SAMSUNG K7D803671B-HC30

K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
Document Title
8M DDR SYNCHRONOUS SRAM
Revision History
Rev No.
History
Draft Data
Remark
Rev. 0.0
-Initial document.
July. 2000
Advance
Rev. 0.1
-ZQ tolerance changed from 10% to 15%
Aug. 2000
Advance
Rev. 0.2
-Stop Clock Standby Current condition changed from
VIN=VDD-0.2V or 0.2V fixed to V IN =VIH or V IH
Oct. 2000
Advance
Rev. 0.3
-VDDQ Max. changed to 2.0V
SA0, SA1 defined for Boundary Scan Order
Nov. 2000
Advance
Rev. 0.5
-Deleted -HC16 part(Part Number, Idd, AC Characterisctics)
Jan. 2001
Prelimary
Rev. 0.6
- Absolute Maximum ratings VDDQ changed from 3.13V to 2.825V
Feb. 2001
Prelimary
Rev. 0.7
- LBO input level changed from High/Low to VDDQ/VSS
- Stop Clock Standby Current condition changed
from K=Low, K=High to K=Low, K=Low
- tCHQV/tCLQV changed from 0.1ns to 0.2ns for -33 part
from 0.1ns to 0.2ns for -30 part
from 0.1ns to 0.25ns for -25part
- tCHQX/tCLQX changed from -0.3ns to -0.2ns for -33 part
from -0.3ns to -0.2ns for -30 part
from -0.4ns to -0.25ns for -25part
- t CHQZ/t CLQZ changed from 0.1ns to 0.2ns for -33 part
from 0.1ns to 0.2ns for -30 part
from 0.1ns to 0.25ns for -25part
- t KXCH changed from 1.8ns to 1.7ns for -33 part
- t KXCL changed from 1.8ns to 1.7ns for -33 part
Mar. 2001
Prelimary
Rev. 1.0
- Clarification on the features and the timing waveforms regarding the
burst controllability.
- Recommended DC operating conditions for Clock added.
- AC test conditions for V DDQ=1.8V and Single ended clock added.
(AC Test Conditions 2)
- Package thermal characteristics added.
May. 2001
Final
Rev. 2.0
- Add-HC35 part(Part Number, Idd, AC Characteristics)
Sep. 2001
Final
Rev. 3.0
- Absolute Maximum Rating VDDQ changed from 2.825V to 2.4V
- V CM-CLK Min changed from 0.6V to 0.68V
Jan. 2002
Final
Rev. 4.0
- Add-HC37 part(Part Number, Idd, AC Characteristics)
Jan. 2002
Final
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.
-1-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Organization
Part Number
256Kx36 or 512Kx18 Organizations.
Maximum Frequency : 370MHz (Data Rate : 740Mbps)
2.5V V DD/1.5V VDDQ (2.0V max VDDQ).
K7D803671B-HC37
HSTL Input and Outputs.
K7D803671B-HC35
Single Differential HSTL Clock.
256Kx36
K7D803671B-HC33
Synchronous Pipeline Mode of Operation with Self-Timed Late Write.
Free Running Active High and Active Low Echo Clock Output Pin.
K7D803671B-HC30
Asynchronous Output Enable.
K7D803671B-HC25
Registered Addresses, Burst Control and Data Inputs.
Registered Outputs.
K7D801871B-HC37
Single and Double Data Rate Burst Read and Write.
K7D801871B-HC35
Burst Count Controllable With Max Burst Length of 4
512Kx18
K7D801871B-HC33
Interleved and Linear Burst mode support
Bypass Operation Support
K7D801871B-HC30
Programmable Impedance Output Drivers.
K7D801871B-HC25
JTAG Boundary Scan (subset of IEEE std. 1149.1)
153(9x17) Pin Ball Grid Array Package(14mm x 22mm).
NOTE : *Access time equals tKXCH/tKXCL
Maximum
Frequency
Access
Time
370MHz
1.7*
357MHz
1.7*
333MHz
1.7*
300MHz
1.9*
250MHz
2.0*
370MHz
1.7*
357MHz
1.7*
333MHz
1.7*
300MHz
1.9*
250MHz
2.0*
FUNCTIONAL BLOCK DIAGRAM
SA[0:17]( or SA[0:18])
Address
Register
16(or 17)
(Burst Address)
CE
Clock
Buffer
K,K
18(or 19)
Advance
Co
Control
B3
SD/DD
Data Out
Data In
36(or 18)x2
36(or18)x2
S/A Array
Write
Address
Register
(2 stage)
Synchronous
Select
&
R/W control
W/D
Array
(Burst Write
Address)
18(or 19)
36(or 18)x2
16(or 17)
36(or18)x2
2 : 1 MUX
CE
B2
Memory Array
256Kx36
or
(512Kx18)
Dec.
Burst
Counter
Comparator
B1
2:1
MUX
Write Buffer
CE
Strobe_out
Echo Clock
Output
Output
Buffer
R/W
Data In
Register
(2 stage)
Data Output Strobe
LD
Data Output Enable
State Machine
Internal
Clock
Generator
36(or 18)
DQ
G
XDIN
CQ,CQ
PIN DESCRIPTION
Pin Name
K, K
SA
SA0, SA1
DQ
Pin Description
Pin Name
Differential Clocks
ZQ
Pin Description
Output Driver Impedance Control Input
Synchronous Address Input
TCK
JTAG Test Clock
Synchronous Burst Address Input (SA 0 = LSB)
TMS
JTAG Test Mode Select
Synchronous Data I/O
TDI
JTAG Test Data Input
Differential Output Echo Clocks
TDO
JTAG Test Data Output
B1
Load External Address
VREF
HSTL Input Reference Voltage
B2
Burst R/W Enable
B3
Single/Double Data Selection
VDDQ
Asynchronous Output Enable
VSS
GND
Linear Burst Order
NC
No Connection
CQ, CQ
G
LBO
VDD
-2-
Power Supply
Output Power Supply
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7D803671B(256Kx36)
A
1
2
3
4
5
6
7
8
9
VSS
VDDQ
SA
SA
ZQ
SA
SA
VDDQ
VSS
B
DQ
DQ
SA
VSS
B1
VSS
SA
DQ
DQ
C
VSS
VDDQ
SA
SA
G
SA
SA
VDDQ
VSS
D
DQ
DQ
NC
VSS
VDD
VSS
SA
DQ
DQ
E
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
F
DQ
CQ1
DQ
VDD
VDD
VDD
DQ
CQ2
DQ
G
VSS
VDDQ
VSS
VSS
K
VSS
VSS
VDDQ
VSS
H
DQ
DQ
DQ
VDD
K
VDD
DQ
DQ
DQ
J
VSS
VDDQ
VSS
VDD
VDD
VDD
VSS
VDDQ
VSS
K
DQ
DQ
DQ
VSS
B2
VSS
DQ
DQ
DQ
L
VSS
VDDQ
VSS
LBO
B3
MODE
VSS
VDDQ
VSS
M
DQ
CQ1
DQ
VDD
VDD
VDD
DQ
CQ2
DQ
N
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
P
DQ
DQ
NC
VSS
VDD
VSS
SA
DQ
DQ
R
VSS
VDDQ
VDD
SA
SA1
SA
VDD
VDDQ
VSS
T
DQ
DQ
SA
VSS
SA0
VSS
SA
DQ
DQ
U
VSS
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
VSS
1
2
3
4
5
6
7
8
9
A
VSS
VDDQ
SA
SA
ZQ
SA
SA
VDDQ
VSS
B
NC
DQ
SA
VSS
B1
VSS
SA
NC
DQ
C
VSS
VDDQ
SA
SA
G
SA
SA
VDDQ
VSS
* Mode Pin(6L) is a internally NC.
K7D801871B(512Kx18)
D
DQ
NC
NC
VSS
VDD
VSS
SA
DQ
NC
E
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
F
NC
CQ1
NC
VDD
VDD
VDD
DQ
NC
DQ
G
VSS
VDDQ
VSS
VSS
K
VSS
VSS
VDDQ
VSS
H
DQ
NC
DQ
VDD
K
VDD
NC
DQ
NC
J
VSS
VDDQ
VSS
VDD
VDD
VDD
VSS
VDDQ
VSS
K
NC
DQ
NC
VSS
B2
VSS
DQ
NC
DQ
L
VSS
VDDQ
VSS
LBO
B3
MODE
VSS
VDDQ
VSS
M
DQ
NC
DQ
VDD
VDD
VDD
NC
CQ1
NC
N
VSS
VDDQ
VSS
VDD
VREF
VDD
VSS
VDDQ
VSS
P
NC
DQ
SA
VSS
VDD
VSS
SA
NC
DQ
R
VSS
VDDQ
VDD
SA
SA1
SA
VDD
VDDQ
VSS
T
DQ
NC
SA
VSS
SA0
VSS
SA
DQ
NC
U
VSS
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
VSS
* Mode Pin(6L)is a internally NC.
-3-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
FUNCTION DESCRIPTION
The K7D803671B and K7D801871B are 9,437,184 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as
262,144 words by 36 bits for K7D803671B and 524,288 words by 18 bits for K7D801871B, fabricated using Samsung's advanced
CMOS technology.
Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At
the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after
write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and
falling edge of K clock for a double data rate (DDR) write operations.
Data outputs are updated from output registers off the rising edges of K clock for SDR read operations, and off the rising and falling
edges of K clock for DDR read operations. Free running echo clocks are supported which are representive of data output access
time for all SDR and DDR operations.
The chip is operated with a single +2.5V power supply and is compatible with Extended HSTL input and output. The package is
9x17(153) Ball Grid Array balls on a 1.27mm pitch.
Read Operation(Single and Double)
During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is
read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of
K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal
array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by
burst order off the second rising and falling edge of K clock.
Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4.
To avoid data contention,at least one NOP operations are required between the last read and the first write operation.
Write Operation(Late Write)
During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered
at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of
K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are
stored in the data in registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM
array.
Echo clock operation
Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation
only when K clock is in the stop mode.
Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture
data outputs outputs.
Bypass Read Operation
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are
identical. For this case, data outputs are from the data in registers instead of SRAM array.
Programmable Impedance Output Driver
The data output and echo clock driver impedance are adjusted by an external resistor, RQ, connected between ZQ pin and V SS, and
are equal to RQ/5. For example, 250Ω resistor will give an output impedance of 50Ω. Output driver impedance tolerance is 15% by
test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates
occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In
all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior
in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is
selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are
no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs
1024 non-read cycles.
-4-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
TRUTH TABLE
K
G
B1
B2
B3
DQ
Operation
L
X
X
X
X
Hi-Z
Clock Stop
↑
X
H
L
X
Hi-Z
No Operation, Pipeline High-Z
↑
L
L
H
H
DOUT
Load Address, Single Read
↑
L
L
H
L
DOUT
Load Address, Double Read
↑
X
L
L
H
DIN
Load Address, Single Write
↑
X
L
L
L
DIN
Load Address, Double Write
↑
X
H
H
X
B
Increment Address, Continue
NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".
- K & K are complementary.
BURST SEQUENCE TABLE
4 Burst Operation for Interleaved Burst (LBO = VDDQ)
Interleaved Burst
First Address
Fourth Address
Case 1
Case 2
Case 3
Case 4
A1
A0
A1
A0
A1
A0
A1
A0
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V.
4 Burst Operation for Linear Burst (LBO = VSS)
Linear Burst Mode
First Address
Fourth Address
Case 1
Case 2
Case 3
Case 4
A1
A0
A1
A0
A1
A0
A1
A0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
-5-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
BUS CYCLE STATE DIAGRAM
LOAD
NEW ADDRESS
3
B1
3
B1, B2
B1, B2
B1, B2
INCREMENT
ADDRESS
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
POWER
UP
WRITE
DDR
INCREMENT
ADDRESS
B1, B2
INCREMENT
ADDRESS
B1, B2
INCREMENT
ADDRESS
READ
DDR
B1, B2
B1, B2
WRITE
SDR
B1, B2
B1, B2
READ
SDR
3
B1, B2
B2
,B
B1, B2
B1
B1
B1
,B
B2
B2
,B
3
,B
B2
NO OP
NOTE :
1. State transitions ; B1 =(Load Address), B1 =(Increment Address, Continue)
B2 =(Read), B2 =(Write)
B3 =(Single Data Rate), B3 =(Double Data Rate)
-6-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Value
Unit
VDD
-0.5 to 3.13
V
Core Supply Voltage Relative to V SS
Output Supply Voltage Relative to VSS
VDDQ
-0.5 to 2.4
V
Voltage on any pin Relative to VSS
VIN
-0.5 to V DDQ+0.5 (2.4V MAX)
V
Output Short-Circuit Current(per I/O)
IOUT
25
mA
Storage Temperature
TSTR
-55 to 125
°C
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
Parameter
Symbol
Min
Typ
Max
Unit
Core Power Supply Voltage
VDD
2.37
2.5
2.63
V
Output Power Supply Voltage
VDDQ
1.4
1.5
2.0
V
Input High Level Voltage
VIH
VREF+0.1
-
VDDQ+0.3
V
1, 2
Input Low Level Voltage
VIL
-0.3
-
VREF-0.1
V
1, 3
VREF
0.68
0.75
1.0
V
VIN-CLK
-0.3
-
VDDQ+0.3
V
1, 4
Input Reference Voltage
Clock Input Signal Voltage
Note
Clock Input Differential Voltage
VDIF-CLK
0.1
-
VDDQ+0.6
V
1, 5
Clock Input Common Mode Voltage
VCM-CLK
0.68
0.75
0.9
V
1, 6
NOTE : 1. These are DC test criteria. DC design criteria is V REF±50mV. The AC V IH /VIL levels are defined separately for measuring
timing parameters.
2. VIH (Max)DC= VDDQ+0.3, VIH (Max)AC=2.6 V (2.1V for DQs) (pulse width ≤ 20% of cycle time).
3. VIL (Min)DC=-0.3V, V IL (Min)AC=-1.0V (-0.5V for DQs) (pulse width ≤ 20% of cycle time).
4. VIN-CLK specifies the maximum allowable DC level for the differential clock. i.e VIL-CLK and VIH-CLK .
5. VDIF-CLK specifies the minimum Clock differential voltage required for switching. i.e DC voltage difference between V IL-CLK and VIH-CLK .
6. VCM-CLK specifies the Clock crossing point for the differential clock or the allowable common clock level for a single ended clock.
-7-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
DC CHARACTERISTICS
Parameter
Symbol
Min
Max
Unit
Note
-
880
850
750
670
600
mA
1,2
mA
1,2
1
Average Power Supply Operating Current(x36)
(Cycle time = t KHKH min)
IDD37
IDD35
IDD33
IDD30
IDD25
Average Power Supply Operating Current(x18)
(Cycle time = t KHKH min)
IDD37
IDD35
IDD33
IDD30
IDD25
-
830
800
700
620
550
Stop Clock Standby Current
(VIN=VIH or VIL , K=Low, K=Low)
ISB1
-
150
mA
Input Leakage Current
(VIN=VSS or VDDQ)
ILI
-1
1
µA
Output Leakage Current
(VOUT=VSS or VDDQ)
ILO
-1
1
µA
Output High Voltage(Programmable Impedance Mode)
VOH1
VDDQ/2
VDDQ
V
3
Output Low Voltage(Programmable Impedance Mode)
VOL1
VSS
VDDQ/2
V
4
Output High Voltage(IOH=-0.1mA)
VOH2
VDDQ-0.2
VDDQ
V
5
Output Low Voltage(I OL=0.1mA)
VOL2
VSS
0.2
V
5
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
3. |IOH|=(VDDQ /2)/(RQ/5)±15% @VOH =VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω.
4. |IOL|=(V DDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175Ω ≤ RQ ≤ 350Ω.
5. Minimum Impedance Mode when ZQ pin is connected to V ss .
PIN CAPACITANCE
Parameter
Input Capacitance
Data Output Capacitance
Symbol
Test Condition
Min
Max
Unit
CIN
VIN=0V
-
4
pF
COUT
VOUT=0V
-
5
pF
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)
-8-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
AC TEST CONDITIONS 1(TA=0 to 70°C, VDD=2.37 -2.63V, VDDQ=1.5V)
Symbol
Value
Unit
Note
Input High/Low Level
Parameter
VIH/VIL
1.25/0.25
V
-
Input Reference Level
VREF
0.75
V
-
Input Rise/Fall Time
TR/TF
0.5/0.5
ns
-
0.75
V
-
Clock Input Timing Reference Level
Cross Point
V
-
Output Load
See Below
Output Timing Reference Level
-
AC TEST OUTPUT LOAD 1
50Ω
50Ω
0.75V
5pF
25Ω
DQ
0.75V
50Ω
50Ω
0.75V
5pF
AC TEST CONDITIONS 2(TA=0 to 70°C, VDD=2.37 -2.63V, VDDQ=1.8V)
Symbol
Value
Unit
Note
Input High/Low Level
Parameter
VIH/VIL
1.64/0.18
V
-
Input Reference Level
VREF
0.9
V
-
Input Rise/Fall Time
TR/TF
0.5/0.5
ns
-
0.9
V
-
Clock Input Timing Reference Level
Cross Point
V
-
Output Load
See Below
Output Timing Reference Level
-
AC TEST OUTPUT LOAD 2
50Ω
50Ω
0.9V
5pF
25Ω
DQ
0.9V
50Ω
50Ω
0.9V
5pF
-9-
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
AC CHARACTERISTICS(For both AC test condition 1 and 2)
Parameter
-33
Symbol
-30
-25
Unit
Min
Max
Min
Max
Min
Max
Clock Cycle Time
tKHKH
3.0
-
3.3
-
4.0
-
ns
Clock High Pulse Width
tKHKL
1.3
-
1.5
-
1.7
-
ns
Note
Clock Low Pulse Width
tKLKH
1.3
-
1.5
-
1.7
-
ns
CQ High Pulse Width
tCHCL
tKHKL-0.1
tKHKL+0.1
tKHKL-0.2
tKHKL +0.2
tKHKL-0.3
tKHKL+0.3
ns
CQ Low Pulse Width
tCLCH
tKLKH-0.1
tKLKH +0.1
tKLKH -0.2
tKLKH+0.2
tKLKH -0.3
tKLKH +0.3
ns
Clock to Echo Clock(CQ) High
tKXCH
0.5
1.7
0.5
1.9
0.5
2.0
ns
Clock to Echo Clock(CQ) Low
tKXCL
0.5
1.7
0.5
1.9
0.5
2.0
ns
Echo Clock to Output Valid
tCHQV/tCLQV
-
0.2
-
0.2
-
0.25
ns
1,2
Echo Clock to Output Hold
tCHQX/tCLQX
-0.2
-
-0.2
-
-0.25
-
ns
1
Echo Clock to Output High-Z
tCHQZ/tCLQZ
1
0.25
ns
1
G Low to Output Low-Z
tGLQX
0.5
-
0.5
-
0.5
-
ns
1
0.2
0.2
G High to Output High-Z
tGHQZ
-
2.1
-
2.3
-
2.5
ns
1
G Low to Output Valid
tGLQV
-
2.1
-
2.3
-
2.5
ns
1
Address Setup Time
tAVKH
0.4
-
0.4
-
0.5
-
ns
Address Hold Time
tKHAX
0.4
-
0.4
-
0.5
-
ns
Burst Control Setup Time
tBVKH
0.4
-
0.4
-
0.5
-
ns
Burst Control Hold Time
tKHBX
0.4
-
0.4
-
0.5
-
ns
Data Setup Time
tDVKH
0.4
-
0.4
-
0.5
-
ns
Data Hold Time
tKHDX
0.4
-
0.4
-
0.5
-
ns
NOTE : 1. See AC Test Output Load figure
2. Design target is 0ns
AC CHARACTERISTICS(For AC test condition 1)
Parameter
-37
Symbol
-35
Unit
Min
Max
Min
Max
Clock Cycle Time
tKHKH
2.7
-
2.8
-
ns
Clock High Pulse Width
tKHKL
1.3
-
1.3
-
ns
Clock Low Pulse Width
tKLKH
1.3
-
1.3
-
ns
CQ High Pulse Width
tCHCL
tKHKL-0.1
tKHKL+0.1
tKHKL-0.1
tKHKL+0.1
ns
CQ Low Pulse Width
tCLCH
tKLKH-0.1
tKLKH +0.1
tKLKH-0.1
tKLKH +0.1
ns
Clock to Echo Clock(CQ) High
tKXCH
0.5
1.7
0.5
1.7
ns
Clock to Echo Clock(CQ) Low
Note
1
tKXCL
0.5
1.7
0.5
1.7
ns
Echo Clock to Output Valid
tCHQV/tCLQV
-
0.2
-
0.2
ns
1,2
Echo Clock to Output Hold
tCHQX/tCLQX
-0.2
-
-0.2
-
ns
1
Echo Clock to Output High-Z
tCHQZ/tCLQZ
0.2
ns
1
0.2
G Low to Output Low-Z
tGLQX
0.5
-
0.5
-
ns
1
G High to Output High-Z
tGHQZ
-
2.1
-
2.1
ns
1
G Low to Output Valid
tGLQV
-
2.1
-
2.1
ns
1
Address Setup Time
tAVKH
0.4
-
0.4
-
ns
Address Hold Time
tKHAX
0.4
-
0.4
-
ns
Burst Control Setup Time
tBVKH
0.4
-
0.4
-
ns
Burst Control Hold Time
tKHBX
0.4
-
0.4
-
ns
Data Setup Time
tDVKH
0.4
-
0.4
-
ns
Data Hold Time
tKHDX
0.4
-
0.4
-
ns
NOTE : 1. See AC Test Output Load figure
2. Design target is 0ns
- 10
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES
(Burst Length=4, 2)
NOP
1
READ
READ
CONTINUE READ
CONTINUE READ
READ
NOP
(burst of 4)
(burst of 4)
(burst of 2)
2
5
4
3
NOP
(burst of 4)
7
6
WRITE
8
9
WRITE
READ
CONTINUE READ
(burst of 4)
CONTINUE
10
12
11
K
tKHKH
K
B1
B2
tBVKH
tKHBX
B3
SA
A0
tAVKH
A5
A1
A2
tKHAX
G
tGHQZ
tGHQX
DQ
Q01
QX2
tKXCH tCHQV
tCHQZ
A3
Q02
Q03
Q04
Q51
Q52
Q53
Q54
Q11
tKHDX
tGLQV
tGLQX
tDVKH
Q12
D21
D22
D23
D24
Q31
tCHQX
tCHLZ
CQ
CQ
DON’T CARE
UNDEFINED
NOTE
1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.
- 11
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES
(Burst Length=4, 2, 1)
NOP
READ
(burst of 4)
1
READ
CONTINUE
2
3
READ
READ
CONTINUE CONTINUE
4
5
WRITE
READ
NOP
(burst of 1)
6
7
NOP
8
WRITE
(burst of 2)
9
READ
CONTINUE READ
CONTINUE
(burst of 2)
10
11
12
K
tKHKH
tKHKL tKLKH
K
B1
B2
tBVKH
tKHBX
B3
SA
A0
tAVKH
A1
A2
A3
tDVKH
tKHAX
G
tGHQZ
tGHQX
DQ
Q01
QX1
Q02
Q03
Q04
Q11
tKHDX
D21
tGLQV
tGLQX
D22
Q31
tKXCH
tCHQV
tCHQX
tCHQZ
tCHLZ
CQ
CQ
DON’T CARE
UNDEFINED
NOTE :
1. Q01 refers to output from address A0 . Q02 refers to output from the next internal burst address following A0, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further
Continue assertions constitute invalid operations.
4. This device will have an address wraparound if further Continues are applied.
- 12
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM. TCK must
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the
application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left unconnected.
JTAG Instruction Coding
JTAG Block Diagram
IR2 IR1 IR0 Instruction
SRAM
CORE
SA
SA
TDI
BYPASS Reg.
Notes
0
0
EXTEST
Boundary Scan Register
1
0
0
1
IDCODE
Identification Register
2
0
1
0
SAMPLE-Z Boundary Scan Register
1
0
1
1
BYPASS
Bypass Register
3
1
0
0
SAMPLE
Boundary Scan Register
4
1
0
1
BYPASS
Bypass Register
3
1
1
0
BYPASS
Bypass Register
3
1
1
1
BYPASS
Bypass Register
3
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
3. Bypass register is initiated to VSS when BYPASS instruction is
invoked.
The Bypass Register also holds serially loaded TDI when exiting
the Shift DR states.
4. SAMPLE instruction dose not places DQs in Hi-Z.
TDO
Identification Reg.
Instruction Reg.
Control Signals
TMS
TCK
TDO Output
0
TAP Controller
TAP Controller State Diagram
1
Test Logic Reset
0
0
Run Test Idle
1
Select DR
1
Select IR
0
1
0
1
Capture DR
0
0
Shift IR
1
1
0
1
Exit2 DR
1
Update DR
0
- 13
0
1
Exit1 DR
Pause DR
1
Capture IR
0
Shift DR
1
1
Exit1 IR
0
0
0
Pause IR
1
Exit2 IR
0
0
1
Update IR
0
1
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
256Kx36
3 bits
1 bits
32 bits
68 bits
512Kx18
3 bits
1 bits
32 bits
49 bits
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit
(0)
256Kx36
0000
00110 00100
XXXXXX
00001001110
1
512Kx18
0000
00111 00011
XXXXXX
00001001110
1
BOUNDARY SCAN EXIT ORDER(x36)
BOUNDARY SCAN EXIT ORDER(x18)
36
4A
SA
SA
6A
35
26
4A
SA
SA
6A
25
37
4C
SA
SA
6C
34
27
4C
SA
SA
6C
24
38
3A
SA
SA
7A
33
28
3A
SA
SA
7A
23
39
3B
SA
SA
7B
32
29
3B
SA
SA
7B
22
40
3C
SA
SA
7C
31
30
3C
SA
SA
7C
21
41
3D
NC
SA
7D
30
31
3D
NC
SA
7D
20
42
2B
DQ
DQ
8B
29
32
2B
DQ
43
1B
DQ
DQ
9B
28
DQ
9B
19
44
2D
DQ
DQ
8D
27
DQ
8D
18
45
3F
DQ
DQ
7F
26
DQ
7F
17
46
1D
DQ
DQ
9D
25
33
1D
DQ
47
2F
CQ
CQ
8F
24
34
2F
CQ
48
1F
DQ
DQ
9F
23
DQ
9F
16
49
3H
DQ
DQ
7H
22
35
3H
DQ
50
2H
DQ
DQ
8H
21
DQ
8H
15
51
1H
DQ
DQ
9H
20
36
1H
DQ
52
5A
ZQ
G
5C
19
37
5A
ZQ
G
5C
14
53
5B
B1
K
5G
18
38
5B
B1
K
5G
13
54
5K
B2
K
5H
17
39
5K
B2
K
5H
12
55
5L
B3
NC
6L
16
40
5L
B3
NC
6L
11
56
4L
LBO
DQ
9K
15
41
4L
LBO
DQ
9K
10
57
1K
DQ
DQ
8K
14
58
2K
DQ
DQ
7K
13
42
2K
DQ
DQ
7K
9
59
3K
DQ
DQ
9M
12
60
1M
DQ
CQ
8M
11
43
1M
DQ
CQ
8M
8
61
2M
CQ
DQ
9P
10
DQ
9P
7
62
1P
DQ
DQ
7M
9
DQ
8T
6
63
3M
DQ
DQ
8P
8
44
3M
DQ
64
2P
DQ
DQ
9T
7
45
2P
DQ
65
1T
DQ
DQ
8T
6
46
1T
DQ
66
2T
DQ
SA
7P
5
SA
7P
5
67
3T
SA
SA
7T
4
47
3P
SA
SA
7T
4
68
4R
SA
SA
6R
3
48
3T
SA
SA
6R
3
SA0
5T
2
49
4R
SA
SA0
5T
2
SA1
5R
1
SA1
5R
1
1.Pin 6L is reserved for Mode Pin and the scanned data is fixed to "0"
2.Pin 3D is reserved for Address bit for 16Mb density and
the scanned data is fixed to "0"
1.Pin 6L is reserved for Mode Pin and the scanned data is fixed to "0"
2.Pin 3D is reserved for Address bit for 16Mb density and
the scanned data is fixed to "0"
- 14
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
JTAG DC OPERATING CONDITIONS
Parameter
Symbol
Min
Typ
Max
Unit
Power Supply Voltage
VDD
2.37
Input High Level
VIH
1.7
2.5
2.63
V
-
VDD+0.3
V
Input Low Level
VIL
-0.3
-
0.7
V
Output High Voltage(I OH=-2mA)
VOH
2.1
-
VDD
V
Output Low Voltage(I OL=2mA)
VOL
VSS
-
0.2
V
Note
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
JTAG AC TEST CONDITIONS
Symbol
Min
Unit
Input High/Low Level
Parameter
VIH/VIL
2.5/0.0
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
1.25
V
Input and Output Timing Reference Level
Note
1
NOTE : 1. See SRAM AC test output load on page 5.
JTAG AC Characteristics
Symbol
Min
Max
Unit
TCK Cycle Time
Parameter
tCHCH
50
-
ns
TCK High Pulse Width
tCHCL
20
-
ns
TCK Low Pulse Width
tCLCH
20
-
ns
TMS Input Setup Time
tMVCH
5
-
ns
TMS Input Hold Time
tCHMX
5
-
ns
TDI Input Setup Time
tDVCH
5
-
ns
TDI Input Hold Time
tCHDX
5
-
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Note
JTAG TIMING DIAGRAM
TCK
tCHCH
TMS
tCHCL
tMVCH
tCHMX
t DVCH
tCHDX
tCLCH
TDI
tCLQV
TDO
- 15
January. 2002
Rev 4.0
K7D803671B
K7D801871B
256Kx36 & 512Kx18 SRAM
153 BGA PACKAGE DIMENSIONS
1.27
0.050
0.60 ±0.10
0.024 ±0.004
12.50 ±0.10
0.492 ±0.004
14.00 ±0.10
0.551 ±0.004
0.56 ±0.04
0.022 ±0.002
0.90 ±0.10
0.035 ±0.004
2.21
MAX
0.087
1.27
0.050
U T RPNML K J HGF EDCBA
22.00 ±0.10
0.866 ±0.004
20.50 ±0.10
0.807 ±0.004
9 8 7 6 5 4 3 2 1
153-∅
∅ 0.3/0.012MAX
0.75 ±0.15
0.030 ±0.006
0.15
0.006 MAX
BOTTOM VIEW
TOP VIEW
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCS Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
153 BGA PACKAGE THERMAL CHARACTERISTICS
Symbol
Thermal Resistance
Unit
Note
Junction to Ambient(at still air)
Parameter
Theta_JA
30.0
°C/W
1W Heating
Junction to Case
Theta_JC
5.9
°C/W
Junction to Board
Theta_JB
4.8
°C/W
2W Heating
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
- 16
January. 2002
Rev 4.0