SAMSUNG K7P401823B

K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
Document Title
128Kx36 & 256Kx18 Synchronous Pipelined SRAM
Revision History
Rev. No.
History
Draft Date
Remark
Rev. 0.0
- Preliminary specification release
Oct. 2002
Preliminary
Rev. 0.1
- Update DC CHARACTERISTICS
x36 : IDD6 : TBD -> 300, IDD65 -> 290, IDD7 -> 280.
x18 : IDD6 : TBD -> 290, IDD65 -> 280, IDD7 -> 270.
Jan. 2003
Preliminary
Feb. 2003
Preliminary
Rev. 0.2
- Change simbol in DC CHARACTERISTICS
IDD6, IDD65, IDD7 -> IDD65, IDD70, IDD75
Rev. 1.0
- Final Version
Jun. 2003
Final
Rev. 1.1
- Add Single ended differential clock on clock comment.
Jun. 2003
Final
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.
-1-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
128Kx36 & 256Kx18 Synchronous Pipelined SRAM
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
128Kx36 or 256Kx18 Organizations.
3.3V VDD, 2.5/3.3V VDDQ.
LVTTL 2.5/3.3V Input and Output Levels.
Differential, PECL clock / Single ended or differential LVTTL
clock Inputs
Synchronous Read and Write Operation
Registered Input and Latched Output
Internal Pipeline Latches to Support Late Write.
Byte Write Capability(four byte write selects, one for each 9 bits)
Synchronous or Asynchronous Output Enable.
Power Down Mode via ZZ Signal.
JTAG 1149.1 Compatible Test Access port.
119(7x17) Pin Ball Grid Array Package(14mmx22mm).
Organization
128Kx36
256Kx18
Cycle
Time
Access
Time
K7P403623B-H65
6
6.5
K7P403623B-H70
6.5
7.0
Part Number
K7P403623B-H75
7
7.5
K7P401823B-H65
6
6.5
K7P401823B-H70
6.5
7.0
K7P401823B-H75
7
7.5
Read
Address
Register
SA[0:16] or SA[0:17]
1
Write
Address
Register
CK
Latch
SS
SW
SW
Register
SW
Register
SWx
Register
SWx
Register
0
Row Decoder
FUNCTIONAL BLOCK DIAGRAM
Column Decoder
Write/Read Circuit
Latch
SWx
(x=a, b, c, d)
or (x=a, b)
128Kx36
or
256Kx18
Array
0
1
Data In
Register
SS
Register
SS
Register
Data Out
Latch
G
ZZ
K
DQx[1:9]
(x=a, b, c, d)
or (x=a, b)
CK
K
PIN DESCRIPTION
Pin Name
Pin Description
K, K
Differential Clocks(PECL or LVTTL Level)
SAn
Synchronous Address Input
DQn
Bi-directional Data Bus
Pin Name
VDDQ
M1, M2
Pin Description
Output Power Supply
Read Protocol Mode Pins ( M1=VDD, M2=VSS )
G
Asynchronous Output Enable
Synchronous Select
SW
Synchronous Global Write Enable
SS
SWa
Synchronous Byte a Write Enable
TCK
SWb
Synchronous Byte b Write Enable
TMS
JTAG Test Mode Select
SWc
Synchronous Byte c Write Enable
TDI
JTAG Test Data Input
SWd
JTAG Test Clock
Synchronous Byte d Write Enable
TDO
JTAG Test Data Output
ZZ
Asynchronous Power Down
VSS
GND
VDD
Core Power Supply
NC
No Connection
-2-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7P403623B(128Kx36)
1
2
3
4
5
6
7
A
VDDQ
SA13
SA10
NC
SA7
SA4
VDDQ
B
NC
NC
SA9
NC
SA8
NC
NC
C
NC
SA12
SA11
VDD
SA6
SA5
NC
D
DQc8
DQc9
VSS
NC*
VSS
DQb9
DQb8
E
DQc6
DQc7
VSS
SS
VSS
DQb7
DQb6
F
VDDQ
DQc5
VSS
G
VSS
DQb5
VDDQ
G
DQc3
DQc4
SWc
NC*
SWb
DQb4
DQb3
H
DQc1
DQc2
VSS
NC*
VSS
DQb2
DQb1
J
VDDQ
VDD
NC***
VDD
NC***
VDD
VDDQ
K
DQd1
DQd2
VSS
K
VSS
DQa2
DQa1
L
DQd3
DQd4
SWd
K
SWa
DQa4
DQa3
M
VDDQ
DQd5
VSS
SW
VSS
DQa5
VDDQ
N
DQd6
DQd7
VSS
SA16
VSS
DQa7
DQa6
P
DQd8
DQd9
VSS
SA0
VSS
DQa9
DQa8
R
NC
SA15
M1
VDD
M2
SA2
NC
T
NC
NC
SA14
SA1
SA3
NC
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC**
VDDQ
NOTE : 1. NC* is used for the Boundary Scan.
2. NC** is reserved for TRST input.
3. NC*** is reserved for HSTL interface.
KM718FV4022(256Kx18)
A
1
2
3
4
5
6
7
VDDQ
SA13
SA10
NC
SA7
SA4
VDDQ
B
NC
NC
SA9
NC
SA8
NC
NC
C
NC
SA12
SA11
VDD
SA6
SA5
NC
D
DQb1
NC
VSS
NC*
VSS
DQa9
NC
E
NC
DQb2
VSS
SS
VSS
NC
DQa8
F
VDDQ
NC
VSS
G
VSS
DQa7
VDDQ
G
NC
DQb3
SWb
NC*
NC
NC
DQa6
H
DQb4
NC
VSS
NC*
VSS
DQa5
NC
J
VDDQ
VDD
NC***
VDD
NC***
VDD
VDDQ
K
NC
DQb5
VSS
K
VSS
NC
DQa4
L
DQb6
NC
NC
K
SWa
DQa3
NC
M
VDDQ
DQb7
VSS
SW
VSS
NC
VDDQ
N
DQb8
NC
VSS
SA16
VSS
DQa2
NC
P
NC
DQb9
VSS
SA1
VSS
NC
DQa1
R
NC
SA15
M1
VDD
M2
SA2
NC
T
NC
SA17
SA14
NC
SA3
SA0
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC**
VDDQ
NOTE : 1. NC* is used for the Boundary Scan.
2. NC** is reserved for TRST input.
3. NC*** is reserved for HSTL interface.
-3-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
FUNCTION DESCRIPTION
The K7P403623B andK7P401823B are 4,718,592 bit Synchronous SRAM. It is organized as 131,072 words of 36 bits(or 262,144
words of 18 bits) and is implemented in SAMSUNG's advanced CMOS technology.
Single differential PECL level K clocks or single ended or differential LVCMOS/LVTTL clock are used to initiate the read/write operation and all internal operations are self-timed. At the rising edge of K clock, all addresses, Write Enables, Synchronous Select and
Data Ins are registered internally. Data outputs are updated from output latches of the falling edge of K clock. An internal write data
buffer allows write data to follow one cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a
1.27mm pitch.
Read Operation
During reads, the address is registered during the clock rising edge and the internal array is read. The data is driven to the CPU in
the following cycle. SS is driven low during this cycle, signaling that the SRAM should drive out the data.
During consecutive read cycles where the address is the same, the data output must be held constantly without any glitches. This
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multiple SRAM cycles to perform a single read operation.
Write(Store) Operation
All addresses and SW are both sampled on the clock rising edge. SW is low on the rising clock. Write data is sampled on the rising
clock, one cycle after write address and SW have been sampled by the SRAM. SS will be driven low during the same cycle that the
Address, SW and SW[a:d] are valid to signal that a valid operations is on the Address and Control Input.
Pipelined write are supported. This is done by using write data buffers on the SRAM that capture the write addresses on one write
cycle, and write the array on the next write cycle. The "next write cycle" can actually be many cycles away, broken by a series of
read cycles. Byte writes are supported. The byte write signals SW[a:d] signal which 9-bit bytes will be writen. Timing of SW[a:d] is the
same as the SW signal.
Bypass Read Operation
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to
be done from the location that has not been written yet. For this case, the address comparator check to see if the new read address
is the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the
SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have
new byte data from the write data buffer and the other bytes from the SRAM array.
Low Power Dissipation Mode
During normal operation, asynchronous signal ZZ must be pulled low. Low Power Mode is enabled by switching ZZ high. When the
SRAM is in Power Down Mode, the outputs will go to a Hi-Z state and the SRAM will draw standby current. SRAM data will be preserved and a recovery time(tZZR) is required before the SRAM resumes to normal operation.
TRUTH TABLE
K
ZZ
G
SS
SW
SWa
SWb
SWc
SWd
DQa
DQb
DQc
DQd
Operation
X
H
X
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Power Down Mode. No Operation
X
L
H
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Output Disabled. No Operation
↑
L
L
H
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Output Disabled. No Operation
↑
L
L
L
H
X
X
X
X
DOUT
DOUT
DOUT
DOUT Read Cycle
↑
L
X
L
L
H
H
H
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
↑
L
X
L
L
L
H
H
H
DIN
Hi-Z
Hi-Z
Hi-Z
Write first byte
↑
L
X
L
L
H
L
H
H
Hi-Z
DIN
Hi-Z
Hi-Z
Write second byte
No Bytes Written
↑
L
X
L
L
H
H
L
H
Hi-Z
Hi-Z
DIN
Hi-Z
Write third byte
↑
L
X
L
L
H
H
H
L
Hi-Z
Hi-Z
Hi-Z
DIN
Write fourth byte
↑
L
X
L
L
L
L
L
L
DIN
DIN
DIN
DIN
Write all byte
-4-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Value
Unit
VDD
-0.3 to 4.6
V
Core Supply Voltage Relative to VSS
Output Supply Voltage Relative to VSS
VDDQ
VDD
V
Voltage on any I/O pin Relative to VSS
VTERM
-0.3 to VDD+0.3
V
Maximum Power Dissipation
PD
1.5
W
Output Short-Circuit Current
IOUT
25
mA
Operating Temperature
TOPR
0 to 70
°C
Storage Temperature
TSTG
-65 to 150
°C
NOTE : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
Symbol
Min
Typ
Max
Unit
Core Power Supply Voltage
Parameter
VDD
3.15
3.3
3.45
V
Output Power Supply Voltage (for 2.5V I/O)
VDDQ
2.375
2.5
2.9
V
Output Power Supply Voltage (for 3.3V I/O)
VDDQ
3.135
3.3
3.6
V
Note
Input High Level (for 2.5V I/O)
VIH
1.7
-
VDD+0.3
V
Input Low Level (for 2.5V I/O)
VIL
-0.3
-
0.7
V
Input High Level (for 3.3V I/O)
VIH
2.0
-
VDD+0.3
V
Input Low Level (for 3.3V I/O)
VIL
-0.3
-
0.8
V
PECL Clock Input High Level
VIH-PECL
2.135
-
2.420
V
1
PECL Clock Input Low Level
VIL-PECL
1.490
-
1.825
V
1
VIN
-0.3
-
3.45
V
2
Clock Input Signal Voltage
Clock Input Differential Voltage
VDIF-CLK
0.2
-
VDD+0.6
V
2
Clock Input Common Mode Voltage
VCM-CLK
1.1
-
2.1
V
2
TJ
10
-
110
°C
Operating Junction Temperature
NOTE
1. For operation with differential PECL clock inputs.
2. For operation with single ended or differential LVCMOS / LVTTL clock input.
-5-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
DC CHARACTERISTICS
Symbol
Min
Max
Unit
Note
Average Power Supply Operating Current-x36
(VIN=VIH or VIL, ZZ & SS=VIL)
IDD65
IDD70
IDD75
-
300
290
280
mA
1, 2
Average Power Supply Operating Current-x18
(VIN=VIH or VIL, ZZ & SS=VIL)
IDD65
IDD70
IDD75
-
290
280
270
mA
1, 2
Power Supply Standby Current
(VIN=VIH or VIL, ZZ=VIH)
ISB
-
120
mA
1
Input Leakage Current
(VIN=VSS or VDDQ)
ILI
-1
1
µA
Output Leakage Current
(VOUT=VSS or VDDQ, ZZ=VIH, G=VIH)
ILO
-1
1
µA
Parameter
Output High Voltage(IOH=-4mA) for VDDQ=3.3V
VOH1
Output High Voltage(IOH=-4mA) for VDDQ=2.5V
VOH2
2.4
2.0
VDDQ
V
Output Low Voltage(IOL=4mA)
VOL
VSS
0.4
V
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
PIN CAPACITANCE
Parameter
Input Capacitance
Output Capacitance
Symbol
Typ
Max
Unit
CIN
-
5
pF
COUT
-
7
pF
NOTE : Periodically sampled and not 100% tested.(dV=0V, f=1MHz)
-6-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
AC TEST CONDITIONS
Parameter
AC TEST OUTPUT LOAD
Symbol
Value
Unit
Core Power Supply Voltage
VDD
3.15~3.45
V
Output Power Supply Voltage
VDDQ
2.4~2.6
V
Input High/Low Level
VIH/VIL
1.7/0.7
V
Clock Input High/Low Level(PECL)
VIH/VIL
2.4/1.5
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
Clock Input Rise/Fall Time(PECL)
TR/TF
1.0/1.0
ns
1.25
V
Cross Point
V
Input and Out Timing Reference Level
Clock Input Timing Reference Level
Dout
Z0=50Ω
20pF*
50Ω
1.25V
*Capacitive load consists of all components
of the tester environment
AC CHARACTERISTICS
Parameter
Symbol
-65
-70
-75
Min
Max
Min
Max
Min
Max
Unit
Clock Cycle Time
tKHKH
6.0
-
6.5
-
7.0
-
ns
Clock High Pulse Width
tKHKL
2.0
-
2.0
-
2.0
-
ns
Clock Low Pulse Width
tKLKH
2.0
-
2.0
-
2.0
-
ns
Clock High to Output Valid
tKHQV
-
6.5
-
7.0
-
7.5
ns
Clock Low to Output Valid
tKLQV
-
2.5
-
2.5
-
3.0
ns
Clock Low to Output Hold
tKLQX
0.5
-
0.5
-
0.5
-
ns
Address Setup Time
tAVKH
0.5
-
0.5
-
0.5
-
ns
Address Hold Time
tKHAX
1.0
-
1.0
-
1.0
-
ns
Write Data Setup Time
tDVKH
0.5
-
0.5
-
0.5
-
ns
Write Data Hold Time
tKHDX
1.0
-
1.0
-
1.0
-
ns
SW, SW[a:d] Setup Time
tWVKH
0.5
-
0.5
-
0.5
-
ns
SW, SW[a:d] Hold Time
tKHWX
1.0
-
1.0
-
1.0
-
ns
SS Setup Time
tSVKH
0.5
-
0.5
-
0.5
-
ns
SS Hold Time
tKHSX
1.0
-
1.0
-
1.0
-
ns
Clock High to Output Hi-Z
tKHQZ
-
2.5
-
3.0
-
3.5
ns
Clock Low to Output Low-Z
tKLQX1
0.5
-
0.5
-
0.5
-
ns
G High to Output High-Z
tGHQZ
-
2.5
-
3.0
-
3.5
ns
G Low to Output Low-Z
tGLQX
0.5
-
0.5
-
0.5
-
ns
G Low to Output Valid
tGLQV
-
2.5
-
3.0
-
3.5
ns
ZZ High to Power Down(Sleep Time)
tZZE
-
15
-
15
-
15
ns
ZZ Low to Recovery(Wake-up Time)
tZZR
-
20
-
20
-
20
ns
-7-
Note
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES
1
2
tKHKH
tAVKH
tKHAX
3
5
4
6
7
9
8
K
tKHKL tKLKH
A1
A1
SAn
A2
A3
A4
A5
A4
A6
A7
tKHSX
tSVKH
SS
tWVKH
tKHWX
tWVKH
tKHWX
tKHWX
tWVKH
SW
SWx
tKLQV
tKLQV
tKHQV
tKLQX
G
tGHQZ
tKHQZ tDVKH tKHDX
tGLQV
tKLQX1
tKLQV tKHQZ
tKLQX1
tGLQX
Q1
DQn
Q2
D3
D4
Q5
Q4
NOTE
1. D3 is the input data written in memory location A3.
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last write
cycle address.
3. Data is valid at the output at the later of tKHQV following the rising clock edge, or tKLQV following the fallowing clock edge.
4. When SS is sampled high or SW is sampled low on the rising edge of clock, the outputs go into Hi-Z state no later than tKHQZ following
the rising clock edge.
5. When SS is low and SW is high on the rising edge of clock, the outputs go into Low-Z state(being driven) no earlier than tKLQX1 following
the next falling edge of clock.
6. When the SRAM is deselected, the output goes Hi-Z at tKHQZ following the rising clock edge. On the next read cycle, note that the
SRAM output do not leave the Hi-Z state until tKLQX1 after the falling clock edge.
-8-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
TIMING WAVEFORMS OF STANDBY CYCLES
1
2
3
4
5
6
7
8
K
tKHKH
SAn
A1
A2
A3
A1
A2
A3
Q1
Q2
SS
SW
SWx
tZZR
tZZE
ZZ
tKHQV
tKHQV
DQn
Q1
Q2
Q3
-9-
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without
interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be
tied to VDD through a resistor. TDO should be left unconnected.
JTAG Instruction Coding
JTAG Block Diagram
IR2 IR1 IR0 Instruction
SRAM
CORE
M2
M1
TDI
BYPASS Reg.
Identification Reg.
Instruction Reg.
TDO
Control Signals
TMS
TCK
TDO Output
Notes
0
0
0
SAMPLE-Z Boundary Scan Register
1
0
0
1
IDCODE
2
0
1
0
SAMPLE-Z Boundary Scan Register
1
0
1
1
BYPASS
3
1
0
0
SAMPLE
Boundary Scan Register
4
1
0
1
BYPASS
Bypass Register
3
1
1
0
BYPASS
Bypass Register
3
1
1
1
BYPASS
Bypass Register
3
Identification Register
Bypass Register
NOTE
1. Places DQs in Hi-Z in order to sample all input data regardless of
other SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
3. Bypass register is initiated to VSS when BYPASS instruction is
invoked. The Bypass Register also holds serially loaded TDI when
exiting the Shift DR states.
4. SAMPLE instruction dose not places DQs in Hi-Z.
TAP Controller
TAP Controller State Diagram
1
Test Logic Reset
0
0
Run Test Idle
1
Select DR
0
1
1
Shift DR
1
0
1
Exit1 DR
0
Exit2 DR
1
Update DR
0
- 10
Select IR
0
1
Capture DR
0
Pause DR
1
1
1
0
0
1
Capture IR
0
Shift IR
1
0
Exit1 IR
0
Pause IR
1
Exit2 IR
1
Update IR
1
0
0
0
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
128Kx36
3 bits
1 bits
32 bits
70 bits
256Kx18
3 bits
1 bits
32 bits
51 bits
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit(0)
128Kx36
0000
00101 00100
xxxxxx
00001001110
1
256Kx18
0000
00110 00011
xxxxxx
00001001110
1
BOUNDARY SCAN EXIT ORDER(x36)
BOUNDARY SCAN EXIT ORDER(x18)
36
3B
SA9
SA8
5B
35
26
3B
SA9
SA8
5B
25
37
2B
NC
NC
6B
34
27
2B
NC
NC
6B
24
38
3A
SA10
SA7
5A
33
28
3A
SA10
SA7
5A
23
39
3C
SA11
SA6
5C
32
29
3C
SA11
SA6
5C
22
40
2C
SA12
SA5
6C
31
30
2C
SA12
SA5
6C
21
41
2A
SA13
SA4
6A
30
31
2A
SA13
SA4
6A
20
42
2D
DQc9
DQb9
6D
29
DQa9
6D
19
43
1D
DQc8
DQb8
7D
28
32
1D
DQb1
44
2E
DQc7
DQb7
6E
27
33
2E
DQb2
45
1E
DQc6
DQb6
7E
26
DQa8
7E
18
46
2F
DQc5
DQb5
6F
25
DQa7
6F
17
47
2G
DQc4
DQb4
6G
24
48
1G
DQc3
DQb3
7G
23
DQa6
7G
16
49
2H
DQc2
DQb2
6H
22
DQa5
6H
15
50
1H
DQc1
DQb1
7H
21
35
1H
DQb4
51
3G
SWc
SWb
5G
20
36
3G
SWb
52
4D
NC
G
4F
19
37
4D
NC
G
4F
14
53
4E
SS
K
4K
18
38
4E
SS
K
4K
13
54
4G
NC
K
4L
17
39
4G
NC
K
4L
12
34
2G
DQb3
55
4H
NC
SWa
5L
16
40
4H
NC
SWa
5L
11
56
4M
SW
DQa1
7K
15
41
4M
SW
DQa4
7K
10
DQa3
6L
9
57
3L
SWd
DQa2
6K
14
58
1K
DQd1
DQa3
7L
13
59
2K
DQd2
DQa4
6L
12
42
2K
DQb5
60
1L
DQd3
DQa5
6M
11
43
1L
DQb6
61
2L
DQd4
DQa6
7N
10
62
2M
DQd5
DQa7
6N
9
44
2M
DQb7
DQa2
6N
8
63
1N
DQd6
DQa8
7P
8
45
1N
DQb8
DQa1
7P
7
64
2N
DQd7
DQa9
6P
7
65
1P
DQd8
ZZ
7T
6
ZZ
7T
6
66
2P
DQd9
SA3
5T
5
46
2P
DQb9
SA3
5T
5
67
3T
SA14
SA2
6R
4
47
3T
SA14
SA2
6R
4
68
2R
SA15
SA1
4T
3
48
2R
SA15
69
4N
SA16
SA0
4P
2
49
4N
SA16
SA1
4P
3
50
2T
SA17
SA0
6T
2
51
3R
M1
M2
5R
1
70
3R
M1
M2
5R
1
NOTE : 1. Pins 6B and 2B are no connection pin to internal chip. These pins are place holders for 16M part and the scanned data are fixed to "0" for this
4M parts.
- 11
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
JTAG DC OPERATING CONDITIONS
Symbol
Min
Typ
Max
Unit
Power Supply Voltage
Parameter
VDD
3.15
3.3
3.45
V
Input High Level
VIH
1.7
-
VDD+0.3
V
Input Low Level
VIL
-0.3
-
0.8
V
Output High Voltage(IOH=-2mA)
VOH
2.1
-
VDD
V
Output Low Voltage(IOL=2mA)
VOL
VSS
-
0.2
V
Note
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
JTAG AC TEST CONDITIONS
Parameter
Symbol
Min
Unit
Input High/Low Level
VIH/VIL
2.5/0.0
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
1.5
V
Input and Output Timing Reference Level
Note
1
NOTE : 1. See SRAM AC test output load.
JTAG AC Characteristics
Parameter
Symbol
Min
Max
Unit
tCHCH
50
-
ns
TCK High Pulse Width
tCHCL
20
-
ns
TCK Low Pulse Width
tCLCH
20
-
ns
TMS Input Setup Time
tMVCH
5
-
ns
TMS Input Hold Time
tCHMX
5
-
ns
TDI Input Setup Time
tDVCH
5
-
ns
TDI Input Hold Time
tCHDX
5
-
ns
SRAM Input Setup Time
tSVCH
5
-
ns
SRAM Input Hold Time
tCHSX
5
-
ns
Clock Low to Output Valid
tCLQV
0
10
ns
TCK Cycle Time
Note
JTAG TIMING DIAGRAM
TCK
tCHCH
tCHCL
tMVCH
tCHMX
tDVCH
tCHDX
tCLCH
TMS
TDI
tCLQV
TDO
- 12
Jul. 2003
Rev 1.1
K7P403623B
K7P401823B
128Kx36 & 256Kx18 SRAM
119 BGA PACKAGE DIMENSIONS
14.00±0.10
1.27
1.27
22.00±0.10
Indicator of
Ball(1A) Location
20.50±0.10
C0.70
C1.00
0.750±0.15
1.50REF
0.60±0.10
0.60±0.10
NOTE :
12.50±0.10
1. All Dimensions are in Millimeters.
2. Solder Ball to PCB Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
119 BGA PACKAGE THERMAL CHARACTERISTICS
Symbol
Thermal Resistance
Unit
Junction to Ambient
Parameter
Theta_JA
TBD
°C/W
Junction to Case
Theta_JC
TBD
°C/W
Junction to Solder Ball
Theta_JB
TBD
°C/W
Note
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
- 13
Jul. 2003
Rev 1.1