ONSEMI MC74VHC1G66

MC74VHC1G66
Advance Information
Analog Switch
The MC74VHC1G66 is an advanced high speed CMOS bilateral
analog switch fabricated with silicon gate CMOS technology. It
achieves high speed propagation delays and low ON resistances while
maintaining CMOS low power dissipation. This bilateral switch
controls analog and digital voltages that may vary across the full
power–supply range (from VCC to GND).
The MC74VHC1G66 is compatible in function to a single gate of
the High Speed CMOS MC74VHC4066 and the metal–gate CMOS
MC14066. The device has been designed so that the ON resistances
(RON) are much lower and more linear over input voltage than RON of
the metal–gate CMOS or High Speed CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS
outputs; with pull–up resistors, it is compatible with LSTTL outputs.
• High Speed: tPD = TBD (Typ) at VCC = 5 V
• Low Power Dissipation: ICC = 2 mA (Max) at TA = 25°C
• Diode Protection Provided on Inputs and Outputs
• Improved Linearity and Lower ON Resistance over Input Voltage
than the MC14066 or the HC4066
• Pin and Function Compatible with Other Standard Logic Families
• Latchup Performance Exceeds 300 mA
• ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V
• Chip Complexity: 11 FETs or 3 Equivalent Gates
IN/OUT XA
1
OUT/IN YA
2
GND
3
5
4
VCC
http://onsemi.com
SC–88A / SOT–353
DF SUFFIX
CASE 419A
MARKING DIAGRAM
V9d
Pin 1
d = Date Code
PIN ASSIGNMENT
1
IN/OUT XA
2
OUT/IN YA
3
GND
4
ON/OFF CONTROL
5
VCC
ON/OFF CONTROL
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 7 of this data sheet.
5–Lead SOT–353 Pinout (Top View)
FUNCTION TABLE
LOGIC SYMBOL
ON/OFF CONTROL
1
1
U
U
IN/OUT XA
X1
OUT/IN YA
On/Off Control Input
State of Analog Switch
L
H
Off
On
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
 Semiconductor Components Industries, LLC, 1999
November, 1999 – Rev. 1
1
Publication Order Number:
MC74VHC1G66/D
MC74VHC1G66
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
DC Supply Voltage
Characteristics
VCC
–0.5 to +7.0
V
Digital Input Voltage
VIN
–0.5 to VCC +0.5
V
Analog Output Voltage
VIS
–0.5 to VCC + 0.5
V
Digital Input Diode Current
IIK
–20
mA
DC Supply Current, VCC and GND
ICC
+25
mA
Power dissipation in still air, SC–88A †
PD
200
mW
Lead temperature, 1 mm from case for 10 s
TL
260
°C
Tstg
–65 to +150
°C
Storage temperature
†Derating — SC–88A Package: –3 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
Min
Max
Unit
DC Supply Voltage
Characteristics
VCC
4.5
5.5
V
Digital Input Voltage
VIN
GND
VCC
V
Analog Input Voltage
VIS
GND
VCC
V
Static or Dynamic Voltage Across Switch
VIO*
1.2
V
Operating Temperature Range
TA
Input Rise and Fall Time
ON/OFF Control Input
tr , tf
–55
+85
°C
ns/V
VCC = 3.3V ± 0.3V
0
100
VCC = 5.0V ± 0.5V
0
20
* For voltage drops across the switch greater than 1.2V (switch on), excessive VCC current may be drawn; i.e. the current out of the switch may
contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
http://onsemi.com
2
MC74VHC1G66
DC ELECTRICAL CHARACTERISTICS
VCC
Symbol
Parameter
Test Conditions
TA ≤ 85°C
TA = 25°C
(V)
Min
1.5
2.1
3.15
3.85
Typ
Max
Min
Max
1.5
2.1
3.15
3.85
TA ≤ 125°C
Min
Max
1.5
2.1
3.15
3.85
Unit
VIH
Minimum High–Level
Input Voltage
ON/OFF Control Input
RON = Per Spec
2.0
3.0
4.5
5.5
V
VIL
Maximum Low–Level
Input Voltage
ON/OFF Control Input
RON = Per Spec
2.0
3.0
4.5
5.5
0.5
0.9
1.35
1.65
0.5
0.9
1.35
1.65
0.5
0.9
1.35
1.65
V
IIN
Maximum Input
Leakage Current
ON/OFF Control Input
VIN = VCC or GND
0 to
5.5
±0.1
±1.0
±1.0
µA
ICC
Maximum Quiescent
Supply Current
VIN = VCC or GND
VIO = 0V
5.5
2.0
20
40
µA
RON
Maximum ”ON”
Resistance
VIN = VIH
VIS = VCC or GND
|IIS| ≤ 10mA (Figure 1)
3.0
4.5
5.5
30
20
15
50
30
20
70
40
35
100
50
45
Endpoints
VIN = VIH
VIS = VCC or GND
|IIS| ≤ 10mA (Figure 1)
3.0
4.5
5.5
25
12
8
50
20
15
65
26
23
90
40
32
W
W
IOFF
Maximum Off–Channel
Leakage Current
VIN = VIL
VIS = VCC or GND
Switch Off (Figure 2)
5.5
0.1
0.5
1.0
µA
ION
Maximum On–Channel
Leakage
Current
VIN = VIH
VIS = VCC or GND
Switch On (Figure 3)
5.5
0.1
0.5
1.0
µA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
W
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
W
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (Cload = 50 pF, Input tr/tf = 3.0ns)
Symbol
tPLH,
tPHL
tPLZ,
tPHZ
tPZL,
tPZH
CIN
Parameter
Test Conditions
VCC
(V)
7
4
2
1
ns
35
15
10
7
46
20
13
9
57
25
17
11
ns
15
8
6
4
35
15
10
7
46
20
13
9
57
25
17
11
ns
3
10
10
10
pF
4
4
10
10
10
10
10
10
1
0
0
0
5
2
1
1
2.0
3.0
4.5
5.5
15
8
6
4
2.0
3.0
4.5
5.5
RL = 1000
Maximum Propogation
Delay,
ON/OFF Control to
Analog Output
RL = 1000
Maximum Input
C
Capacitance
it
ON/OFF Control Input
0.0
Contol Input = GND
Analog I/O
Feedthrough
5.0
Figure 5
6
3
1
1
2.0
3.0
4.5
5.5
Maximum Propogation
Delay,
ON/OFF Control to
Analog Output
Figure 5
Unit
Max
YA = Open
Min
TA ≤ 125°C
Max
Typ
Maximum Propogation
Delay,
Input X to Y
Figure 4
TA ≤ 85°C
TA = 25°C
Min
Max
Min
Typical @ 25°C, VCC = 5.0V
CPD
Power Dissipation Capacitance (Note NO TAG)
pF
18
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
3
MC74VHC1G66
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
W
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
Symbol
Parameter
Test Conditions
VCC
Limit
25°C
Unit
BW
Maximum On–Channel
Bandwidth or Minimum
Frequency Response
Figure 7
fin = 1 MHz Sine Wave
Adjust fin voltage to obtain 0 dBm at VOS
Increase fin = frequency until dB meter reads –3dB
RL = 50 , CL = 10 pF
3.0
4.5
5.5
150
175
200
MHz
ISOoff
Off–Channel Feedthrough
Isolation
Figure 8
fin = Sine Wave
Adjust fin voltage to obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 , CL = 50 pF
3.0
4.5
5.5
–50
–50
–50
dB
3.0
4.5
5.5
–40
–40
–40
3.0
4.5
5.5
45
60
130
3.0
4.5
5.5
25
30
60
fin = 1.0 kHz, RL = 50 , CL = 10 pF
NOISEfeed
Feedthrough Noise Control to
Switch
Figure 9
Vin ≤ 1 MHz Square Wave (tr = tf = 2ns)
Adjust RL at setup so that Is = 0 A
RL = 600 , CL = 50 pF
RL = 50 , CL = 10 pF
THD
Total Harmonic Distortion
Figure 10
fin = 1 kHz, RL = 10k , CL = 50 pF
THD = THDMeasured – THDSource
VIS = 3.0 VPP sine wave
VIS = 4.0 VPP sine wave
VIS = 5.0 VPP sine wave
mVPP
%
3.3
4.5
5.5
0.20
0.10
0.06
1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
4
MC74VHC1G66
PLOTTER
POWER
SUPPLY
–
DC PARAMETER
ANALYZER
COMPUTER
+
VCC
VCC
1
VCC
5
1
2
5
2
VCC
3
VIL
A
4
3
Figure 1. On Resistance Test Set–Up
VCC
4
Figure 2. Maximum Off–Channel Leakage Current
Test Set–Up
VCC
1
A
5
1
2
N/C
VCC
3
2
TEST
POINT
VIH
5
4
VCC
3
Figure 3. Maximum On–Channel Leakage Current
Test Set–Up
4
Figure 4. Propagation Delay Test Set–Up
Switch to Position 1 when testing tPLZ and tPZL
Switch to Position 2 when testing tPHZ and tPZH
VCC
TEST POINT
VCC
VCC
1
1
2
A
5
1
1
N/C
2
5
RL
2
VCC
N/C
CL*
3
3
4
4
2
*Includes all probe and jig capacitance.
Figure 5. Propagation Delay Output Enable/Disable
Test Set–Up
Figure 6. Power Dissipation Capacitance Test
Set–Up
http://onsemi.com
5
MC74VHC1G66
VOS
VIS
VCC
0.1 mF
fin
1
VOS
VCC
0.1 mF
fin
5
1
2
CL*
dB
Meter
2
3
dB
Meter
4
CL*
RL
*Includes all probe and jig capacitance.
To Distortion
Meter
(VCC)/2
VCC
RL
1
5
v 1 MHz
IN
t r + t + 2 ns
f
CL*
2
3
RL
5
3
4
*Includes all probe and jig capacitance.
Figure 10. Total Harmonic Distortion Test Set–Up
Control
VCC
tf
90%
10%
50% VCC
tPZL
50% VCC
50% VCC
50% VCC
High
Impedance
10%
Analog Out
VOL
50% VCC
tPZH
Figure 11. Propagation Delay,
Analog In to Analog Out Waveforms
VCC
tPLZ
tPHL
VOH
YA
1
2
tr
tPLH
fin
CL*
VCC
GND
4
Figure 9. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up
50%
VCC
VOS
*Includes all probe and jig capacitance.
XA
VIS
0.1 mF
V
IS
4
Figure 8. Off–Channel Feedthrough Isolation Test
Set–Up
(VCC)/2
VOS
3
*Includes all probe and jig capacitance.
Figure 7. Maximum On–Channel Bandwidth
Test Set–Up
RL
5
90%
VOL
VOH
High
tPHZ Impedance
Figure 12. Propagation Delay, ON/OFF Control
http://onsemi.com
6
MC74VHC1G66
DEVICE ORDERING INFORMATION
Device Nomenclature
Device Order Number
Circuit
Indicator
Temp
Range
Identifier
MC
74
MC74VHC1G66DFT1
Technology
Device
Function
Package
Suffix
Tape &
Reel
Suffix
Package
Type
Tape and Reel
Size
VHC1G
66
DF
T1
SC–88A /
SOT–353
7–Inch/3000 Unit
PACKAGE DIMENSIONS
SC–88A / SOT–353
DF SUFFIX
5–LEAD PACKAGE
CASE 419A–01
ISSUE B
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MM.
G
V
4
–B–
S
1
2
3
D 5 PL
0.2 (0.008)
M
B
M
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
–––
0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
0.30
0.40
0.5 mm (min)
N
J
C
K
0.4 mm (min)
H
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
–––
0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
0.012
0.016
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
1.9 mm
http://onsemi.com
7
0.65 mm 0.65 mm
5
DIM
A
B
C
D
G
H
J
K
N
S
V
MC74VHC1G66
10 PITCHES
CUMULATIVE
TOLERANCE ON
TAPE
±0.2 mm
(±0.008”)
P0
K
P2
D
t
TOP
COVER
TAPE
E
A0
+
K0
SEE
NOTE 2
B1
SEE NOTE 2
F
+
B0
W
+
D1
FOR COMPONENTS
2.0 mm × 1.2 mm
AND LARGER
P
EMBOSSMENT
FOR MACHINE REFERENCE
ONLY
INCLUDING DRAFT AND RADII
CONCENTRIC AROUND B0
CENTER LINES
OF CAVITY
USER DIRECTION OF FEED
*TOP COVER
TAPE THICKNESS (t1)
0.10 mm
(0.004”) MAX.
R MIN.
TAPE AND COMPONENTS
SHALL PASS AROUND RADIUS “R”
WITHOUT DAMAGE
EMBOSSED
CARRIER
BENDING RADIUS
10°
100 mm
(3.937”)
MAXIMUM COMPONENT ROTATION
EMBOSSMENT
1 mm MAX
TYPICAL
COMPONENT CAVITY
CENTER LINE
TAPE
1 mm
(0.039”) MAX
TYPICAL
COMPONENT
CENTER LINE
250 mm
(9.843”)
CAMBER (TOP VIEW)
ALLOWABLE CAMBER TO BE 1 mm/100 mm NONACCUMULATIVE OVER 250 mm
Figure 13. Carrier Tape Specifications
EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)
Tape
Size
B1
Max
8 mm
4.35 mm
(0.171”)
D
D1
E
F
K
P
P0
P2
R
T
W
1.5 +0.1/
–0.0 mm
(0.059
+0.004/
–0.0”)
1.0 mm
Min
(0.039”)
1.75
±0.1 mm
(0.069
±0.004”)
3.5
±0.5 mm
(1.38
±0.002”)
2.4 mm
(0.094”)
4.0
±0.10 mm
(0.157
±0.004”)
4.0
±0.1 mm
(0.156
±0.004”)
2.0
±0.1 mm
(0.079
±0.002”)
25 mm
(0.98”)
0.3
±0.05 mm
(0.01
+0.0038/
–0.0002”)
8.0
±0.3 mm
(0.315
±0.012”)
1. Metric Dimensions Govern–English are in parentheses for reference only.
2. A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to
0.50 mm max. The component cannot rotate more than 10° within the determined cavity
http://onsemi.com
8
MC74VHC1G66
t MAX
13.0 mm ±0.2 mm
(0.512” ±0.008”)
1.5 mm MIN
(0.06”)
A
20.2 mm MIN
(0.795”)
50 mm MIN
(1.969”)
FULL RADIUS
G
Figure 14. Reel Dimensions
REEL DIMENSIONS
Tape
Size
8 mm
A Max
G
t Max
330 mm
(13”)
8.400 mm, +1.5 mm, –0.0
(0.33”, +0.059”, –0.00)
14.4 mm
(0.56”)
DIRECTION OF FEED
BARCODE LABEL
POCKET
Figure 15. Reel Winding Direction
http://onsemi.com
9
HOLE
MC74VHC1G66
CAVITY
TAPE
TOP TAPE
TAPE TRAILER
(Connected to Reel Hub)
NO COMPONENTS
160 mm MIN
COMPONENTS
DIRECTION OF FEED
Figure 16. Tape Ends for Finished Goods
“T1” PIN ONE TOWARDS
SPROCKET HOLE
SC–88A/SOT–353 (5 Pin)
DEVICE
User Direction of Feed
Figure 17. Reel Configuration
http://onsemi.com
10
TAPE LEADER
NO COMPONENTS
400 mm MIN
MC74VHC1G66
Notes
http://onsemi.com
11
MC74VHC1G66
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
USA/EUROPE Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5487–8345
Email: [email protected]
Fax Response Line*: 303–675–2167
800–344–3810 Toll Free USA/Canada
ON Semiconductor Website: http://onsemi.com
*To receive a Fax of our publications
For additional information, please contact your local Sales Representative.
N. America Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
12
MC74VHC1G66/D