Order this document by MC74VHC4066/D SEMICONDUCTOR TECHNICAL DATA ! " ! #! # High–Performance Silicon–Gate CMOS The MC74VHC4066 utilizes silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF– channel leakage current. This bilateral switch/multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power–supply range (from VCC to GND). The VHC4066 is identical in pinout to the metal–gate CMOS MC14066 and the high–speed CMOS HC4066A. Each device has four independent switches. The device has been designed so that the ON resistances (RON) are much more linear over input voltage than RON of metal–gate CMOS analog switches. The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage–level translators, see the VHC4316. D SUFFIX 14–LEAD SOIC PACKAGE CASE 751A–03 DT SUFFIX 14–LEAD TSSOP PACKAGE CASE 948G–01 ORDERING INFORMATION MC74VHCXXXXD MC74VHCXXXXDT • • • • • • • Fast Switching and Propagation Speeds High ON/OFF Output Voltage Ratio Low Crosstalk Between Switches Diode Protection on All Inputs/Outputs Wide Power–Supply Voltage Range (VCC – GND) = 2.0 to 12.0 Volts Analog Input Voltage Range (VCC – GND) = 2.0 to 12.0 Volts Improved Linearity and Lower ON Resistance over Input Voltage than the MC14016 or MC14066 • Low Noise • Chip Complexity: 44 FETs or 11 Equivalent Gates PIN ASSIGNMENT LOGIC DIAGRAM XA A ON/OFF CONTROL XB B ON/OFF CONTROL XC C ON/OFF CONTROL XD D ON/OFF CONTROL 1 2 YA 2 13 YB 3 12 XB B ON/OFF CONTROL C ON/OFF CONTROL GND 4 11 VCC A ON/OFF CONTROL D ON/OFF CONTROL XD 5 10 YD 6 9 YC 7 8 XC 3 YB ANALOG OUTPUTS/INPUTS 9 YC 6 11 10 YD 12 ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD PIN 14 = VCC PIN 7 = GND This document contains information on a new product. Specifications and information herein are subject to change without notice. 07/99 Motorola, Inc. 1999 1 14 FUNCTION TABLE 5 8 XA YA 13 4 SOIC TSSOP 1 REV 3 On/Off Control Input State of Analog Switch L H Off On MC74VHC4066 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ MAXIMUM RATINGS* Symbol Parameter Value Unit – 0.5 to + 14.0 V Analog Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V Digital Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V ± 25 mA 500 450 mW – 65 to + 150 _C 260 _C VCC Positive DC Supply Voltage (Referenced to GND) VIS Vin I DC Current Into or Out of Any Pin PD Power Dissipation in Still Air, Tstg Storage Temperature TL SOIC Package† TSSOP Package† Lead Temperature, 1 mm from Case for 10 Seconds This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND (Vin or Vout) VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus. v * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. †Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C TSSOP Package: – 6.1 mW/_C from 65_ to 125_C v ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter Min Max Unit 2.0 12.0 V VCC Positive DC Supply Voltage (Referenced to GND) VIS Analog Input Voltage (Referenced to GND) GND VCC V Vin Digital Input Voltage (Referenced to GND) GND VCC V VIO* Static or Dynamic Voltage Across Switch — 1.2 V – 55 + 125 _C 0 0 0 0 0 1000 600 500 400 250 TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time, ON/OFF Control Inputs (Figure 10) VCC = 2.0 V VCC = 3.0 V VCC = 4.5 V VCC = 9.0 V VCC = 12.0 V ns * For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may be drawn; i.e., the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND) Guaranteed Limit S b l Symbol P Parameter T Test C Conditions di i VCC V – 55 to 25_C 85_C 125_C U i Unit VIH Minimum High–Level Voltage ON/OFF Control Inputs Ron = Per Spec 2.0 3.0 4.5 9.0 12.0 1.5 2.1 3.15 6.3 8.4 1.5 2.1 3.15 6.3 8.4 1.5 2.1 3.15 6.3 8.4 V VIL Maximum Low–Level Voltage ON/OFF Control Inputs Ron = Per Spec 2.0 3.0 4.5 9.0 12.0 0.5 0.9 1.35 2.7 3.6 0.5 0.9 1.35 2.7 3.6 0.5 0.9 1.35 2.7 3.6 V Iin Maximum Input Leakage Current ON/OFF Control Inputs Vin = VCC or GND 12.0 ± 0.1 ± 1.0 ± 1.0 µA Maximum Quiescent Supply Current (per Package) Vin = VCC or GND VIO = 0 V 6.0 12.0 2 4 20 40 40 160 µA ICC MOTOROLA 2 VHC Data – Advanced CMOS Logic DL203 — Rev 2 MC74VHC4066 ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ v v ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ v ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ v ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ v ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND) Guaranteed Limit S b l Symbol Ron VCC V – 55 to 25_C 85_C 125_C Vin = VIH VIS = VCC to GND IS 2.0 mA (Figures 1, 2) 2.0† 3.0† 4.5 9.0 12.0 — — 120 70 70 — — 160 85 85 — — 200 100 100 Vin = VIH VIS = VCC or GND (Endpoints) IS 2.0 mA (Figures 1, 2) 2.0 3.0 4.5 9.0 12.0 — — 70 50 30 — — 85 60 60 — — 100 80 80 P Parameter T Test C Conditions di i Maximum “ON” Resistance U i Unit Ω ∆Ron Maximum Difference in “ON” Resistance Between Any Two Channels in the Same Package Vin = VIH VIS = 1/2 (VCC – GND) IS 2.0 mA 2.0 4.5 9.0 12.0 — 20 15 15 — 25 20 20 — 30 25 25 Ω Ioff Maximum Off–Channel Leakage Current, Any One Channel Vin = VIL VIO = VCC or GND Switch Off (Figure 3) 12.0 0.1 0.5 1.0 µA Ion Maximum On–Channel Leakage Current, Any One Channel Vin = VIH VIS = VCC or GND (Figure 4) 12.0 0.1 0.5 1.0 µA †At supply voltage (VCC) approaching 3 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage operation, it is recommended that these devices only be used to control digital signals. AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns) Guaranteed Limit VCC V – 55 to 25_C 85_C 125_C tPLH, tPHL Maximum Propagation Delay, Analog Input to Analog Output (Figures 8 and 9) 2.0 3.0 4.5 9.0 12.0 40 30 5 5 5 50 40 7 7 7 60 50 8 8 8 ns tPLZ, tPHZ Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 10 and 11) 2.0 3.0 4.5 9.0 12.0 80 60 20 20 20 90 70 25 25 25 110 80 35 35 35 ns tPZL, tPZH Maximum Propagation Delay, ON/OFF Control to Analog Output (Figures 10 and 1 1) 2.0 3.0 4.5 9.0 12.0 80 45 20 20 20 90 50 25 25 25 100 60 30 30 30 ns ON/OFF Control Input — 10 10 10 pF Control Input = GND Analog I/O Feedthrough — — 35 1.0 35 1.0 35 1.0 S b l Symbol C P Parameter Maximum Capacitance U i Unit Typical @ 25°C, VCC = 5.0 V CPD P Power Dissipation Di i i Capacitance C i (P (Per S Switch) i h) (Figure (Fi 13)* 15 pF F * Used to determine the no–load dynamic power consumption: P D = C PD V CC 2 f + I CC V CC . VHC Data – Advanced CMOS Logic DL203 — Rev 2 3 MOTOROLA MC74VHC4066 ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ v ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) Symbol BW — — — THD Parameter Test Conditions VCC V Limit* 25_C 74HC Unit Maximum On–Channel Bandwidth or Minimum Frequency Response (Figure 5) fin = 1 MHz Sine Wave Adjust fin Voltage to Obtain 0 dBm at VOS Increase fin Frequency Until dB Meter Reads – 3 dB RL = 50 Ω, CL = 10 pF 4.5 9.0 12.0 150 160 160 MHz Off–Channel Feedthrough Isolation (Figure 6) fin Sine Wave Adjust fin Voltage to Obtain 0 dBm at VIS fin = 10 kHz, RL = 600 Ω, CL = 50 pF 4.5 9.0 12.0 – 50 – 50 – 50 dB fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF 4.5 9.0 12.0 – 40 – 40 – 40 Vin 1 MHz Square Wave (tr = tf = 6 ns) Adjust RL at Setup so that IS = 0 A RL = 600 Ω, CL = 50 pF 4.5 9.0 12.0 60 130 200 RL = 10 kΩ, CL = 10 pF 4.5 9.0 12.0 30 65 100 fin Sine Wave Adjust fin Voltage to Obtain 0 dBm at VIS fin = 10 kHz, RL = 600 Ω, CL = 50 pF 4.5 9.0 12.0 – 70 – 70 – 70 fin = 1.0 MHz, RL = 50 Ω, CL = 10 pF 4.5 9.0 12.0 – 80 – 80 – 80 Feedthrough Noise, Control to Switch (Figure 7) Crosstalk Between Any Two Switches (Figure 12) Total Harmonic Distortion (Figure 14) fin = 1 kHz, RL = 10 kΩ, CL = 50 pF THD = THDMeasured – THDSource VIS = 4.0 VPP sine wave VIS = 8.0 VPP sine wave VIS = 11.0 VPP sine wave mVPP dB % 4.5 9.0 12.0 0.10 0.06 0.04 * Guaranteed limits not tested. Determined by design and verified by qualification. MOTOROLA 4 VHC Data – Advanced CMOS Logic DL203 — Rev 2 MC74VHC4066 TBD TBD Figure 1a. Typical On Resistance, VCC = 2.0 V Figure 1b. Typical On Resistance, VCC = 4.5 V TBD TBD Figure 1c. Typical On Resistance, VCC = 6.0 V Figure 1d. Typical On Resistance, VCC = 9.0 V PLOTTER PROGRAMMABLE POWER SUPPLY TBD – MINI COMPUTER + DC ANALYZER VCC DEVICE UNDER TEST ANALOG IN COMMON OUT GND Figure 1e. Typical On Resistance, VCC = 12 V VHC Data – Advanced CMOS Logic DL203 — Rev 2 Figure 2. On Resistance Test Set–Up 5 MOTOROLA MC74VHC4066 VCC VCC VCC VCC 14 GND 14 A A VCC OFF 7 SELECTED CONTROL INPUT VIL 7 Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set–Up CL* 7 SELECTED CONTROL INPUT VCC 14 VIS ON 0.1µF SELECTED CONTROL INPUT VIH Figure 4. Maximum On Channel Leakage Current, Test Set–Up VOS VCC 14 fin N/C ON GND fin dB METER VOS OFF 0.1µF CL* RL dB METER SELECTED CONTROL INPUT VCC 7 *Includes all probe and jig capacitance. *Includes all probe and jig capacitance. Figure 5. Maximum On–Channel Bandwidth Test Set–Up VCC VCC/2 Figure 6. Off–Channel Feedthrough Isolation, Test Set–Up VCC/2 14 RL RL OFF/ON VOS IS VCC CL* VCC GND Vin ≤ 1 MHz tr = tf = 6 ns 7 ANALOG IN SELECTED CONTROL INPUT 50% GND tPHL tPLH CONTROL 50% ANALOG OUT *Includes all probe and jig capacitance. Figure 7. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set–Up MOTOROLA Figure 8. Propagation Delays, Analog In to Analog Out 6 VHC Data – Advanced CMOS Logic DL203 — Rev 2 MC74VHC4066 VCC tr tf 14 ANALOG IN ANALOG OUT ON TEST POINT VCC 90% 50% 10% CONTROL GND CL* 7 SELECTED CONTROL INPUT tPZL tPLZ HIGH IMPEDANCE 50% VCC ANALOG OUT tPZH 10% VOL 90% VOH tPHZ 50% HIGH IMPEDANCE *Includes all probe and jig capacitance. Figure 9. Propagation Delay Test Set–Up Figure 10. Propagation Delay, ON/OFF Control to Analog Out VIS POSITION 1 WHEN TESTING tPHZ AND tPZH VCC POSITION 2 WHEN TESTING tPLZ AND tPZL 1 14 RL 2 fin VCC VCC TEST POINT ON/OFF 2 0.1 µF 1 kΩ 14 1 VOS ON OFF VCC OR GND CL* RL RL SELECTED CONTROL INPUT SELECTED CONTROL INPUT CL* VCC/2 RL CL* VCC/2 7 7 VCC/2 *Includes all probe and jig capacitance. *Includes all probe and jig capacitance. Figure 11. Propagation Delay Test Set–Up Figure 12. Crosstalk Between Any Two Switches, Test Set–Up VCC A VIS VCC 14 N/C OFF/ON VOS 0.1 µF N/C fin ON RL 7 CL* TO DISTORTION METER VCC/2 SELECTED CONTROL INPUT 7 SELECTED CONTROL INPUT VCC ON/OFF CONTROL *Includes all probe and jig capacitance. Figure 13. Power Dissipation Capacitance Test Set–Up VHC Data – Advanced CMOS Logic DL203 — Rev 2 Figure 14. Total Harmonic Distortion, Test Set–Up 7 MOTOROLA MC74VHC4066 0 – 10 FUNDAMENTAL FREQUENCY – 20 dBm – 30 – 40 – 50 DEVICE – 60 SOURCE – 70 – 80 – 90 1.0 2.0 3.0 FREQUENCY (kHz) Figure 15. Plot, Harmonic Distortion below, the difference between VCC and GND is twelve volts. Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak–to–peak can be controlled. When voltage transients above VCC and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn–on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MO sorbs (Motorola high current surge protectors). MOsorbs are fast turn–on devices ideally suited for precise DC protection with no inherent wear out mechanism. APPLICATION INFORMATION The ON/OFF Control pins should be at VCC or GND logic levels, VCC being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to VCC or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked–up by the unused I/O pins. The maximum analog voltage swings are determined by the supply voltages VCC and GND. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below GND. In the example VCC VCC = 12 V + 12 V 14 ANALOG I/O ON ANALOG O/I Dx + 12 V SELECTED CONTROL INPUT 7 Dx VCC OTHER CONTROL INPUTS (VCC OR GND) Dx Dx SELECTED CONTROL INPUT 7 Figure 16. 12 V Application MOTOROLA 16 ON 0V 0V VCC OTHER CONTROL INPUTS (VCC OR GND) Figure 17. Transient Suppressor Application 8 VHC Data – Advanced CMOS Logic DL203 — Rev 2 MC74VHC4066 +5 V +5 V 14 ANALOG SIGNALS R* R* R* R* VHC4066 LSTTL/ NMOS 14 VHCT BUFFER LSTTL/ NMOS 5 6 ANALOG SIGNALS VHC4066 5 6 CONTROL INPUTS 15 14 ANALOG SIGNALS ANALOG SIGNALS 14 CONTROL INPUTS 15 7 7 R* = 2 TO 10 kΩ a. Using Pull-Up Resistors b. Using HCT Buffer Figure 18. LSTTL/NMOS to HCMOS Interface VDD = 5 V 13 1 VCC = 5 TO 12 V 16 14 ANALOG SIGNALS 3 VHC4066 5 7 ANALOG SIGNALS MC14504 2 5 9 4 6 11 6 14 CONTROL INPUTS 10 15 7 14 8 Figure 19. TTL/NMOS–to–CMOS Level Converter Analog Signal Peak–to–Peak Greater than 5 V (Also see VHC4316) CHANNEL 4 1 OF 4 SWITCHES CHANNEL 3 1 OF 4 SWITCHES CHANNEL 2 1 OF 4 SWITCHES CHANNEL 1 1 OF 4 SWITCHES COMMON I/O – INPUT 1 OF 4 SWITCHES + OUTPUT LF356 OR EQUIVALENT 0.01 µF 1 2 3 4 CONTROL INPUTS Figure 20. 4–Input Multiplexer VHC Data – Advanced CMOS Logic DL203 — Rev 2 Figure 21. Sample/Hold Amplifier 9 MOTOROLA MC74VHC4066 OUTLINE DIMENSIONS D SUFFIX PLASTIC SOIC PACKAGE CASE 751A–03 ISSUE F –A– 14 8 P 7 PL –B– 1 0.25 (0.010) 7 G D 0.25 (0.010) MOTOROLA M T B S B M F M K 14 PL M R X 45° C SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. A S 10 J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.75 8.55 4.00 3.80 1.75 1.35 0.49 0.35 1.25 0.40 1.27 BSC 0.25 0.19 0.25 0.10 7° 0° 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 7° 0° 0.228 0.244 0.010 0.019 VHC Data – Advanced CMOS Logic DL203 — Rev 2 MC74VHC4066 OUTLINE DIMENSIONS DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948G–01 ISSUE O 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. S S N 2X 14 L/2 0.25 (0.010) 8 M B –U– L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ A –V– K1 J J1 SECTION N–N –W– C 0.10 (0.004) –T– SEATING PLANE D VHC Data – Advanced CMOS Logic DL203 — Rev 2 G H DETAIL E 11 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 ––– 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 ––– 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ MOTOROLA MC74VHC4066 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488 Customer Focus Center: 1–800–521–6274 Mfax: [email protected] – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. – http://sps.motorola.com/mfax/ 852–26668334 HOME PAGE: http://motorola.com/sps/ ◊ MOTOROLA MC74VHC4066/D 12 VHC Data – Advanced CMOS Logic DL203 — Rev 2