $0029 and T2CH1H, $0034 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 22-14. TIM Channel 1 Register High (TCH1H) Address: T1CH1L, $002A and T2CH1L, $0035 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 22-15. TIM Channel 1 Register Low (TCH1L) Technical Data 380 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Timer Interface Module (TIM) MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 23. Electrical Specifications 23.1 Contents 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.6 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 384 23.7 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 386 23.8 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 23.9 3.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 23.10 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 389 23.11 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . 389 23.12 Trimmed Accuracy of the Internal Clock Generator . . . . . . . . 390 23.12.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 390 23.12.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 390 23.13 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . . 391 23.14 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . 394 23.15 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 23.16 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 23.17 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .399 23.18 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .400 23.19 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 403 23.20 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 381 Electrical Specifications 23.2 Introduction This section contains electrical and timing specifications. 23.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 23.6 5.0-V DC Electrical Characteristics for guaranteed operating conditions. Characteristic(1) Symbol Value Unit Supply voltage VDD –0.3 to + 6.0 V Input voltage VIn VSS – 0.3 to VDD + 0.3 V I ± 15 mA Maximum current for pins PTA5-PTA7, PTD4 IPTA5–PTA7 ± 20 mA Maximum current for pins PTC0–PTC4 IPTC0–PTC4 ± 25 mA Maximum current into VDD Imvdd 150 mA Maximum current out of VSS Imvss 150 mA Tstg – 55 to +150 °C Maximum current per pin excluding those specified below Storage temperature 1. Voltages referenced to VSS NOTE: Technical Data 382 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIn and VOut be constrained to the range VSS ≤ (VIn or VOut) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD). MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Functional Operating Range 23.4 Functional Operating Range Characteristic Symbol Value Unit TA – 40 to +85 °C VDD 3.0 ±10% 5.0 ±10% V Operating temperature range Operating voltage range 23.5 Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance 42-pin SDIP 44-pin QFP θJA 60 95 °C/W I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD × VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K Average junction temperature TJ PD × (TA + 273 °C) + PD2 × θJA W/°C TA + (PD × θJA) °C 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 383 Electrical Specifications 23.6 5.0-V DC Electrical Characteristics Symbol Min Typ(2) Max Unit VOH VOH VOH IOH1 VDD – 0.8 VDD – 1.5 VDD – 1.5 — — — — — — — — 50 V V V mA IOH2 — — 50 mA IOHT — — 100 mA VOL VOL VOL IOL1 — — — — — — — — 0.4 1.5 1.5 50 V V V mA IOL2 — — 50 mA IOLT — — 100 mA Input high voltage All ports, IRQ, RST, OSC1 VIH 0.7 × VDD — VDD V Input low voltage All ports, IRQ, RST, OSC1 VIL VSS — 0.2 × VDD V — — 15 4 20 8 mA mA — — — — — 3 20 300 50 500 — — — — — µA µA µA µA µA Characteristic(1) Output high voltage (ILoad = –2.0 mA) all I/O pins (ILoad = –10.0 mA) all I/O pins (ILoad = –20.0 mA) pins PTC0–PTC4 only Maximum combined IOH for port C, port E, port PTD0–PTD3 Maximum combined IOH for port PTD4–PTD7, port A, port B Maximum total IOH for all port pins Output low voltage (ILoad = 1.6 mA) all I/O pins (ILoad = 10 mA) all I/O pins (ILoad = 20mA) pins PTC0–PTC4 only Maximum combined IOL for port C, port E, port PTD0–PTD3 Maximum combined IOL for port PTD4–PTD7, port A, port B Maximum total IOL for all port pins VDD supply current Run(3) Wait(4) Stop(5) 25°C 25°C with TBM enabled(6) 25°C with LVI and TBM enabled(6) –40°C to 85°C with TBM enabled(6) –40°C to 85°C with LVI and TBM enabled(6) IDD I/O ports Hi-Z leakage current(7) IIL — — ±10 µA Input current IIn — — ±1 µA RPU 20 45 65 kΩ Pullup resistors (as input only) Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0, PTD7/T2CH1–PTD0/SS Technical Data 384 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications 5.0-V DC Electrical Characteristics Symbol Min Typ(2) Max Unit Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF Monitor mode entry voltage VTST VDD + 2.5 — VDD + 4.0 V Low-voltage inhibit, trip falling voltage VTRIPF 3.90 4.25 4.50 V Low-voltage inhibit, trip rising voltage VTRIPR 4.20 4.35 4.60 V Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR) VHYS — 100 — mV POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPORRST 0 700 800 mV RPOR 0.035 — — V/ms Characteristic(1) POR rise time ramp rate(10) 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with ICG and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs. 7. Pullups and pulldowns are disabled. Port B leakage is specified in 23.16 ADC Characteristics. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. 10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 385 Electrical Specifications 23.7 3.0-V DC Electrical Characteristics Symbol Min Typ(2) Max Unit VOH VOH VOH IOH1 VDD – 0.3 VDD – 1.0 VDD –1.0 — — — — — — — — 30 V V V mA IOH2 — — 30 mA IOHT — — 60 mA VOL VOL VOL IOL1 — — — — — — — — 0.3 1.0 1.0 30 V V V mA IOL2 — — 30 mA IOLT — — 60 mA Input high voltage All ports, IRQ, RST, OSC1 VIH 0.7 × VDD — VDD V Input low voltage All ports, IRQ, RST, OSC1 VIL VSS — 0.3 × VDD V — — 4.5 1.65 8 4 mA mA — — — — — 2 12 200 30 300 — — — — — µA µA µA µA µA Characteristic(1) Output high voltage (ILoad = –0.6 mA) all I/O pins (ILoad = –4.0 mA) all I/O pins (ILoad = –10.0 mA) pins PTC0–PTC4 only Maximum combined IOH for port C, port E, port PTD0–PTD3 Maximum combined IOH for port PTD4–PTD7, port A, port B Maximum total IOH for all port pins Output low voltage (ILoad = 0.5 mA) all I/O pins (ILoad = 5.0 mA) all I/O pins (ILoad = 10.0 mA) pins PTC0–PTC4 only Maximum combined IOL for port C, port E, port PTD0–PTD3 Maximum combined IOL for port PTD4–PTD7, port A, port B Maximum total IOL for all port pins VDD supply current Run(3) Wait(4) Stop(5) 25°C 25°C with TBM enabled(6) 25°C with LVI and TBM enabled(6) –40°C to 85°C with TBM enabled(6) –40°C to 85°C with LVI and TBM enabled(6) IDD I/O ports Hi-Z leakage current(7) IIL — — ±10 µA Input current IIn — — ±1 µA RPU 20 45 65 kΩ Pullup resistors (as input only) Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0, PTD7/T2CH1–PTD0/SS Technical Data 386 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications 3.0-V DC Electrical Characteristics Symbol Min Typ(2) Max Unit Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF Monitor mode entry voltage VTST VDD + 2.5 — VDD + 4.0 V Low-voltage inhibit, trip falling voltage VTRIPF 2.45 2.60 2.70 V Low-voltage inhibit, trip rising voltage VTRIPR 2.55 2.66 2.80 V Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR) VHYS — 60 — mV POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPORRST 0 700 800 mV RPOR 0.02 — — V/ms Characteristic(1) POR rise time ramp rate(10) 1. VDD = 3.0 Vdc ± 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with ICG and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. 10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 387 Electrical Specifications 23.8 5.0-V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency fOP (fBus) — 8 MHz Internal clock period (1/fOP) tCYC 122 — ns RESET input pulse width low (2) tIRL 50 — ns IRQ interrupt pulse width low(3) (edge-triggered) tILIH 50 — ns IRQ interrupt pulse period tILIL Note 5 — tCYC 16-bit timer(4) Input capture pulse width Input capture period tTH,tTL tTLTL Note 5 — — ns tCYC 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted. 2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 3. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 4. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 5. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service routine plus tCYC. 23.9 3.0-V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency fOP (fBus) — 4 MHz Internal clock period (1/fOP) tCYC 244 — ns RESET input pulse width low (2) tIRL 125 — ns IRQ interrupt pulse width low(3) (edge-triggered) tILIH 125 — ns IRQ interrupt pulse period tILIL Note 5 — tCYC 16-bit timer(4) Input capture pulse width Input capture period tTH,tTL tTLTL Note 5 — — ns tCYC 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted. 2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 3. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 4. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 5. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service routine plus tCYC. Technical Data 388 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Internal Oscillator Characteristics 23.10 Internal Oscillator Characteristics Characteristic(1) Internal oscillator base frequency(2), (3) Internal oscillator tolerance Internal oscillator multiplier(4) Symbol Min Typ Max Unit fINTOSC 230.4 307.2 384 kHz fOSC_TOL –25 — +25 % N 1 — 127 — 1. VDD = 5.5 Vdc to 2.7 Vdc, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted 2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be multiplier (N) x base frequency. 3. fBus = (fINTOSC / 4) x N when internal clock source selected 4. Multiplier must be chosen to limit the maximum bus frequency of 4 MHz for 2.7-V operation and 8 MHz for 4.5-V operation. 23.11 External Oscillator Characteristics Characteristic(1) Symbol Min Typ Max dc(5) — 32 M(6) 60 307.2 k — — 307.2 k 32 M(6) Unit External clock option(2)(3) With ICG clock disabled With ICG clock enabled EXTSLOW = 1(4) EXTSLOW = 0(4) fEXTOSC External crystal options(7)(8) EXTSLOW = 1(4) EXTSLOW = 0(4) fEXTOSC 30 k 1M — — 100 k 10 M Hz Crystal load capacitance(9) CL — — — pF Crystal fixed capacitance(9) C1 — 2 x CL — pF Crystal tuning capacitance(9) C2 — 2 x CL — pF Feedback bias resistor(9) RB — 10 — MΩ Series resistor (9)(10) RS — — — MΩ Hz 1. 2. 3. 4. VDD = 5.5 to 2.7 Vdc, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input. No more than 10% duty cycle deviation from 50% EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor circuits of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base frequency, fINTOSC. 5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. 6. MCU speed derates from 32 MHz at VDD = 4.5 Vdc to 16 MHz at VDD = 2.7 Vdc. 7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal option. 8. fBus = (fEXTOSC / 4) when external clock source is selected. 9. Consult crystal vendor data sheet, see Figure 7-3. External Clock Generator Block Diagram. 10. Not required for high-frequency crystals MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 389 Electrical Specifications 23.12 Trimmed Accuracy of the Internal Clock Generator The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, can vary as much as ±25% due to process, temperature, and voltage. The trimming capability exists to compensate for process effects. The remaining variation in frequency is due to temperature, voltage, and change in target frequency (multiply register setting). These effects are designed to be minimal, however variation does occur. Better performance is seen at 3 V and lower settings of N. 23.12.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Unit Absolute trimmed internal oscillator tolerance(2), (3) –40°C to 85°C Fabs_tol — 2.5 4.0 % Variation over temperature(3), (4) Var_temp — 0.03 0.05 %/°C Variation over voltage (3), (5) 25°C –40°C to 85°C Var_volt — — 0.5 0.7 2.0 2.0 %/V 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N 23.12.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Unit Fabs_tol — 4.0 4.0 % Variation over temperature(3), (4) Var_temp — 0.05 0.08 %/°C Variation over voltage (3), (5) 25°C –40°C to 85°C Var_volt — — 1.0 1.0 2.0 2.0 %/V Absolute trimmed internal oscillator –40°C to 85°C tolerance(2), (3) 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N Technical Data 390 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Output High-Voltage Characteristics 23.13 Output High-Voltage Characteristics 0 –5 –10 –40 0 25 85 IOH (mA) –15 –20 –25 –30 –35 –40 3 3.2 3.4 3.6 VOH (V) 3.8 4.0 4.2 VOH > V DD –0.8 V @ IOH = –2.0 mA VOH > V DD –1.5 V @ IOH = –10.0 mA Figure 23-1. Typical High-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 4.5 Vdc) 0 IOH (mA) –5 –40 0 25 85 –10 –15 –20 –25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 VOH > VDD –0.3 V @ IOH = –0.6 mA VOH > VDD –1.0 V @ IOH = –10.0 mA Figure 23-2. Typical High-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 2.7 Vdc) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 391 Electrical Specifications 0 –5 –10 –40 0 25 85 IOH (mA) –15 –20 –25 –30 –35 –40 3 3.2 3.4 3.6 VOH (V) 3.8 4.0 4.2 VOH > VDD –1.5 V @ IOH = –20.0 mA Figure 23-3. Typical High-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 4.5 Vdc) 0 IOH (mA) –5 –40 0 25 85 –10 –15 –20 –25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 V OH > V DD –1.0 V @ IOH = –10.0 mA Figure 23-4. Typical High-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 2.7 Vdc) Technical Data 392 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Output High-Voltage Characteristics 0 –10 –20 –40 0 25 85 IOH (mA) –30 –40 –50 –60 –70 –80 –90 3 3.2 3.4 3.6 3.8 VOH (V) 4.0 4.2 4.4 4.6 VOH > VDD –0.8 V @ IOH = –2.0 mA VOH > VDD –1.5 V @ IOH = –10.0 mA Figure 23-5. Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) 0 IOH (mA) –5 –40 0 25 85 –10 –15 –20 –25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 VOH > VDD –0.3 V @ IOH = –0.6 mA VOH > VDD –1.0 V @ IOH = –4.0 mA Figure 23-6. Typical High-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 393 Electrical Specifications 23.14 Output Low-Voltage Characteristics 35 30 –40 0 25 85 IOL (mA) 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.4 V @ IOL = 1.6 mA VOL < 1.5 V @ IOL = 10.0 mA Figure 23-7. Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 5.5 Vdc) 14 12 –40 0 25 85 IOL (mA) 10 8 6 4 2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.3 V @ IOL = 0.5 mA VOL < 1.0 V @ IOL = 6.0 mA Figure 23-8. Typical Low-Side Driver Characteristics – Port PTA7–PTA0 (VDD = 2.7 Vdc) Technical Data 394 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Output Low-Voltage Characteristics 60 IOL (mA) 50 40 –40 0 25 85 30 20 10 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 1.5 V @ IOL = 20 mA Figure 23-9. Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 4.5 Vdc) 30 25 –40 0 25 85 IOL (mA) 20 15 10 5 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.8 V @ IOL = 10 mA Figure 23-10. Typical Low-Side Driver Characteristics – Port PTC4–PTC0 (VDD = 2.7 Vdc) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 395 Electrical Specifications 35 30 –40 0 25 85 25 IOL (mA) 20 15 10 5 0 0 0.2 0.4 0.6 0.8 VOL (V) 1.0 1.2 1.6 1.4 VOL < 0.4 V @ IOL = 1.6 mA VOL < 1.5 V @ IOL = 10.0 mA Figure 23-11. Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) 14 12 –40 0 25 85 IOL (mA) 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.3 V @ IOL = 0.5 mA VOL < 1.0 V @ IOL = 6.0 mA Figure 23-12. Typical Low-Side Driver Characteristics – Ports PTB7–PTB0, PTC6–PTC5, PTD7–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) Technical Data 396 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Typical Supply Currents 23.15 Typical Supply Currents 16 14 12 IDD (mA) 10 8 6 4 5.5 V 3.6 V 2 0 0 1 2 3 4 5 fBUS (MHz) 6 7 8 9 Figure 23-13. Typical Operating IDD, with All Modules Turned On (–40°C to 85°C) 5.0 4.5 4.0 3.5 IDD (mA) 3.0 2.5 2.0 1.5 1.0 5.5 V 3.6 V 0.5 0 0 1 2 3 4 fBUS (MHz) 5 6 7 8 Figure 23-14. Typical Wait Mode IDD, with all Modules Disabled (–40°C to 85°C) MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 397 Electrical Specifications 23.16 ADC Characteristics Characteristic(1) Symbol Min Max Unit Comments Supply voltage VDDA 2.7 (VDD min) 5.5 (VDD max) V VDDA should be tied to the same potential as VDD via separate traces. Input voltages VADIN 0 VDDA V Resolution BAD 8 8 Bits Absolute accuracy (VREFL = 0 V, VREFH = VDDA = 5 V ± 10%) AAD — ±1 LSB Includes quantization ADC internal clock fADIC 0.5 1.048 MHz tAIC = 1/fADIC, tested only at 1 MHz Conversion range RAD VREFL VREFH V VSSA ≤ VADIN ≤ VDDA Power-up time tADPU 16 ADC voltage reference high VREFH VSSA - 0.1 VDDA + 0.1 V VREFL ≤ VREFH ADC voltage reference low VREFL VSSA - 0.1 VDDA + 0.1 V VREFL ≤ VREFH Conversion time tADC 16 17 tAIC cycles Sample time(2) tADS 5 — tAIC cycles Zero input reading(3) ZADI 00 01 Hex VIN = VREFL Full-scale reading(3) FADI FE FF Hex VIN = VREFH Input capacitance CADI — 8 pF Not tested — — ±1 µA Input leakage(4) Port B tAIC cycles 1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDA = 5.0 Vdc ± 10%, VSSA = 0 Vdc, VREFH = 5.0 Vdc ± 10%, V REFL = 0 2. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling. 3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 4. The external system error caused by input leakage current is approximately equal to the product of R source and input current. Technical Data 398 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications 5.0-V SPI Characteristics 23.17 5.0-V SPI Characteristics Diagram Number(1) Characteristic(2) Symbol Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) fOP/128 dc fOP/2 fOP MHz MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2 1 128 — tCYC tCYC 2 Enable lead time tLead(S) 1 — tCYC 3 Enable lag time tLag(S) 1 — tCYC 4 Clock (SPSCK) high time Master Slave tSCKH(M) tSCKH(S) tCYC –25 1/2 tCYC –25 64 tCYC — ns ns 5 Clock (SPSCK) low time Master Slave tSCKL(M) tSCKL(S) tCYC –25 1/2 tCYC –25 64 tCYC — ns ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 30 30 — — ns ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 30 30 — — ns ns 8 Access time, slave(3) CPHA = 0 CPHA = 1 tA(CP0) tA(CP1) 0 0 40 40 ns ns 9 Disable time, slave(4) tDIS(S) — 40 ns 10 Data valid time, after enable edge Master Slave(5) tV(M) tV(S) — — 50 50 ns ns 11 Data hold time, outputs, after enable edge Master Slave tHO(M) tHO(S) 0 0 — — ns ns 1. Numbers refer to dimensions in Figure 23-15 and Figure 23-16. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 5. With 100 pF on all SPI pins MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 399 Electrical Specifications 23.18 3.0-V SPI Characteristics Diagram Number(1) Characteristic(2) Symbol Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) fOP/128 dc fOP/2 fOP MHz MHz 1 Cycle time Master Slave tCYC(M) tCYC(S) 2 1 128 — tCYC tCYC 2 Enable lead time tLead(s) 1 — tCYC 3 Enable lag time tLag(s) 1 — tCYC 4 Clock (SPSCK) high time Master Slave tSCKH(M) tSCKH(S) tCYC –35 1/2 tCYC –35 64 tCYC — ns ns 5 Clock (SPSCK) low time Master Slave tSCKL(M) tSCKL(S) tCYC –35 1/2 tCYC –35 64 tCYC — ns ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 40 40 — — ns ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 40 40 — — ns ns 8 Access time, slave(3) CPHA = 0 CPHA = 1 tA(CP0) tA(CP1) 0 0 50 50 ns ns 9 Disable time, slave(4) tDIS(S) — 50 ns 10 Data valid time, after enable edge Master Slave(5) tV(M) tV(S) — — 60 60 ns ns 11 Data hold time, outputs, after enable edge Master Slave tHO(M) tHO(S) 0 0 — — ns ns 1. Numbers refer to dimensions in Figure 23-15 and Figure 23-16. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 5. With 100 pF on all SPI pins Technical Data 400 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications 3.0-V SPI Characteristics SS INPUT SS PIN OF MASTER HELD HIGH 1 SPSCK OUTPUT CPOL = 0 NOTE SPSCK OUTPUT CPOL = 1 NOTE 5 4 5 4 6 MISO INPUT MSB IN BITS 6–1 11 MOSI OUTPUT MASTER MSB OUT 7 LSB IN 10 11 BITS 6–1 MASTER LSB OUT Note: This first clock edge is generated internally, but is not seen at the SPSCK pin. a) SPI Master Timing (CPHA = 0) SS INPUT SS PIN OF MASTER HELD HIGH 1 SPSCK OUTPUT CPOL = 0 5 NOTE 4 SPSCK OUTPUT CPOL = 1 5 NOTE 4 6 MISO INPUT MSB IN 10 MOSI OUTPUT BITS 6–1 11 MASTER MSB OUT 7 LSB IN 10 BITS 6–1 MASTER LSB OUT Note: This last clock edge is generated internally, but is not seen at the SPSCK pin. b) SPI Master Timing (CPHA = 1) Figure 23-15. SPI Master Timing MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 401 Electrical Specifications SS INPUT 3 1 SPSCK INPUT CPOL = 0 5 4 2 SPSCK INPUT CPOL = 1 5 4 9 8 MISO INPUT SLAVE MSB OUT 6 MOSI OUTPUT BITS 6–1 7 NOTE 11 11 10 MSB IN SLAVE LSB OUT BITS 6–1 LSB IN Note: Not defined but normally MSB of character just received a) SPI Slave Timing (CPHA = 0) SS INPUT 1 SPSCK INPUT CPOL = 0 5 4 2 3 SPSCK INPUT CPOL = 1 8 MISO OUTPUT MOSI INPUT 5 4 10 NOTE 9 SLAVE MSB OUT 6 7 BITS 6–1 11 10 MSB IN SLAVE LSB OUT BITS 6–1 LSB IN Note: Not defined but normally LSB of character previously transmitted b) SPI Slave Timing (CPHA = 1) Figure 23-16. SPI Slave Timing Technical Data 402 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Electrical Specifications Timer Interface Module Characteristics 23.19 Timer Interface Module Characteristics Characteristic Input capture pulse width Symbol Min Max Unit tTIH, tTIL 1 — tCYC 23.20 Memory Characteristics Characteristic Symbol Min Typ Max Unit VRDR 1.3 — — V — 1 — — MHz FLASH read bus clock frequency fRead(1) 8k — 8M Hz FLASH page erase time tErase(2) 1 — — ms FLASH mass erase time tMErase(3) 4 — — ms FLASH PGM/ERASE to HVEN set up time tnvs 10 — — µs FLASH high-voltage hold time tnvh 5 — — µs FLASH high-voltage hold time (mass erase) tnvhl 100 — — µs FLASH program hold time tpgs 5 — — µs FLASH program time tPROG 30 — 40 µs FLASH return to read time trcv(4) 1 — — µs FLASH cumulative program HV period tHV(5) — — 4 ms FLASH row erase endurance(6) — 10 k 100k — Cycles FLASH row program endurance(7) — 10 k 100k — Cycles FLASH data retention time (8) — 10 20 — Years RAM data retention voltage FLASH program bus clock frequency 1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 64) ≤ tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Electrical Specifications Technical Data 403 Electrical Specifications Technical Data 404 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Electrical Specifications MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 24. Mechanical Specifications 24.1 Contents 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 24.3 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . .406 24.4 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .407 24.2 Introduction This section gives the dimensions for: • 42-pin shrink dual in-line package (case 858-01) • 44-pin plastic quad flat pack (case 824A-01) The following figures show the latest package drawings at the time of this publication. To make sure that you have the latest package specifications, contact your local Motorola sales office. MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Mechanical Specifications Technical Data 405 Mechanical Specifications 24.3 42-Pin Shrink Dual in-Line Package (SDIP) -A42 NOTES: 1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). 22 -B1 21 L DIM A B C D F G H J K L M N H C -TSEATING PLANE 0.25 (0.010) Technical Data 406 N G F D 42 PL K M T A S M J 42 PL 0.25 (0.010) M T B INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0° 15° 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 5.08 3.94 0.56 0.36 1.17 0.81 1.778 BSC 7.62 BSC 0.38 0.20 3.43 2.92 15.24 BSC 15° 0° 1.02 0.51 S MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Mechanical Specifications MOTOROLA Mechanical Specifications 44-Pin Plastic Quad Flat Pack (QFP) 24.4 44-Pin Plastic Quad Flat Pack (QFP) B L B 33 23 22 44 D S S D S S D S V 0.05 (0.002) A-B S 0.20 (0.008) M H A-B M DETAIL C C E -H- -CSEATING PLANE DATUM PLANE 0.01 (0.004) H G M M T DATUM PLANE -H- R K W Q X DETAIL C MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA F BASE METAL J N S D S SECTION B-B -DS (0.008) M H A-B S 11 A 0.20 (0.008) M C A-B DETAIL A D 0.20 (0.008) M C A-B 12 1 0.20 DETAIL A S L -B- 0.05 (0.002) A-B -A- D -A-, -B-, -D- B 0.20 (0.008) M C A-B 34 Mechanical Specifications NOTES: 1. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. 2. CONTROLLING DIMENSION: MILLIMETER. 3. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MILLIMETERS INCHES DIM MIN MAX MIN MAX A 9.90 10.10 0.390 0.398 B 9.90 10.10 0.390 0.398 C 2.10 2.45 0.083 0.096 D 0.30 0.45 0.012 0.018 E 2.00 2.10 0.079 0.083 F 0.30 0.40 0.012 0.016 G 0.80 BSC 0.031 BSC H --0.25 --- 0.010 J 0.13 0.23 0.005 0.009 K 0.65 0.95 0.026 0.037 L 8.00 REF 0.315 REF M 5° 10 ° 5° 10 ° N 0.13 0.17 0.005 0.007 Q 0° 7° 0° 7° R 0.13 0.30 0.005 0.012 S 12.95 13.45 0.510 0.530 T 0.13 --- 0.005 --U 0° --0° --V 12.95 13.45 0.510 0.530 W 0.40 --- 0.016 --X 1.6 REF 0.063 REF Technical Data 407 Mechanical Specifications Technical Data 408 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Mechanical Specifications MOTOROLA Technical Data — MC68HC908GT16 • MC68HC908GT8 Section 25. Ordering Information 25.1 Contents 25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409 25.2 Introduction This section contains ordering numbers for the MC68HC908GT16 and MC68HC908GT8. 25.3 MC Order Numbers Table 25-1. MC Order Numbers MC Order Number Operating Temperature Range Package MC68HC908GT16CB –40°C to +85°C 42-pin SDIP MC68HC908GT16CFB –40°C to +85°C 44-pin QFP MC68HC908GT8CB –40°C to +85°C 42-pin SDIP MC68HC908GT8CFB –40°C to +85°C 44-pin QFP MC68HC908GT16 • MC68HC908GT8 — Rev. 2 MOTOROLA Ordering Information Technical Data 409 Ordering Information Technical Data 410 MC68HC908GT16 • MC68HC908GT8 — Rev. 2 Ordering Information MOTOROLA HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: http://www.motorola.com/semiconductors liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002 MC68HC908GT16/D This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.