MC74VHC1G66 Advance Information Analog Switch The MC74VHC1G66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from VCC to GND). The MC74VHC1G66 is compatible in function to a single gate of the High Speed CMOS MC74VHC4066 and the metal–gate CMOS MC14066. The device has been designed so that the ON resistances (RON) are much lower and more linear over input voltage than RON of the metal–gate CMOS or High Speed CMOS analog switches. The ON/OFF control inputs are compatible with standard CMOS outputs; with pull–up resistors, it is compatible with LSTTL outputs. • High Speed: tPD = TBD (Typ) at VCC = 5 V • Low Power Dissipation: ICC = 2 mA (Max) at TA = 25°C • Diode Protection Provided on Inputs and Outputs • Improved Linearity and Lower ON Resistance over Input Voltage than the MC14066 or the HC4066 • Pin and Function Compatible with Other Standard Logic Families • Latchup Performance Exceeds 300 mA • ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V • Chip Complexity: 11 FETs or 3 Equivalent Gates IN/OUT XA 1 OUT/IN YA 2 GND 3 5 4 VCC http://onsemi.com SC–88A / SOT–353 DF SUFFIX CASE 419A MARKING DIAGRAM V9d Pin 1 d = Date Code PIN ASSIGNMENT 1 IN/OUT XA 2 OUT/IN YA 3 GND 4 ON/OFF CONTROL 5 VCC ON/OFF CONTROL ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. 5–Lead SOT–353 Pinout (Top View) FUNCTION TABLE LOGIC SYMBOL ON/OFF CONTROL 1 1 U U IN/OUT XA X1 OUT/IN YA On/Off Control Input State of Analog Switch L H Off On This document contains information on a new product. Specifications and information herein are subject to change without notice. Semiconductor Components Industries, LLC, 1999 November, 1999 – Rev. 1 1 Publication Order Number: MC74VHC1G66/D MC74VHC1G66 ABSOLUTE MAXIMUM RATINGS Symbol Value Unit DC Supply Voltage Characteristics VCC –0.5 to +7.0 V Digital Input Voltage VIN –0.5 to VCC +0.5 V Analog Output Voltage VIS –0.5 to VCC + 0.5 V Digital Input Diode Current IIK –20 mA DC Supply Current, VCC and GND ICC +25 mA Power dissipation in still air, SC–88A † PD 200 mW Lead temperature, 1 mm from case for 10 s TL 260 °C Tstg –65 to +150 °C Storage temperature †Derating — SC–88A Package: –3 mW/_C from 65_ to 125_C RECOMMENDED OPERATING CONDITIONS Symbol Min Max Unit DC Supply Voltage Characteristics VCC 4.5 5.5 V Digital Input Voltage VIN GND VCC V Analog Input Voltage VIS GND VCC V Static or Dynamic Voltage Across Switch VIO* 1.2 V Operating Temperature Range TA Input Rise and Fall Time ON/OFF Control Input tr , tf –55 +85 °C ns/V VCC = 3.3V ± 0.3V 0 100 VCC = 5.0V ± 0.5V 0 20 * For voltage drops across the switch greater than 1.2V (switch on), excessive VCC current may be drawn; i.e. the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. http://onsemi.com 2 MC74VHC1G66 DC ELECTRICAL CHARACTERISTICS VCC Symbol Parameter Test Conditions TA ≤ 85°C TA = 25°C (V) Min 1.5 2.1 3.15 3.85 Typ Max Min Max 1.5 2.1 3.15 3.85 TA ≤ 125°C Min Max 1.5 2.1 3.15 3.85 Unit VIH Minimum High–Level Input Voltage ON/OFF Control Input RON = Per Spec 2.0 3.0 4.5 5.5 V VIL Maximum Low–Level Input Voltage ON/OFF Control Input RON = Per Spec 2.0 3.0 4.5 5.5 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 V IIN Maximum Input Leakage Current ON/OFF Control Input VIN = VCC or GND 0 to 5.5 ±0.1 ±1.0 ±1.0 µA ICC Maximum Quiescent Supply Current VIN = VCC or GND VIO = 0V 5.5 2.0 20 40 µA RON Maximum ”ON” Resistance VIN = VIH VIS = VCC or GND |IIS| ≤ 10mA (Figure 1) 3.0 4.5 5.5 30 20 15 50 30 20 70 40 35 100 50 45 Endpoints VIN = VIH VIS = VCC or GND |IIS| ≤ 10mA (Figure 1) 3.0 4.5 5.5 25 12 8 50 20 15 65 26 23 90 40 32 W W IOFF Maximum Off–Channel Leakage Current VIN = VIL VIS = VCC or GND Switch Off (Figure 2) 5.5 0.1 0.5 1.0 µA ION Maximum On–Channel Leakage Current VIN = VIH VIS = VCC or GND Switch On (Figure 3) 5.5 0.1 0.5 1.0 µA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ W ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ W ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS (Cload = 50 pF, Input tr/tf = 3.0ns) Symbol tPLH, tPHL tPLZ, tPHZ tPZL, tPZH CIN Parameter Test Conditions VCC (V) 7 4 2 1 ns 35 15 10 7 46 20 13 9 57 25 17 11 ns 15 8 6 4 35 15 10 7 46 20 13 9 57 25 17 11 ns 3 10 10 10 pF 4 4 10 10 10 10 10 10 1 0 0 0 5 2 1 1 2.0 3.0 4.5 5.5 15 8 6 4 2.0 3.0 4.5 5.5 RL = 1000 Maximum Propogation Delay, ON/OFF Control to Analog Output RL = 1000 Maximum Input C Capacitance it ON/OFF Control Input 0.0 Contol Input = GND Analog I/O Feedthrough 5.0 Figure 5 6 3 1 1 2.0 3.0 4.5 5.5 Maximum Propogation Delay, ON/OFF Control to Analog Output Figure 5 Unit Max YA = Open Min TA ≤ 125°C Max Typ Maximum Propogation Delay, Input X to Y Figure 4 TA ≤ 85°C TA = 25°C Min Max Min Typical @ 25°C, VCC = 5.0V CPD Power Dissipation Capacitance (Note NO TAG) pF 18 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. http://onsemi.com 3 MC74VHC1G66 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ W ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) Symbol Parameter Test Conditions VCC Limit 25°C Unit BW Maximum On–Channel Bandwidth or Minimum Frequency Response Figure 7 fin = 1 MHz Sine Wave Adjust fin voltage to obtain 0 dBm at VOS Increase fin = frequency until dB meter reads –3dB RL = 50 , CL = 10 pF 3.0 4.5 5.5 150 175 200 MHz ISOoff Off–Channel Feedthrough Isolation Figure 8 fin = Sine Wave Adjust fin voltage to obtain 0 dBm at VIS fin = 10 kHz, RL = 600 , CL = 50 pF 3.0 4.5 5.5 –50 –50 –50 dB 3.0 4.5 5.5 –40 –40 –40 3.0 4.5 5.5 45 60 130 3.0 4.5 5.5 25 30 60 fin = 1.0 kHz, RL = 50 , CL = 10 pF NOISEfeed Feedthrough Noise Control to Switch Figure 9 Vin ≤ 1 MHz Square Wave (tr = tf = 2ns) Adjust RL at setup so that Is = 0 A RL = 600 , CL = 50 pF RL = 50 , CL = 10 pF THD Total Harmonic Distortion Figure 10 fin = 1 kHz, RL = 10k , CL = 50 pF THD = THDMeasured – THDSource VIS = 3.0 VPP sine wave VIS = 4.0 VPP sine wave VIS = 5.0 VPP sine wave mVPP % 3.3 4.5 5.5 0.20 0.10 0.06 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. http://onsemi.com 4 MC74VHC1G66 PLOTTER POWER SUPPLY – DC PARAMETER ANALYZER COMPUTER + VCC VCC 1 VCC 5 1 2 5 2 VCC 3 VIL A 4 3 Figure 1. On Resistance Test Set–Up VCC 4 Figure 2. Maximum Off–Channel Leakage Current Test Set–Up VCC 1 A 5 1 2 N/C VCC 3 2 TEST POINT VIH 5 4 VCC 3 Figure 3. Maximum On–Channel Leakage Current Test Set–Up 4 Figure 4. Propagation Delay Test Set–Up Switch to Position 1 when testing tPLZ and tPZL Switch to Position 2 when testing tPHZ and tPZH VCC TEST POINT VCC VCC 1 1 2 A 5 1 1 N/C 2 5 RL 2 VCC N/C CL* 3 3 4 4 2 *Includes all probe and jig capacitance. Figure 5. Propagation Delay Output Enable/Disable Test Set–Up Figure 6. Power Dissipation Capacitance Test Set–Up http://onsemi.com 5 MC74VHC1G66 VOS VIS VCC 0.1 mF fin 1 VOS VCC 0.1 mF fin 5 1 2 CL* dB Meter 2 3 dB Meter 4 CL* RL *Includes all probe and jig capacitance. To Distortion Meter (VCC)/2 VCC RL 1 5 v 1 MHz IN t r + t + 2 ns f CL* 2 3 RL 5 3 4 *Includes all probe and jig capacitance. Figure 10. Total Harmonic Distortion Test Set–Up Control VCC tf 90% 10% 50% VCC tPZL 50% VCC 50% VCC 50% VCC High Impedance 10% Analog Out VOL 50% VCC tPZH Figure 11. Propagation Delay, Analog In to Analog Out Waveforms VCC tPLZ tPHL VOH YA 1 2 tr tPLH fin CL* VCC GND 4 Figure 9. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set–Up 50% VCC VOS *Includes all probe and jig capacitance. XA VIS 0.1 mF V IS 4 Figure 8. Off–Channel Feedthrough Isolation Test Set–Up (VCC)/2 VOS 3 *Includes all probe and jig capacitance. Figure 7. Maximum On–Channel Bandwidth Test Set–Up RL 5 90% VOL VOH High tPHZ Impedance Figure 12. Propagation Delay, ON/OFF Control http://onsemi.com 6 MC74VHC1G66 DEVICE ORDERING INFORMATION Device Nomenclature Device Order Number Circuit Indicator Temp Range Identifier MC 74 MC74VHC1G66DFT1 Technology Device Function Package Suffix Tape & Reel Suffix Package Type Tape and Reel Size VHC1G 66 DF T1 SC–88A / SOT–353 7–Inch/3000 Unit PACKAGE DIMENSIONS SC–88A / SOT–353 DF SUFFIX 5–LEAD PACKAGE CASE 419A–01 ISSUE B A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MM. G V 4 –B– S 1 2 3 D 5 PL 0.2 (0.008) M B M MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC ––– 0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 0.30 0.40 0.5 mm (min) N J C K 0.4 mm (min) H INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC ––– 0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 0.012 0.016 ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ ÉÉÉ 1.9 mm http://onsemi.com 7 0.65 mm 0.65 mm 5 DIM A B C D G H J K N S V MC74VHC1G66 10 PITCHES CUMULATIVE TOLERANCE ON TAPE ±0.2 mm (±0.008”) P0 K P2 D t TOP COVER TAPE E A0 + K0 SEE NOTE 2 B1 SEE NOTE 2 F + B0 W + D1 FOR COMPONENTS 2.0 mm × 1.2 mm AND LARGER P EMBOSSMENT FOR MACHINE REFERENCE ONLY INCLUDING DRAFT AND RADII CONCENTRIC AROUND B0 CENTER LINES OF CAVITY USER DIRECTION OF FEED *TOP COVER TAPE THICKNESS (t1) 0.10 mm (0.004”) MAX. R MIN. TAPE AND COMPONENTS SHALL PASS AROUND RADIUS “R” WITHOUT DAMAGE EMBOSSED CARRIER BENDING RADIUS 10° 100 mm (3.937”) MAXIMUM COMPONENT ROTATION EMBOSSMENT 1 mm MAX TYPICAL COMPONENT CAVITY CENTER LINE TAPE 1 mm (0.039”) MAX TYPICAL COMPONENT CENTER LINE 250 mm (9.843”) CAMBER (TOP VIEW) ALLOWABLE CAMBER TO BE 1 mm/100 mm NONACCUMULATIVE OVER 250 mm Figure 13. Carrier Tape Specifications EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2) Tape Size B1 Max 8 mm 4.35 mm (0.171”) D D1 E F K P P0 P2 R T W 1.5 +0.1/ –0.0 mm (0.059 +0.004/ –0.0”) 1.0 mm Min (0.039”) 1.75 ±0.1 mm (0.069 ±0.004”) 3.5 ±0.5 mm (1.38 ±0.002”) 2.4 mm (0.094”) 4.0 ±0.10 mm (0.157 ±0.004”) 4.0 ±0.1 mm (0.156 ±0.004”) 2.0 ±0.1 mm (0.079 ±0.002”) 25 mm (0.98”) 0.3 ±0.05 mm (0.01 +0.0038/ –0.0002”) 8.0 ±0.3 mm (0.315 ±0.012”) 1. Metric Dimensions Govern–English are in parentheses for reference only. 2. A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity http://onsemi.com 8 MC74VHC1G66 t MAX 13.0 mm ±0.2 mm (0.512” ±0.008”) 1.5 mm MIN (0.06”) A 20.2 mm MIN (0.795”) 50 mm MIN (1.969”) FULL RADIUS G Figure 14. Reel Dimensions REEL DIMENSIONS Tape Size 8 mm A Max G t Max 330 mm (13”) 8.400 mm, +1.5 mm, –0.0 (0.33”, +0.059”, –0.00) 14.4 mm (0.56”) DIRECTION OF FEED BARCODE LABEL POCKET Figure 15. Reel Winding Direction http://onsemi.com 9 HOLE MC74VHC1G66 CAVITY TAPE TOP TAPE TAPE TRAILER (Connected to Reel Hub) NO COMPONENTS 160 mm MIN COMPONENTS DIRECTION OF FEED Figure 16. Tape Ends for Finished Goods “T1” PIN ONE TOWARDS SPROCKET HOLE SC–88A/SOT–353 (5 Pin) DEVICE User Direction of Feed Figure 17. Reel Configuration http://onsemi.com 10 TAPE LEADER NO COMPONENTS 400 mm MIN MC74VHC1G66 Notes http://onsemi.com 11 MC74VHC1G66 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION USA/EUROPE Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit–[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: [email protected] Fax Response Line*: 303–675–2167 800–344–3810 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com *To receive a Fax of our publications For additional information, please contact your local Sales Representative. N. America Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 12 MC74VHC1G66/D