ONSEMI MC74VHC4066DT

Order this document
by MC74VHC4066/D
SEMICONDUCTOR TECHNICAL DATA
! " ! #! #
High–Performance Silicon–Gate CMOS
The MC74VHC4066 utilizes silicon–gate CMOS technology to
achieve fast propagation delays, low ON resistances, and low OFF–
channel leakage current. This bilateral switch/multiplexer/demultiplexer
controls analog and digital voltages that may vary across the full
power–supply range (from VCC to GND).
The VHC4066 is identical in pinout to the metal–gate CMOS MC14066
and the high–speed CMOS HC4066A. Each device has four independent
switches. The device has been designed so that the ON resistances
(RON) are much more linear over input voltage than RON of metal–gate
CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS
outputs; with pullup resistors, they are compatible with LSTTL outputs.
For analog switches with voltage–level translators, see the VHC4316.
D SUFFIX
14–LEAD SOIC PACKAGE
CASE 751A–03
DT SUFFIX
14–LEAD TSSOP PACKAGE
CASE 948G–01
ORDERING INFORMATION
MC74VHCXXXXD
MC74VHCXXXXDT
•
•
•
•
•
•
•
Fast Switching and Propagation Speeds
High ON/OFF Output Voltage Ratio
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Wide Power–Supply Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
Analog Input Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
Improved Linearity and Lower ON Resistance over Input Voltage than
the MC14016 or MC14066
• Low Noise
• Chip Complexity: 44 FETs or 11 Equivalent Gates
PIN ASSIGNMENT
LOGIC DIAGRAM
XA
A ON/OFF CONTROL
XB
B ON/OFF CONTROL
XC
C ON/OFF CONTROL
XD
D ON/OFF CONTROL
1
2
YA
2
13
YB
3
12
XB
B ON/OFF
CONTROL
C ON/OFF
CONTROL
GND
4
11
VCC
A ON/OFF
CONTROL
D ON/OFF
CONTROL
XD
5
10
YD
6
9
YC
7
8
XC
3
YB
ANALOG
OUTPUTS/INPUTS
9
YC
6
11
10
YD
12
ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD
PIN 14 = VCC
PIN 7 = GND
This document contains information on a new product. Specifications and information herein are subject to
change without notice.
07/99
 Motorola, Inc. 1999
1
14
FUNCTION TABLE
5
8
XA
YA
13
4
SOIC
TSSOP
1
REV 3
On/Off Control
Input
State of
Analog Switch
L
H
Off
On
MC74VHC4066
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
MAXIMUM RATINGS*
Symbol
Parameter
Value
Unit
– 0.5 to + 14.0
V
Analog Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
Digital Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
± 25
mA
500
450
mW
– 65 to + 150
_C
260
_C
VCC
Positive DC Supply Voltage (Referenced to GND)
VIS
Vin
I
DC Current Into or Out of Any Pin
PD
Power Dissipation in Still Air,
Tstg
Storage Temperature
TL
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or V CC ).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
v
* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
v
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
12.0
V
VCC
Positive DC Supply Voltage (Referenced to GND)
VIS
Analog Input Voltage (Referenced to GND)
GND
VCC
V
Vin
Digital Input Voltage (Referenced to GND)
GND
VCC
V
VIO*
Static or Dynamic Voltage Across Switch
—
1.2
V
– 55
+ 125
_C
0
0
0
0
0
1000
600
500
400
250
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time, ON/OFF Control
Inputs (Figure 10)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 9.0 V
VCC = 12.0 V
ns
* For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input components.
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)
Guaranteed Limit
S b l
Symbol
P
Parameter
T
Test
C
Conditions
di i
VCC
V
– 55 to
25_C
85_C
125_C
U i
Unit
VIH
Minimum High–Level Voltage
ON/OFF Control Inputs
Ron = Per Spec
2.0
3.0
4.5
9.0
12.0
1.5
2.1
3.15
6.3
8.4
1.5
2.1
3.15
6.3
8.4
1.5
2.1
3.15
6.3
8.4
V
VIL
Maximum Low–Level Voltage
ON/OFF Control Inputs
Ron = Per Spec
2.0
3.0
4.5
9.0
12.0
0.5
0.9
1.35
2.7
3.6
0.5
0.9
1.35
2.7
3.6
0.5
0.9
1.35
2.7
3.6
V
Iin
Maximum Input Leakage Current
ON/OFF Control Inputs
Vin = VCC or GND
12.0
± 0.1
± 1.0
± 1.0
µA
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
VIO = 0 V
6.0
12.0
2
4
20
40
40
160
µA
ICC
MOTOROLA
2
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
MC74VHC4066
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
v
v
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
v ÎÎÎÎ
v ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)
Guaranteed Limit
S b l
Symbol
Ron
VCC
V
– 55 to
25_C
85_C
125_C
Vin = VIH
VIS = VCC to GND
IS
2.0 mA (Figures 1, 2)
2.0†
3.0†
4.5
9.0
12.0
—
—
120
70
70
—
—
160
85
85
—
—
200
100
100
Vin = VIH
VIS = VCC or GND (Endpoints)
IS
2.0 mA (Figures 1, 2)
2.0
3.0
4.5
9.0
12.0
—
—
70
50
30
—
—
85
60
60
—
—
100
80
80
P
Parameter
T
Test
C
Conditions
di i
Maximum “ON” Resistance
U i
Unit
Ω
∆Ron
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIH
VIS = 1/2 (VCC – GND)
IS
2.0 mA
2.0
4.5
9.0
12.0
—
20
15
15
—
25
20
20
—
30
25
25
Ω
Ioff
Maximum Off–Channel Leakage
Current, Any One Channel
Vin = VIL
VIO = VCC or GND
Switch Off (Figure 3)
12.0
0.1
0.5
1.0
µA
Ion
Maximum On–Channel Leakage
Current, Any One Channel
Vin = VIH
VIS = VCC or GND
(Figure 4)
12.0
0.1
0.5
1.0
µA
†At supply voltage (VCC) approaching 3 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage
operation, it is recommended that these devices only be used to control digital signals.
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns)
Guaranteed Limit
VCC
V
– 55 to
25_C
85_C
125_C
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figures 8 and 9)
2.0
3.0
4.5
9.0
12.0
40
30
5
5
5
50
40
7
7
7
60
50
8
8
8
ns
tPLZ,
tPHZ
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
2.0
3.0
4.5
9.0
12.0
80
60
20
20
20
90
70
25
25
25
110
80
35
35
35
ns
tPZL,
tPZH
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 1 1)
2.0
3.0
4.5
9.0
12.0
80
45
20
20
20
90
50
25
25
25
100
60
30
30
30
ns
ON/OFF Control Input
—
10
10
10
pF
Control Input = GND
Analog I/O
Feedthrough
—
—
35
1.0
35
1.0
35
1.0
S b l
Symbol
C
P
Parameter
Maximum Capacitance
U i
Unit
Typical @ 25°C, VCC = 5.0 V
CPD
P
Power
Dissipation
Di i i Capacitance
C
i
(P
(Per S
Switch)
i h) (Figure
(Fi
13)*
15
pF
F
* Used to determine the no–load dynamic power consumption: P D = C PD V CC 2 f + I CC V CC .
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
3
MOTOROLA
MC74VHC4066
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
v
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
Symbol
BW
—
—
—
THD
Parameter
Test Conditions
VCC
V
Limit*
25_C
74HC
Unit
Maximum On–Channel Bandwidth or
Minimum Frequency Response
(Figure 5)
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter Reads – 3 dB
RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
150
160
160
MHz
Off–Channel Feedthrough Isolation
(Figure 6)
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
– 50
– 50
– 50
dB
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
– 40
– 40
– 40
Vin
1 MHz Square Wave (tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
60
130
200
RL = 10 kΩ, CL = 10 pF
4.5
9.0
12.0
30
65
100
fin
Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 Ω, CL = 50 pF
4.5
9.0
12.0
– 70
– 70
– 70
fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF
4.5
9.0
12.0
– 80
– 80
– 80
Feedthrough Noise, Control to
Switch
(Figure 7)
Crosstalk Between Any Two Switches
(Figure 12)
Total Harmonic Distortion
(Figure 14)
fin = 1 kHz, RL = 10 kΩ, CL = 50 pF
THD = THDMeasured – THDSource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
mVPP
dB
%
4.5
9.0
12.0
0.10
0.06
0.04
* Guaranteed limits not tested. Determined by design and verified by qualification.
MOTOROLA
4
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
MC74VHC4066
TBD
TBD
Figure 1a. Typical On Resistance, VCC = 2.0 V
Figure 1b. Typical On Resistance, VCC = 4.5 V
TBD
TBD
Figure 1c. Typical On Resistance, VCC = 6.0 V
Figure 1d. Typical On Resistance, VCC = 9.0 V
PLOTTER
PROGRAMMABLE
POWER
SUPPLY
TBD
–
MINI COMPUTER
+
DC ANALYZER
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
GND
Figure 1e. Typical On Resistance, VCC = 12 V
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
Figure 2. On Resistance Test Set–Up
5
MOTOROLA
MC74VHC4066
VCC
VCC
VCC
VCC
14
GND
14
A
A
VCC
OFF
7
SELECTED
CONTROL
INPUT
VIL
7
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
CL*
7
SELECTED
CONTROL
INPUT
VCC
14
VIS
ON
0.1µF
SELECTED
CONTROL
INPUT
VIH
Figure 4. Maximum On Channel Leakage Current,
Test Set–Up
VOS
VCC
14
fin
N/C
ON
GND
fin
dB
METER
VOS
OFF
0.1µF
CL*
RL
dB
METER
SELECTED
CONTROL
INPUT
VCC
7
*Includes all probe and jig capacitance.
*Includes all probe and jig capacitance.
Figure 5. Maximum On–Channel Bandwidth
Test Set–Up
VCC
VCC/2
Figure 6. Off–Channel Feedthrough Isolation,
Test Set–Up
VCC/2
14
RL
RL
OFF/ON
VOS
IS
VCC
CL*
VCC
GND
Vin ≤ 1 MHz
tr = tf = 6 ns
7
ANALOG IN
SELECTED
CONTROL
INPUT
50%
GND
tPHL
tPLH
CONTROL
50%
ANALOG OUT
*Includes all probe and jig capacitance.
Figure 7. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up
MOTOROLA
Figure 8. Propagation Delays, Analog In to
Analog Out
6
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
MC74VHC4066
VCC
tr
tf
14
ANALOG IN
ANALOG OUT
ON
TEST
POINT
VCC
90%
50%
10%
CONTROL
GND
CL*
7
SELECTED
CONTROL
INPUT
tPZL
tPLZ
HIGH
IMPEDANCE
50%
VCC
ANALOG
OUT
tPZH
10%
VOL
90%
VOH
tPHZ
50%
HIGH
IMPEDANCE
*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set–Up
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
VIS
POSITION 1 WHEN TESTING tPHZ AND tPZH
VCC
POSITION 2 WHEN TESTING tPLZ AND tPZL
1
14
RL
2
fin
VCC
VCC
TEST
POINT
ON/OFF
2
0.1 µF
1 kΩ
14
1
VOS
ON
OFF
VCC OR GND
CL*
RL
RL
SELECTED
CONTROL
INPUT
SELECTED
CONTROL
INPUT
CL*
VCC/2
RL
CL*
VCC/2
7
7
VCC/2
*Includes all probe and jig capacitance.
*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Set–Up
Figure 12. Crosstalk Between Any Two Switches,
Test Set–Up
VCC
A
VIS
VCC
14
N/C
OFF/ON
VOS
0.1 µF
N/C
fin
ON
RL
7
CL*
TO
DISTORTION
METER
VCC/2
SELECTED
CONTROL
INPUT
7
SELECTED
CONTROL
INPUT
VCC
ON/OFF CONTROL
*Includes all probe and jig capacitance.
Figure 13. Power Dissipation Capacitance
Test Set–Up
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
Figure 14. Total Harmonic Distortion, Test Set–Up
7
MOTOROLA
MC74VHC4066
0
– 10
FUNDAMENTAL FREQUENCY
– 20
dBm
– 30
– 40
– 50
DEVICE
– 60
SOURCE
– 70
– 80
– 90
1.0
2.0
3.0
FREQUENCY (kHz)
Figure 15. Plot, Harmonic Distortion
below, the difference between VCC and GND is twelve volts.
Therefore, using the configuration in Figure 16, a maximum
analog signal of twelve volts peak–to–peak can be controlled.
When voltage transients above VCC and/or below GND
are anticipated on the analog channels, external diodes (Dx)
are recommended as shown in Figure 17. These diodes
should be small signal, fast turn–on types able to absorb the
maximum anticipated current surges during clipping. An
alternate method would be to replace the Dx diodes with
MO sorbs (Motorola high current surge protectors).
MOsorbs are fast turn–on devices ideally suited for precise
DC protection with no inherent wear out mechanism.
APPLICATION INFORMATION
The ON/OFF Control pins should be at VCC or GND logic
levels, VCC being recognized as logic high and GND being
recognized as a logic low. Unused analog inputs/outputs
may be left floating (not connected). However, it is advisable
to tie unused analog inputs and outputs to VCC or GND
through a low value resistor. This minimizes crosstalk and
feedthrough noise that may be picked–up by the unused I/O
pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and GND. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below GND. In the example
VCC
VCC = 12 V
+ 12 V
14
ANALOG I/O
ON
ANALOG O/I
Dx
+ 12 V
SELECTED
CONTROL
INPUT
7
Dx
VCC
OTHER CONTROL
INPUTS
(VCC OR GND)
Dx
Dx
SELECTED
CONTROL
INPUT
7
Figure 16. 12 V Application
MOTOROLA
16
ON
0V
0V
VCC
OTHER CONTROL
INPUTS
(VCC OR GND)
Figure 17. Transient Suppressor Application
8
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
MC74VHC4066
+5 V
+5 V
14
ANALOG
SIGNALS
R*
R* R* R*
VHC4066
LSTTL/
NMOS
14
VHCT
BUFFER
LSTTL/
NMOS
5
6
ANALOG
SIGNALS
VHC4066
5
6
CONTROL
INPUTS
15
14
ANALOG
SIGNALS
ANALOG
SIGNALS
14
CONTROL
INPUTS
15
7
7
R* = 2 TO 10 kΩ
a. Using Pull-Up Resistors
b. Using HCT Buffer
Figure 18. LSTTL/NMOS to HCMOS Interface
VDD = 5 V
13
1
VCC = 5 TO 12 V
16
14
ANALOG
SIGNALS
3
VHC4066
5
7
ANALOG
SIGNALS
MC14504
2
5
9
4
6
11
6
14
CONTROL
INPUTS
10
15
7
14
8
Figure 19. TTL/NMOS–to–CMOS Level Converter
Analog Signal Peak–to–Peak Greater than 5 V
(Also see VHC4316)
CHANNEL 4
1 OF 4
SWITCHES
CHANNEL 3
1 OF 4
SWITCHES
CHANNEL 2
1 OF 4
SWITCHES
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
–
INPUT
1 OF 4
SWITCHES
+
OUTPUT
LF356 OR
EQUIVALENT
0.01 µF
1
2
3 4
CONTROL INPUTS
Figure 20. 4–Input Multiplexer
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
Figure 21. Sample/Hold Amplifier
9
MOTOROLA
MC74VHC4066
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
–A–
14
8
P 7 PL
–B–
1
0.25 (0.010)
7
G
D
0.25 (0.010)
MOTOROLA
M
T
B
S
B
M
F
M
K
14 PL
M
R X 45°
C
SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
A
S
10
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.75
8.55
4.00
3.80
1.75
1.35
0.49
0.35
1.25
0.40
1.27 BSC
0.25
0.19
0.25
0.10
7°
0°
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
7°
0°
0.228 0.244
0.010 0.019
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
MC74VHC4066
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948G–01
ISSUE O
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
–U–
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
A
–V–
K1
J J1
SECTION N–N
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
D
VHC Data – Advanced CMOS Logic
DL203 — Rev 2
G
H
DETAIL E
11
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
–––
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
–––
0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.020
0.024
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
MOTOROLA
MC74VHC4066
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
– http://sps.motorola.com/mfax/
852–26668334
HOME PAGE: http://motorola.com/sps/
◊
MOTOROLA
MC74VHC4066/D
12
VHC Data – Advanced CMOS Logic
DL203 — Rev 2