S5D4100X Data Sheet Revision 0.1 RECORD OF REVISIONS Rev. No Date 0.0 2004/12 0.1 2005/3 Page Description of Change First Release 12 ~ 14 12 Output drive current and Pull Up/Down Pad descriptions Revision Point: PCKO output drive Current change (20mA → 4mA) Table of Contents 1. overview ..................................................................................................................................................7 1.1 Features ............................................................................................................................................8 2. pin CONFIGURATIONS ..........................................................................................................................9 2.1 Pin Descriptions ..............................................................................................................................12 3. Functional Block Diagram .....................................................................................................................15 4. Solution Circuit for Application ..............................................................................................................16 5. functional description.............................................................................................................................18 5.1 Clock systems.................................................................................................................................18 5.2 ITU Decoder....................................................................................................................................19 5.3 BOOST-UP .....................................................................................................................................20 5.4 Sharpness, HUE & SAT..................................................................................................................21 5.5 Input Formatter & Test Pat. Gen.....................................................................................................22 5.6 BT656 Encoder ...............................................................................................................................24 5.7 Timing Generator ............................................................................................................................25 5.8 SCALER..........................................................................................................................................27 5.9 OSD (ON-Screen Display) ..............................................................................................................27 5.10 Contrast Control............................................................................................................................40 5.11 Gamma .........................................................................................................................................40 5.12 Host Interface................................................................................................................................41 5.13 Data output Formatter & Serial Interface ......................................................................................47 5.14 Power Down Control .....................................................................................................................50 6. Register Map .........................................................................................................................................51 6.1 GLOBAL..........................................................................................................................................51 6.2 Timing Generator ............................................................................................................................59 6.3 YC Processor..................................................................................................................................64 6.4 Scaler ..............................................................................................................................................71 6.5 Contrast...........................................................................................................................................73 6.6 Gamma ...........................................................................................................................................75 6.7 OSD ................................................................................................................................................78 6.8 BOOSTUP.......................................................................................................................................85 Table of Contents (Continued) 7. Electrical Specification.......................................................................................................................... 89 7.1 Absolute Maximum Ratings ........................................................................................................... 89 7.2 Recommended Operation Conditions............................................................................................ 89 7.3 DC Electrical Characteristics.......................................................................................................... 90 7.4 AC Electrical Characteristics.......................................................................................................... 91 8. Package Dimension.............................................................................................................................. 93 8.1 88-FBGA-0707 .............................................................................................................................. 93 8.2 80-TQFP-1212 .............................................................................................................................. 94 Figure of Contents Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 80-TQFP-1212 ..............................................................................................................9 88-FBGA-0707 (PAD Domain) ...................................................................................10 88-FBGA-0707............................................................................................................12 Functional Block Diagram...........................................................................................15 Solution Circuit for Application (TQFP).......................................................................16 Solution Circuit for Application (FBGA).......................................................................17 Clock Systems ...........................................................................................................18 ITU Decoder ...............................................................................................................19 Adaptive Brightness Control LUT ...............................................................................20 Sharpness I/O Characteristic Curve ...........................................................................21 Test Sync ...................................................................................................................22 TP_SEL Register ........................................................................................................22 Types of Pattern..........................................................................................................23 Pattern 6 (Constant Level) ..........................................................................................23 Input Timing ................................................................................................................25 Structure of Frequency Synthesized PLL ...................................................................26 OSD Font Structure ....................................................................................................27 OSD DISPLAY RAM Structure ...................................................................................28 OSD Position .............................................................................................................29 Board/Shadow ...........................................................................................................30 Creating Border When There is No Space on the Right ............................................31 When There is no Space on the Left ..........................................................................32 Creating Border on the Left Space .............................................................................32 OSD Multicolor Font Structure....................................................................................34 OSD Region Definition................................................................................................35 OSD RAM Structure....................................................................................................36 OSD Font Structure ....................................................................................................37 OSD Font RAM & Display RAM Structure ..................................................................38 OSD System Block Diagram.......................................................................................39 Gamma Graph ...........................................................................................................40 6-wire Host Interface Write Data Sequence (Sending n data) ...................................41 6-wire Host Interface Read Data Sequence (Reading n data) ...................................42 I2C Host Interface Write Data Sequence ...................................................................43 I2C Host Interface Read Data Sequence ...................................................................43 3-wire Host Interface Write Data Sequence ...............................................................45 3-wire Host Interface Read Data Sequence ...............................................................45 PWM ...........................................................................................................................46 Parallel interface Panel Architecture...........................................................................47 Parallel Output Data....................................................................................................47 Delta Type Panel Architecture ....................................................................................48 Serial Output Data ......................................................................................................48 DATASHEET S5D4100X 1. OVERVIEW S5D4100X is a digital interface including Scaler, Image Enhancement, ITU-R VT656 Decoder, OSD, GAMMA and DITHER. S5D4100X supports two ITU-R BT656 Video inputs or one ITU-R BT601 input, and provides R/G/B Serial and ITU-R 656 Outputs or R/G/B Parallel Output 7 DATASHEET S5D4100X 1.1 FEATURES Input Format – – ITU-R BT601 / ITU-R BT656 Video Format Support Dual ITU-R BT656 Channel Port ITU Decoder – – ITU-R BT656 Decoding Support NTSC / PAL System Image Enhancement – – – Image Boost-Up (Adaptive Contrast Control) Sharpness Control Color Hue & Saturation Control High-Quality Advanced Scaling – – Fully Programmable Image Scaling (Up to XGA) Independent Horizontal / Vertical Image Scale-Up and / or Scale-Down Built-in On-Screen Display – – – Programmable Character RAM Fonts (256 Fonts) User Friendly Font Size (12x18) and Display Font Number of Window Frame (Up to 450) Various Font Attribute (Raster Enable, Blink, Character Border/Shadow Enable, Half-Tone, Intensity) Economic Clock Source – – External X-tal Application (Optional) Programmable Frequency Synthesize in Built-in PLL Core Supports I2C Bus & 3-Wired / 6-Wired Serial Host Interface R/G/B Gamma look-up table 8 to 6 bit Dithering Built-in RGB Black Level / Bright / Contrast Control Application based Output Data Interface – R/G/B Serial Output for RGB-Dot-Pixel LCD Panel – – – R/G/B Parallel Output for RGB-Pixel Panel ITU-R656, 8-Bit 4:2:2 Data with Embedded Sync Output for External Application Fab. & PKG Information – – Fab. Process: L18 (0.18 µm) PKG: 88-FBGA-0707 / 80-TQFP-1212 Operating Conditions – 8 1.8 Volts Internal Core Logic, 3.3 Volts I/O Driver Power DATASHEET S5D4100X 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 VCKI TEST PWM1 PWM0 VSSC VDDC SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN HIF VSSP VDDP BO7 BO6 BO5 BO4 2. PIN CONFIGURATIONS S5D4100X 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 BO3 BO2 BO1 BO0 VSSC VDDC GO7 GO6 GO5 GO4 GO3 GO2 GO1 GO0 VSSP VDDP RO7 RO6 RO5 RO4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 HD VD FLD XI XO VDDP VSSP FILT VDDAP VSSAP PVSO PHSO PDEO PCKO VDDC VSSC RO0 RO1 RO2 RO3 YI7 YI6 YI5 YI4 YI3 VDDP VSSP YI2 YI1 YI0 CI7 CI6 CI5 VDDC VSSC CI4 CI3 CI2 CI1 CI0 Figure 1. 80-TQFP-1212 9 S5D4100X 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 NC VCKI TEST PWM1 PWM0 VSSC VDDC SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN HIF VSSP VDDP BO7 BO6 BO5 BO4 TD0 DATASHEET 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 S5D4100X TMS HD VD FLD XI XO VDDP VSSP FILT VDDAP VSSAP PVSO PHSO PDEO PCKO VDDC VSSC RO0 RO1 RO2 RO3 TCK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NC YI7 YI6 YI5 YI4 YI3 VDDP VSSP YI2 YI1 YI0 CI7 CI6 CI5 VDDC VSSC CI4 CI3 CI2 CI1 CI0 NC Figure 2. 88-FBGA-0707 (PAD Domain) 10 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 TDI BO3 BO2 BO1 BO0 VSSC VDDC GO7 GO6 GO5 GO4 GO3 GO2 GO1 GO0 VSSP VDDP RO7 RO6 RO5 RO4 TRST DATASHEET S5D4100X 88-FBGA-0707 N O O O O O O O O O O O O O M O O O O O O O O O O O O O L O O O O K O O O O J O O O O H O O O O G O O O O F O O O O E O O O O D O O O O C O O O O B O O O O O O O O O O O O O A O O O O O O O O O O O O O 1 2 3 4 5 6 7 8 9 10 11 12 13 Figure 3. 88-FBGA-0707 11 DATASHEET S5D4100X 2.1 PIN DESCRIPTIONS Terminal Number Name TQFP I/O Output drive current Pull up down FBGA Description TMS - 1 B1 I - up HD 1 2 B2 I - - Horizontal Driving Pulse in ITU-R. BT601 /VCKI_B in ITUR. BT656 VD 2 3 C1 I - - Vertical Driving Pulse in ITU-R. BT601 / VSYNC_A in ITUR. BT656 FLD 3 4 C2 I - - Field Identification in ITU-R. BT601 /VSYNC_B in ITU-R. BT656 XI 4 5 D1 I - - X-tal Input for External Clock Reference (Free-Run Clock) XO 5 6 D2 O 12.1mA - X-tal Output for External Clock Reference VDDP 6 7 E1 P - - I/O Pad Drive VDD (3.3V) VSSP 7 8 E2 G - - I/O Pad Drive VSS FILT 8 9 F1 O 0.0mA - External Loop Filter Terminal for Built-In PLL VDDAP 9 10 F2 P - - Analog VDD for Built-in PLL (1.8V) VSSAP 10 11 G1 G - - Analog VSS for Built-in PLL PVSO 11 12 G2 O 4.0mA - Vertical Sync Output for LCD Panel PHSO 12 13 H1 O 4.0mA - Horizontal Sync Output for LCD Panel PDEO 13 14 H2 O 4.0mA - Data Enable Output for LCD Panel PCKO 14 15 J1 O 4.0mA - System Clock Output for LCD Panel VDDC 15 16 J2 P - - Internal Core Drive VDD (1.8V) VSSC 16 17 K1 G - - Internal Core Drive VSS RO0 17 18 K2 O 4.0mA - R-CH Output 0 / Serial Output 0 [LSB] RO1 18 19 L1 O 4.0mA - R-CH Output 1 / Serial Output 1 RO2 19 20 L2 O 4.0mA - R-CH Output 2 / Serial Output 2 RO3 20 21 M1 O 4.0mA - R-CH Output 3 / Serial Output 3 TCK - 22 M2 I - down JTAC mode (Boundary Scan Design) TRST - 23 N1 I - up JTAC mode (Boundary Scan Design) RO4 21 24 N2 O 4.0mA - R-CH Output 4 / Serial Output 4 RO5 22 25 M3 O 4.0mA - R-CH Output 5 / Serial Output 5 RO6 23 26 N3 O 4.0mA - R-CH Output 6 / Serial Output 6 RO7 24 27 M4 O 4.0mA - R-CH Output 7 / Serial Output 7 [MSB] VDDP 25 28 N4 P - - I/O Pad Drive VDD (3.3V) VSSP 26 29 M5 G - - I/O Pad Drive VSS GO0 27 30 N5 O 4.0mA - G-CH Output 0 / General Purpose Output 0 12 JTAC mode (Boundary Scan Design) DATASHEET S5D4100X Terminal Number Name TQFP I/O Output drive current Pull up down FBGA Description GO1 28 31 M6 O 4.0mA - G-CH Output 1 / General Purpose Output 1 GO2 29 32 N6 O 4.0mA - G-CH Output 2 / General Purpose Output 2 GO3 30 33 M7 O 4.0mA - G-CH Output 3 / General Purpose Output 3 GO4 31 34 N7 O 4.0mA - G-CH Output 4 / General Purpose Output 4 GO5 32 35 M8 O 4.0mA - G-CH Output 5 / General Purpose Output 5 GO6 33 36 N8 O 4.0mA - G-CH Output 6 / ITU-R656 VSYNC Output for NonStandard Sync Mode GO7 34 37 M9 O 4.0mA - G-CH Output 7 / ITU-R656 VCK Output VDDC 35 38 N9 P - - Internal Core Drive VDD (1.8V) VSSC 36 39 M10 G - - Internal Core Drive VSS BO0 37 40 N10 O 4.0mA - B-CH Output 0 / ITU-R656 Output 0 [LSB] BO1 38 41 M11 O 4.0mA - B-CH Output 1 / ITU-R656 Output 1 BO2 39 42 N11 O 4.0mA - B-CH Output 2 / ITU-R656 Output 2 BO3 40 43 N13 O 4.0mA - B-CH Output 3 / ITU-R656 Output 3 TDI - 44 N12 I - up JTAC mode (Boundary Scan Design) TDO - 45 M13 O 4.0mA - JTAC mode (Boundary Scan Design) BO4 41 46 M12 O 4.0mA - B-CH Output 4 / ITU-R656 Output 4 BO5 42 47 L13 O 4.0mA - B-CH Output 5 / ITU-R656 Output 5 BO6 43 48 L12 O 4.0mA - B-CH Output 6 / ITU-R656 Output 6 BO7 44 49 K13 O 4.0mA - B-CH Output 7 / ITU-R656 Output 7 [MSB] VDDP 45 50 K12 P - - I/O Pad Drive VDD (3.3V) VSSP 46 51 J13 G - - I/O Pad Drive VSS HIF 47 52 J12 I - down RSTN 48 53 H13 I - - System Reset SCSN 49 54 H12 I - - Chip Select of the Host Interface SCL 50 55 G13 I 4.0mA - Clock of the Host Interface SDA0 51 56 G12 I/O 4.0mA - Data/Address 0 of the Host I/F [LSB] / SDA in case of IIC SDA1 52 57 F13 I/O 4.0mA - Data/Address 1 of the Host I/F SDA2 53 58 F12 I/O 4.0mA - Data/Address 2 of the Host I/F SDA3 54 59 E13 I/O 4.0mA - Data/Address 3 of the Host I/F [MSB] VDDC 55 60 E12 P - - Internal Core Drive VDD (1.8V) Host Interface Select ("0":3-Wired or 6-Wired, "1": IIC) 13 DATASHEET S5D4100X Terminal Number Name TQFP 14 I/O Output drive current Pull up down FBGA Description VSSC 56 61 D13 G - - Internal Core Drive VSS PWM0 57 62 D12 O 4.0mA - Pulse Width Modulation 0 PWM1 58 63 C13 O 4.0mA - Pulse Width Modulation 1 TEST 59 64 C12 I - down VCKI 60 65 B13 I - - NC - 66 A13 - down No Connect NC - 67 B12 - down No Connect YI7 61 68 A12 I - - Luminance Data Input 7 / ITU-R656 Data A Input 7 [MSB] YI6 62 69 B11 I - - Luminance Data Input 6 / ITU-R656 Data A Input 6 YI5 63 70 A11 I - - Luminance Data Input 5 / ITU-R656 Data A Input 5 YI4 64 71 B10 I - - Luminance Data Input 4 / ITU-R656 Data A Input 4 YI3 65 72 A10 I - - Luminance Data Input 3 / ITU-R656 Data A Input 3 VDDP 66 73 B9 P - - I/O Pad Drive VDD (3.3V) VSSP 67 74 A9 G - - I/O Pad Drive VSS YI2 68 75 B8 I - - Luminance Data Input 3 / ITU-R656 Data A Input 2 YI1 69 76 A8 I - - Luminance Data Input 3 / ITU-R656 Data A Input 1 YI0 70 77 B7 I - - Luminance Data Input 3 / ITU-R656 Data A Input 0 [LSB] CI7 71 78 A7 I - - Chrominance Data Input 7 / ITU-R656 Data B Input 7 [MSB] CI6 72 79 B6 I - - Chrominance Data Input 6 / ITU-R656 Data B Input 6 CI5 73 80 A6 I - - Chrominance Data Input 5 / ITU-R656 Data B Input 5 VDDC 74 81 B5 P - - Internal Core Drive VDD (1.8V) VSSC 75 82 A5 G - - Internal Core Drive VSS CI4 76 83 B4 I - - Chrominance Data Input 4 / ITU-R656 Data B Input 4 CI3 77 84 A4 I - - Chrominance Data Input 3 / ITU-R656 Data B Input 3 CI2 78 85 B3 I - - Chrominance Data Input 2 / ITU-R656 Data B Input 2 CI1 79 86 A3 I - - Chrominance Data Input 1 / ITU-R656 Data B Input 1 CI0 80 87 A1 I - - Chrominance Data Input 0 / ITU-R656 Data B Input 0 [LSB] NC - 88 A2 - down Test Input (Pull-Down) Video Clock Input in ITU-R. BT601 / VCKI_A in ITU-R. BT656 No Connect DATASHEET S5D4100X 3. FUNCTIONAL BLOCK DIAGRAM YI7~YI0 CI7~CI0 HD VD FLD ITU-R BT601/656 Y ITU Decoder BOOSTUP Cr/Cb Sharpness, YCbCr HUE & SAT to RGB Input Formatter & Test Pat. Gen. PWM & GPO GEN. PWM0 PWM1 GPO Front OSD RGB BT656 Encoder to OSD MIX YCbCr OSD Scaling SFC Engine Contrast Gamma Correction RAM FONT Output Data RO7~RO0 GO7~GO0 BO7~BO0 Formatter Post OSD 8 to 6-bit Dither VCKI PHSO PVSO PDEO PCKO CKI XI Timing Sync Delay Generator Match PLL Host Interface CKO CKOSC XO Int.OSC Hardware Reset FILT RSTN HIF SCSN SCL SDA0~3 Figure 4. Functional Block Diagram 15 DATASHEET S5D4100X 4100_+1.8VD SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN PWM1 PWM0 VIDEO_INPUT_CK 4. SOLUTION CIRCUIT FOR APPLICATION 4100_+3.3VD 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ SW IIC 1 2 3 VIDEO_INPUT_C4 VIDEO_INPUT_C3 VIDEO_INPUT_C2 VIDEO_INPUT_C1 VIDEO_INPUT_C0 S5D4100X 80-TQFP-1212 BO3 BO2 BO1 BO0 VSSC VDDC GO7 GO6 GO5 GO4 GO3 GO2 GO1 GO0 VSSP VDDP RO7 RO6 RO5 RO4 HD VD FLD XI XO VDDP DSSP FILT VDDAP VSSAP PVSO PHSO PDEO PCKO VDDC VSSC RO0 RO1 RO2 RO3 VIDEO_INPUT_Y2 VIDEO_INPUT_Y1 VIDEO_INPUT_Y0 VIDEO_INPUT_C7 VIDEO_INPUT_C6 VIDEO_INPUT_C5 YI7 YI6 YI5 YI4 YI3 VDDP VSSP YI2 YI1 YI0 CI7 CI6 CI5 DVVC VSSC CI4 CI3 CI2 CI1 CI0 B_CH_OUTPUT7 B_CH_OUTPUT6 B_CH_OUTPUT5 B_CH_OUTPUT4 B_CH_OUTPUT3 B_CH_OUTPUT2 B_CH_OUTPUT1 B_CH_OUTPUT0 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 G_CH_OUTPUT7 G_CH_OUTPUT6 G_CH_OUTPUT5 G_CH_OUTPUT4 G_CH_OUTPUT3 G_CH_OUTPUT2 G_CH_OUTPUT1 G_CH_OUTPUT0 R_CH_OUTPUT7 R_CH_OUTPUT6 R_CH_OUTPUT5 R_CH_OUTPUT4 R_CH_OUTPUT3 R_CH_OUTPUT2 R_CH_OUTPUT1 R_CH_OUTPUT0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 VIDEO_INPUT_Y7 VIDEO_INPUT_Y6 VIDEO_INPUT_Y5 VIDEO_INPUT_Y4 VIDEO_INPUT_Y3 VCKI TEST PWM1 PWM0 VSSC VDDC SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN HIF VSSP VDDP BO7 BO6 BO5 BO4 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 3or6 Wired 1 2 3 4100_+1.8VP OUTPUT_CK OUTPUT_DE OUTPUT_HS OUTPUT_VS VIDEO_INPUT_HS VIDEO_INPUT_VS VIDEO_INPUT_FLD 1㏁ 3.3㏀ 25MHz D_GND 22pF 22pF 5.1nF 68nF D_GND Figure 5. Solution Circuit for Application (TQFP) 16 4100_+1.8VD SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN PWM1 PWM0 S5D4100X VIDEO_INPUT_CK DATASHEET 4100_+3.3VD 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ 4.7㏀ SW IIC 1 2 3 1 2 3 VIDEO_INPUT_Y2 VIDEO_INPUT_Y1 VIDEO_INPUT_Y0 VIDEO_INPUT_C7 VIDEO_INPUT_C6 VIDEO_INPUT_C5 VIDEO_INPUT_C4 VIDEO_INPUT_C3 VIDEO_INPUT_C2 VIDEO_INPUT_C1 VIDEO_INPUT_C0 NC YI7 YI6 YI5 YI4 YI3 VDDP VSSP YI2 YI1 YI0 CI7 CI6 CI5 VDDC VSSC CI4 CI3 CI2 CI1 CI0 NC S5D4100X 88-FBGA-0707 TDI BO3 BO2 BO1 BO0 VSSC VDDC GO7 GO6 GO5 GO4 GO3 GO2 GO1 GO0 VSSP VDDP RO7 RO6 RO5 RO4 TRST TMS HD VD FLD XI XO VDDP VSSP FILT VDDAP VSSAP PVSO PHSO PDEO PCKO VDDC VSSC RO0 RO1 RO2 RO3 TCK B12 A12 B11 A11 B10 A10 B9 A9 B8 A8 B7 A7 B6 A6 B5 A5 B4 A4 B3 A3 A1 A2 VIDEO_INPUT_Y7 VIDEO_INPUT_Y6 VIDEO_INPUT_Y5 VIDEO_INPUT_Y4 VIDEO_INPUT_Y3 NC VCKI TEST PWM1 PWM0 VSSC VDDC SDA3 SDA2 SDA1 SDA0 SCL SCSN RSTN HIF VSSP VDDP BO7 BO6 BO5 BO4 TDO A13 B13 C12 C13 D12 D13 E12 E13 F12 F13 G12 G13 H12 H13 J12 J13 K12 K13 L12 L13 M12 M13 3or6 Wired N12 N13 N11 M11 N10 M10 N9 M9 N8 M8 N7 M7 N6 M6 N5 M5 4N M4 N3 M3 N2 N1 G_CH_OUTPUT7 G_CH_OUTPUT6 G_CH_OUTPUT5 G_CH_OUTPUT4 G_CH_OUTPUT3 G_CH_OUTPUT2 G_CH_OUTPUT1 G_CH_OUTPUT0 R_CH_OUTPUT7 R_CH_OUTPUT6 R_CH_OUTPUT5 R_CH_OUTPUT4 R_CH_OUTPUT3 R_CH_OUTPUT2 R_CH_OUTPUT1 R_CH_OUTPUT0 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 M1 M2 4100_+1.8VP B_CH_OUTPUT7 B_CH_OUTPUT6 B_CH_OUTPUT5 B_CH_OUTPUT4 B_CH_OUTPUT3 B_CH_OUTPUT2 B_CH_OUTPUT1 B_CH_OUTPUT0 OUTPUT_CK OUTPUT_DE OUTPUT_HS OUTPUT_VS VIDEO_INPUT_HS VIDEO_INPUT_VS VIDEO_INPUT_FLD 1㏁ 3.3㏀ 25MHz D_GND 22pF 22pF 5.1nF 68nF D_GND Figure 6. Solution Circuit for Application (FBGA) 17 DATASHEET S5D4100X 5. FUNCTIONAL DESCRIPTION 5.1 CLOCK SYSTEMS Figure 7 shows the names of the clocks used in each block of S5D4100X and the registers that affect them. As illustrated in the following system diagram, each block is designed to enable the user to switch on/off clocks at his/her need. For example, in order to activate the scaler, the clock is supplied only when Register GBI_ON, SC_ON, and GBO_ON are HIGH. Register ENC_ON, Register BU_ON and Register OSD_ON should be HIGH to enable ITU-R656 format output, BOOST-UP function and OSD menu function, respectively. In this manner, the system is configured to minimize power consumption in the portable devices which are the main applications. SCL SCL Host Interface XI VCK HD 0 0 1 CKOSC 1 CKOSC_SEL ITU656_CH ITU_CK ITU Decoder ENC_CK BT656 Ecoder BU_CKI BOOSTUP GBI_ON 0 2MUL 1 2DIV 0 ENC_ON 0 1 BU_ON 1 GB_CKI CKI_SEL GBI_ON V601 Sharpness, Hue&SAT YCbCr to RGB Input Formatter & Test Pat. Gen. RGB to YCbCr 0 PLL_P PLL_M PLL_S 1 PLL [1:0] FRONT_OSD PLL_DIV [4:2] OSD_CK OSD_ON 0 1 Scaling Ck_Gen. SCALER_CK OSD SC_ON CKO_SEL GB_CKO GBO_ON : Intenal Node or Register SFC & Scaling Engine Contrast Gamma Dither Output Data Formatter : I/O Port : Functional Block Figure 7. Clock Systems 18 DATASHEET S5D4100X 5.2 ITU DECODER The ITU decoder block divides Y, C and sync signal from the BT656 data via decoding of the input data in accordance with the protocol. For BT656 input image, the ITU decoder block selects two channels alternatively. If the value of Register ITU656_CH is LOW, pins YI7 ~ YI0 are used for BT656 data, VCKI for input clock, and VD for input vertical sync signal. On the contrary, if the value of Register ITU656_CH is HIGH, pins CI7 ~ CI0 are used for BT656 data, HD for input clock, and FLD for input vertical sync signal. In other words, for ITU-R BT656, two input sources are used selectively for image by alternating channels. For ITU-R BT601 input, the ITU decoder block simply multiplexes the data and the sync signal. FLD 10 FLDi 10 HDi 10 VDi 10 Yi 0 1 Ci HD VD YI7~0 0 1 Y+C Y656 656 Decoder C656 CI7~0 ITU656_CH V601 Figure 8. ITU Decoder 19 DATASHEET S5D4100X 5.3 BOOST-UP The BOOST-UP block performs image enhancement so that the image can be seen more clearly. Main functions of image boost-up are as follows. 5.3.1 Adaptive Contrast Control This function makes a certain area or the entire area of the screen clearer. This is achieved as the block sorts out the colors being displayed on the screen, finds the maximum and the minimum value, and displays the image with the colors calculated adaptively through the contrast control processing. 5.3.2 Adaptive Brightness Control This function makes the screen brighter in accordance with the LUT value. As shown in Figure 9, LUT is a value between 0 ~ 255, and maps input/output in 1:1 ratio. The size of the curve A configured in accordance with input/output mapping varies adaptively in accordance with the brightness of the screen. Point B is the inflection point of the curve which should be set by the turning point Register (TURN_POINT). All the values of LUT should be set to the size of the absolute value. The values in the area lower than Register TURN_POINT (Area C) are automatically calculated as the negative values. 5.3.3 Boost Up Calculation Area The Boost-Up block reflects the previous screen status in the current screen. The area in which the screen status is judged becomes the calculation area. The screen is divided into the calculation area and the reflected area in order to prevent the screen from being affected by other data such as caption dialog than the actual video image. O 255 A C B 0 255 I Figure 9. Adaptive Brightness Control LUT 20 DATASHEET S5D4100X 5.4 SHARPNESS, HUE & SAT 5.4.1 Sharpness CORE_L*2 CORE_H*2 EDGE_LIM 0 - EDGE_LIM - CORE_H*2 - CORE_L*2 Figure 10. Sharpness I/O Characteristic Curve The Sharpness block applies "0" for any value smaller than two times of Register CORE_L shown in Figure 10, applies a certain gradient for the value smaller than two times of Register CORE_H, and bypasses edge value for the area bigger than two times of Register Core_H. Any value which is bigger than Register EDGE_LIM is limited to Register EDGE_LIM. The gradient between Register CORE_L and Register CORE_H is determined by Register CORE_RATE; 1/2, 1/4, 1/8 and 1/16 for 00, 01, 10 and 11, respectively. BLACK/BRIGHTNESS/CONTRAST can be adjusted as following, after EDGE is reflected. YOUT = (YIN – YCP_BLACK) * YCP_CONTRAST + YCP_BRIGHTNESS Where, Register YCP_BRIGHTNESS is a 2's complement, and can be a negative number. 5.4.2 HUE & SAT Register HUE can be adjusted between -180 degree and +180 degree. The value can be a 2's complement between -512 and +511. Register SATURATION is applied after adjustment of Register HUE. 21 DATASHEET S5D4100X 5.5 INPUT FORMATTER & TEST PAT. GEN. 5.5.1 Input Formatter The Input Formatter block transforms the input data into the format appropriate for SFC. The block generates input sync, and adjusts Vsync delay of the odd/even field. 5.5.2 Test Pat. Gen. The Test Pat. Gen. block generates a pattern for sync and test without input sync and data, and uses it as the input for SFC. In order to use the test data of the Test Pat. Gen. block, Register TEST_PAT_ON should be HIGH. In order to use the test sync, Register TP_SYNC_ON should be HIGH. Figure 11 shows the internally generated sync. 20 30 Active Data Area 10 Active Line Area 1 HS 3 16 VS Figure 11. Test Sync The active data area and the active line area are as specified in Registers HIAS and VIAS. The pattern to be used as the input data for SFC is selected by Register TP_SEL. The image is passed if Bit [7] is 0, and inverted if it is 1. Bit [5] is used to select direction (H/V) of the pattern. Bits [4] ~ [0] are used to select type of the pattern. The following figure summarizes the above description. [7] [6] [5] [4] [3] [2] [1] [0] X INV. 0~9 : Type of Pattern H/V SEL not USE Figure 12. TP_SEL Register 22 DATASHEET S5D4100X Types of pattern selected by Bits [4] ~ [0] are as follows. 0 1 2 3 4 7 8 9 Constant Level 5 6 Figure 13. Types of Pattern Pattern No 6, Constant level in the above figure is decided depending on the Register TP_CONST_LEVEL and TP_CONST_WIDTH. If Register TP_CONST_WIDTH is 0, the value set in Register TP_CONST_LEVEL is displayed. If Register TP_CONST_WIDTH is other than 0, starting at the value set in Register TP_CONST_LEVEL, the number of pixels in Register TP_CONST_WIDTH is counted from left to right in the screen, and then, at the TP_CONST_LEVEL +1, the pixels set in Register TP_CONST_WIDTH is displayed. In other words, the screen is displayed as shown in the following figure. TP_CONST_LEVEL+2 TP_CONST_LEVEL+1 TP_CONST_LEVEL TP_CONST_WIDTH Figure 14. Pattern 6 (Constant Level) 23 DATASHEET S5D4100X In case of other registers related to the Test Pat. Gen. block, if Register TP_YUV_ON is HIGH, the display of the Test Pat. Gen. block is sent to the BOOST-UP block. This is the flow to test the BOOST-UP block, and is not used in general screen test. Register TP_RGB_ON consists of R, G and B by 2 bits from front (Y, Cb and Cr if Register TP_YUV_ON is HIGH). The following table shows the display ratio. Table 1. Test Pattern Display Ratio R/G/B 00 01 10 11 Display ratio 0% 25% 50% 100% 5.6 BT656 ENCODER The BT656 encoder outputs the ITU-R656 data via the pins BO0 ~ BO7 when Register SERIAL_ON and Register ENC_ON are HIGH. The encoder also outputs VCKO and VSO via GO7 and GO6. The outputs of the BT656 encoder are determined in accordance with the Register EN_656OUTSEL values as shown in the following table. Table 2. Encoder Output EN_6565OUTSEL 24 Output 00 Input 656 data (The channel selected in accordance with Register ITU656_CH value) 01 ITU decoder output data (If Register VS_SEL is HIGH, the 656 data contains VS instead of VACT) 10 Sharpness, HUE & SAT output data 11 OSD output data if FRONT_OSD is HIGH, and input formatter output data if it is LOW. DATASHEET S5D4100X 5.7 TIMING GENERATOR The timing generator generates the timing used in S5D4100X, and delivers the value required for PCKO (output clock). Using input HS and VS, the timing generator generates PHSO, PVSO and PDEO for output sync. The generated timing signals are sent to the internal blocks. TG also delivers the value for generation of PCKO from MCU to internal PLL. 5.7.1 Output Timing Generation Using input HS and VS, TG generates the output sync (PHSO, PVSO and PDEN). To set the active data area in input HS and VS, values for Register HTOTAL, H_STR, HIAS, VTOTAL, V_STR and VIAS are set as shown in Figure 15. The output signals are defined with the values of Register HOFP, HOSW, HOBP, VOFP, VOSW, HOAS and VOAS. HTOTAL HSW HBP H_Active Data_Area HFP Horizontal Sync Input H_STR HIAS VTOTAL VSW VBP V_Active Data_Area VFP Vertical Sync Input V_STR VIAS Figure 15. Input Timing 25 DATASHEET S5D4100X 5.7.2 Output Clock Generation S5D4100X generates output clock with PLL. Figure 16 shows the structure of PLL. Receiving the input clock Fin from VCK or X1 pin, the Pre-Divider divides the clock, using the Register PLL_P value, and send them to PFD. PFD uses the signal received from the Pre-Divider as the reference frequency, compares the signal with the output of the main divider which is determined by the Register PLL_M value, and controls the charge pump voltage. VCO generates the output clock, and supplies the final output clock (FOUT) via Post Scaler1 and Post Scaler2. The signal is divided for lower 2 bits of Register PLL_S for Post Scaler1, and upper 3 bits of Register PLL_S for Post Scaler2. The frequency of FOUT is calculated as: FOUT = Fin * (Pll_M+1) / (PLL_P * 2S) Where, S = PLL_S[4:2] + PLL_S[1:0]. HS Fin Pre-Divider PFD Charge Pump PLL_P Main Divider VCO Post Scaler 1 Post Scaler 2 2 3 PLL_S[1:0] PLL_M Figure 16. Structure of Frequency Synthesized PLL 26 PLL_S[4:2] FOUT DATASHEET S5D4100X 5.8 SCALER The scaler of S5D4100X runs in the following 4 image scaling modes. (1:1 mode is Scale Up.) 5.8.1 HUPVUP (Horizontal-Scale-Up, Vertical-Scale-Up) For ITU-R.656/601 input, the scaler guarantees clock speed of 80MHz to XGA output. The scaler supports scaleup of up to 1024 pixels in horizontal direction, and up to 768 lines in vertical direction. The scaler supports scaleup at different ratio in H/V direction respectively. 5.8.2 HDNVDN (Horizontal-Scale-Down, Vertical-Scale-Down) For ITU-R.656/601 input, the scaler supports scale-down to 1/2 size. For NT input, the scaler supports scaledown of up to 360 pixels in the horizontal direction, and up to 120 lines in the vertical direction. The scaler supports scale-up at different ratio in H/V direction respectively. 5.8.3 HUPVDN (Horizontal-Scale-Up, Vertical-Scale-Down) For ITU-R.656/601 input, the scaler supports scale-up of up to 1024 pixels in the horizontal direction, and scaledown of up to 1/2 in the vertical direction. For NT input, the scaler supports scale-up of up to 1024 pixels in the horizontal direction and scale-down of up to 120 lines in the vertical direction. 5.8.4 HDNVUP (Horizontal-Scale-Down, Vertical-Scale-Up) For ITU-R.656/601 input, the scaler supports scale-down of up to 1/2 in the horizontal direction, and scale-up of up to 768 lines in the vertical direction. For NT input, the scaler supports scale-down of up to 360 pixels in the horizontal direction, and scale-up of up to 768 lines in the vertical direction. 5.9 OSD (ON-SCREEN DISPLAY) OSD stores the Font RAM address and the font features in the Display RAM, displays the font and its features in the designated location, and displays the features designated in OSD register on the screen. 5.9.1 FONT 12 Raster 18 A Font Character Figure 17. OSD Font Structure OSD font is configured with 12*18 (W*L) pixels, and is divided into character and raster when displayed on the screen. Font color can be controlled with FC of Display RAM, and a font has 16 kinds of character color and 16 kinds of raster colors. FC value is used as the reference of LUT for controlling of character and raster. 27 DATASHEET S5D4100X 5.9.2 LUT (Look Up Table) Control The user can assign a bit to Register LUT0 ~ LUT15, and the color is displays in reference to the color elements of the values. For font color (Register FC), if Register FC == 3, LUT3 is assigned to the font, and hence, the character color has R= LUT3[7] , G= LUT3[6:5] and B= LUT3[4], and the raster color has R= LUT3[3], G= LUT3[2:1], B= LUT3[0]. For Character Border/Shadow Color (Register CH_BSC), R= LUTn[7] , G= LUTn[6:5] and B= LUTn[4] are assigned (n = 0 ~ 15). For MCF Color, R= LUTn[7], G= LUTn[6:5] and B= LUTn[4] are assigned (n = 0 ~ 7), and in this case, Register CH_BSC is available for LUT0 ~LUT7 only. 5.9.3 User Definable OSD Region OSD region is defined by the number of OSD horizontal fonts and the number of OSD vertical fonts to be displayed on the screen by Register OSD_HFONT[6:0] and Register OSD_VFONT[5:0]. Since 7 bits and 6 bits are assigned for Register OSD_HFONT and Register OSD_VFONT, respectively, the maximum fonts displayed are 127 in horizontal direction and 63 in vertical direction. Since the number of horizontal/vertical pixels of the minimum font is 12/18, the maximum pixels displayed in horizontal/vertical direction are 1524/1134 pixels. Because the maximum size of the display RAM is 450 * 2 (Display Ram attribute is 2 byte size), OSD_HFONT * OSD_VFONT <= 450 must be fulfilled. If Register OSD_HFONT is 30 and Register OSD_VFONT is 10, the OSD region is as in the following figure. In this case, the Display RAM uses addresses from 0x2000 to 0x2257 for display. Display RAM Address 0x2000 & 0x2001 Display RAM Address 0x203E & 0x203F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 Figure 18. OSD DISPLAY RAM Structure 28 DATASHEET S5D4100X 5.9.4 OSD Position Start point of OSD can be changed via controlling of Register OSD_HSP and Register OSD_VSP. Horizontal Active Area Vertical Active Area (0,0) (OSD_HSP,OSD_VSP) Figure 19. OSD Position 5.9.5 Adjustment of Font Size OSD font is stored on the Font RAM with 12 bits in a line, and is displayed in a 12*18 font via 18 accesses and displays in total. Horizontal/vertical size of a font can be enlarged to 1, 2, 3 and 4 times via adjustment of Register CH_HSZ and Register CH_VSZ. For example, 4 x Register CH_HSZ and 2 x OSD_VSZ will make the OSD font size 48*36. In this case, for 1 pixel of font data, the same data are displayed 4 times in horizontal direction and 2 times in vertical direction. Therefore, if Register CH_HSZ and Register CH_VSZ are changed, the OSD window size displayed on the screen is also changed. 29 DATASHEET S5D4100X 5.9.6 Character Border/Shadow The character border/shadow of a font is implemented as G_BDSH_EN of OSD Register is HIGH, Register CH_BDSH_EN of each character of Display RAM is HIGH, and Register BDSH_SEL is 1 or 0 (1: Border, 0: Shadow). If Register BDSH_TYPE_SEL (0x0108[7]) = 0, the size of border/shadow is decided in connection with the font size (Register CH_HSZ, Register CH_VSZ). For example, if Register CH_HSZ is 0, the character border/shadow is displayed by 1 pixel, and if Register CH_HSZ is 2, the character border/shadow is displayed in the thickness of 3 pixels. If Register BDSH_TYPE_SEL (0x0108[7]) = 1, regardless of the font size, the border/shadow is displayed in 1 pixel thickness. The border/shadow color of the character is decided by Register CH_BSC, and the value given in Register CH_BSC becomes the reference of LUT. : Light Source Figure 20. Board/Shadow 30 DATASHEET S5D4100X 5.9.6.1 If there is no space on the right The border is created on the outside of the font area along the right side of the font. (This, however, is applied when Register BDSH_PASS (0x0108[6]) = 1. If Register BDSH_PASS = 0, the character border/shadow is created inside the font area.) Font Raster Font Border The border is created on the raster area. Font Font Font Font The border is not created on the font area. Figure 21. Creating Border When There is No Space on the Right 31 DATASHEET S5D4100X 5.9.6.2 If there is no space on the left No border shall be created on the left if there is no space on the left of the font. Border is not created if the font area has no space. Figure 22. When there is no Space on the Left In this case, the border can be created through modification of the font. (Shifting the entire font to the right by 1 pixel to create a space of 1 pixel on the left of the font) 1 Pixel space Figure 23. Creating Border on the Left Space 32 DATASHEET S5D4100X 5.9.7 Blink Control OSD blink function can be controlled by font. The font blink function is enabled when Register BL_NTRA (Blink or NoTone Raster) is 1 and the Display RAM BLNK is 1 Register BLNK_SEL is used for adjustment of blink duty while the blink function is enabled. Table 3. Blink Control BLNK_SEL Blink Off Blink On 0 0.5 sec 0.5 sec 1 1 sec 0.5 sec 2 0.5 sec 1 sec 3 1 sec 1 sec 4 1.5 sec 1.5 sec 5 2 sec 1 sec 6 1 sec 2 sec 7 2 sec 2 sec Register BLNK_C supports color inversion of the character to be blinked. Once Register BLNK_C is set, the complementary color of the raster color of the current font is displayed on the character area during the blink off period, and if reset, the raster color is displayed. 33 DATASHEET S5D4100X 5.9.8 Multi-Colored Font (MCF) control OSD displays icons in multi-color. 8 (3-bit) or 4 (2-bit) multi-color fonts are available. Each multi-colored font consists of 3 colors attribute RAM fonts as shown in the following figure. The three fonts make a multi-colored font with the OR operation. Accessing a multi-colored font is performed via addressing of the first font. MCF starts from the point of font number 1 to the point in which Register N_MCF (0x0109[6:0]) becomes tripled (MCF_SEL = 0) or doubled (MCF_SEL = 1). If Register N_MCF is 4, font numbers 1 ~ 4 are R, 5 ~ 8 are G, and 9 ~ 12 are B-color fonts. The multi-colored font can be accessed via addressing of 1~4. For example, if Register N_MCF is 3, and the display RAM addresses 1, MCF uses 1 for the first font, 4 for the second font, and 7 for the third font. A pixel from each of the three fonts make a CHAR part via the OR operation. The three pixels are used as the selection [2:0] for Registers LUT1~LUT7. If the pixels are "000", the color of Register LUT0 is recognized as the raster, rather than the color of Register LUT0, and the attribute of the first font raster color is used. In other words, one of the 16 LUTs can be selected. If the G/B-color font is accessed instead of MCF R-color font, it is not recognized as MCF, but the Standard Font (SF) is used. B 1 1 B 0 LUT7 LUT4 B B LUT6 LUT2 LUT3 1 B LUT1 4 7 Masked data of mulit-color font : Font Number 1 Displayed font : Font Number 1 Figure 24. OSD Multicolor Font Structure 34 DATASHEET S5D4100X 5.9.9 Blank Font Control If DSRAM font address attribute is 8’h00, 0x4000h of FTRAM is accessed and displayed, and only the input image is displayed in the OSD region. FTRAM 0x2000h is called as a blank font, and provides some useful function. For example, as the actual ODS window size is 30x10, the user can display this OSD window size as 20x5 by using blank fonts in the other area except 20x5. Defined OSD region Blank Font area Actually displayed OSD region Figure 25. OSD Region Definition 35 DATASHEET S5D4100X 5.9.10 OSD RAM MICOM Interface ADDR[13:0] DATA[7:0] WEN ADDR[9:0] OSD DISPLAY_RAM Control DATA [15:0] Font_RAM Control ADDR DSRAM_ [8:0] WEN Addr 0 Unused 1 INT or CH_BD CH_TP_ BLNK FC ADDR HT_EN SH_EN RA_EN 2 INT or CH_BD CH_TP_ BLNK FC ADDR HT_EN SH_EN RA_EN DSRAM_ DOUT DATA [11:0] INT or CH_BD CH_TP_ BLNK FC ADDR HT_EN SH_EN RA_EN 450 INT or CH_BD CH_TP_ BLNK FC ADDR HT_EN SH_EN RA_EN 13 FTRAM_DOUT 2 Font RAM 449 14 ADDR FTRAM_ [12:0] WEN User Definable RAM FONT Data User Definable RAM FONT Data Addr 0 1 Display RAM 15 OSD Logic 12 11~8 7~0 User Definable RAM FONT Data User Definable RAM FONT Data 4606 4607 11 10 9 2 1 0 18*256 font Figure 26. OSD RAM Structure The OSD RAM is divided into the font RAM and the display RAM. The font RAM stores 256 fonts of 12*18. The display RAM designates the font to be displayed on the screen, and the features including color. 36 DATASHEET S5D4100X 5.9.10.1 Font RAM Structure The font RAM has 9216 (4608*2) addresses from 0x4000 to 0x63FF, assigning 36 addresses per font (9216/256 = 36). Since the host interface transmits the data by 8 bits to the font RAM, in order to configure a font of 12*18 as shown in the following figure 27, an even numbered address and an odd numbered address are assigned to the upper 4 bits and the lower 8 bits of a line (12 bits), respectively. FONT RAM To even numbered address To odd numbered address 1 0x4024 2 0x4025 3 0x4026 4 0x4027 5 0x4028 6 0x4029 7 0x402A 8 0x402B 9 0x402C 10 0x402D 11 0x402E 12 0x402F 13 0x4030 14 0x4031 15 0x4032 16 0x4033 17 0x4034 18 0x4035 0x4036 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 0x4037 0x4038 X X X X 0x4039 0x403A X X X X 0x403B 0x403C X X X X 0x403D 0x403E X X X X 0x403F 0x4040 X X X X 0x4041 0x4042 X X X X 0x4043 0x4044 X X X X 0x4045 0x4046 X X X X 0x4047 Figure 27. OSD Font Structure 37 DATASHEET S5D4100X 5.9.10.2 Display RAM Structure The display RAM has 900 addresses from 0x2000 to 0x2383. In other words, 2 addresses are assigned to a display RAM cell (900/450 = 2). Since the host interface transmits the data by 8 bits, in order to configure a display RAM cell of 16 bits, 2 addresses should be transmitted. A display RAM cell is composed as below. In case of a display Ram cell [15] bit, the INTENSITY function or the HALF_TONE function is selected in accordance with Register DSRAM_ATTR_CON(0x010C[1]). The remaining one attribute is selected between Register G_INT(0x010C[0]) and Register G_HT_EN(0x010B[5]). Font RAM 12 Display RAM Font Number 0x2000 Font Number 3 0x2001 0 18 0x2002 Font Number 2 0x2003 0x2004 Font Number 3 A B C 0x2005 0x2006 1 Font Number 0 0x2007 0x2008 Font Number 25 0x2009 0x200A Font Number 44 0x200B 2 0x200C Font Number 100 0x200D 0x200E Font Number 68 0x200F 0x2010 3 Font Number 255 0x2011 0x2012 Font Number 210 0x2013 ... ... 0x2382 Font Number 1 INT or HT BDSH BLINK TPRA & 0x2383 FC Even Address 255 Odd Address Font Number Display RAM Cell Figure 28. OSD Font RAM & Display RAM Structure 38 DATASHEET S5D4100X MICOM INTERFACE Data, Addr, Wen OSD RGB out Display Ram Control Font Ram Control Display Ram Font Ram OSD Logic Figure 29. OSD System Block Diagram 39 DATASHEET S5D4100X 5.10 CONTRAST CONTROL The contrast block is designed to control R/G/B of Register BLACK (0x0081~0x0083), Register CONTRAST (0x0084~0x0086) and Register BRIGHTNESS (0x0087~0x0089). The block can also control them individually based on R. Black level and Brightness play the role of offset, and Contrast plays the role of gain. Each pixel value is calculated as below. Rout = [Rin - Blacklevel(Red)] * Contrast(Red) + Brightness(Red) Gout = [Gin - Blacklevel(Green)] * Contrast(Green) + Brightness(Green) Bout = [Bin - Blacklevel(Blue)] * Contrast(Blue) + Brightness(Blue) 5.11 GAMMA The gamma correction block performs correction of the characteristics of the TFT-LCD panel. The block divides the input signal level into sections, generates the non-linear characteristic curve, and performs the gamma correction by substituting each section with linear function through linear interpolation. In other words, the block divides input into sections, and varies the output of each section to transform the characteristic curve for gamma correction. The input signal has the data level of 8 bits, and is equally divided into 32 sections with the interval of 8 between the sections. The block receives the output value for each equally divided level from MCU, performs non-linear gamma correction, and for the values between the levels, the block performs gamma correction via linear interpolation. Y RYAV32 RYAV31 RYAV30 RYAV4 RYAV3 RYAV2 RYAV1 0 8 16 24 32 . . . . X 240 248 255 Figure 30. Gamma Graph 40 DATASHEET S5D4100X 5.12 HOST INTERFACE The host interface supports 3 protocols (6-Wire Host Interface Protocol, 3-Wire Host Interface Protocol and I2C Host Interface Protocol), and also supports the supplementary functions PWM and GPO. In order to use I2C Host Interface Protocol, HIF pin should be set to HIGH, and in order to use 3-Wire Host Interface Protocol, HIF pin should be set to LOW. To select 6-Wire Host Interface, as HIF = LOW, Register SIX_WIRE_ON should be set to HIGH. 5.12.1 6-wire Host Interface Protocol S5D4100X supports data communication based on 6-WIRE Host Interface Protocol. The address used is 15 bits, and the data depth is 8 bits. 6-WIRE is active in the section where the SCSN line is LOW. The upper 1-bit of the initial 16 bits indicates R/W (R: HIGH, W: LOW), and the remaining 15 bits indicate the address. The write (or read) data are after the address and before stop. In case of address or write data, the master (MCU) should send the data at the SCL rising edge, and the slave (S5D4100X) should receive the data at the SCL falling edge. On the contrary, for read data, the slave sends the data at the SCL falling edge, and the master receives the data at the SCL rising edge. Timing Chart (Data sequence in write/read of n registers) Remark MS: MASTER Send to SLAVE MR: MASTER Receive SS: SLAVE Send to MASTER SR: SLAVE Receive Start Stop SCSN SCL SDA3 W ADDR[11] ADDR[7] ADDR[3] DATA1[7] DATA1[3] DATA2[7] DATAn[3] SDA2 ADDR[14] ADDR[10] ADDR[6] ADDR[2] DATA1[6] DATA1[2] DATA2[6] DATAn[2] SDA1 ADDR[13] ADDR[9] ADDR[5] ADDR[1] DATA1[5] DATA1[1] DATA2[5] DATAn[1] SDA0 ADDR[12] ADDR[8] ADDR[4] ADDR[0] DATA1[4] DATA1[0] DATA2[4] DATAn[0] MS SR MS SR MS SR MS SR MS SR MS SR MS SR SR Figure 31. 6-wire Host Interface Write Data Sequence (Sending n data) 41 DATASHEET S5D4100X Start Stop SCSN SCL SDA3 R ADDR[11] ADDR[7] ADDR[3] DATA1[7] DATA1[3] DATA2[7] DATAn[3] SDA2 ADDR[14] ADDR[10] ADDR[6] ADDR[2] DATA1[6] DATA1[2] DATA2[6] DATAn[2] SDA1 ADDR[13] ADDR[9] ADDR[5] ADDR[1] DATA1[5] DATA1[1] DATA2[5] DATAn[1] SDA0 ADDR[12] ADDR[8] ADDR[4] ADDR[0] DATA1[4] DATA1[0] DATA2[4] DATAn[0] MR MR MS SR MS SR MS SR MS SR SS MR SS MR SS Figure 32. 6-wire Host Interface Read Data Sequence (Reading n data) 42 DATASHEET S5D4100X 5.12.2 I2C Host Interface Protocol S5D4100X supports data communication based on I2C Protocol. The slave address which corresponds to the device ID is 7 bits (binary “0000101”). The address used is 15 bits, and the data depth is 8 bits. Therefore, in order to access an address, the product indexes 2 bytes (Address MSB, Address LSB), and uses the 1-byte data depth. Since the address bits are 15 bits, the 1 byte for address MSB is “X A14 A13 A12 A11A10 A9 A8”, and the 1 byte for address LSB is Binary “A7 A6 A5 A4 A3 A2 A1 A0”. 1) Timing Chart (Data sequence in write/read of n registers) SDA Device ID W Address MSB SCL Start SDA ACK ACK Address LSB Data 1 SCL ACK SDA ACK Data 2 Data n SCL ACK Stop Figure 33. I2C Host Interface Write Data Sequence SDA Device ID Address MSB R SCL Start SDA ACK ACK Address LSB Data 1 SCL ACK SDA Data 2 ACK Data n SCL ACK Stop Figure 34. I2C Host Interface Read Data Sequence In the above timing chart, the device ID (slave address) and read/write byte are as follows. 43 DATASHEET S5D4100X 0 0 0 0 1 0 1 R/W DEVICE ID Address is 15 bits, and for the remaining upper 1 bit of the address MSB can be 0 or 1 (Don't Care: X). 2) Example Write to one register Send Start Signal Send Device ID Byte (R/W Bit = LOW) Send Address MSB Send Address LSB Send Data to Address Send Stop Signal Write to four consecutive registers Send Start Signal Send Device ID Byte (R/W Bit = LOW) Send Address MSB Send Address LSB Send Data 1 to Address Send Data 2 to (Address + 1) Send Data 3 to (Address + 2) Send Data 4 to (Address + 3) Send Stop Signal Read from one register Send Start Signal Send Device ID Byte (R/W Bit = HIGH) Send Address MSB Send Address LSB Receive Data from Address Send Stop Signal Read form four consecutive control registers Send Start Signal Send Device ID Byte (R/W Bit = HIGH) Send Address MSB Send Address LSB Receive Data 1 from Address Receive Data 2 from (Address + 1) Receive Data 3 from (Address + 2) Receive Data 4 from (Address + 3) Send Stop Signal 44 DATASHEET S5D4100X 5.12.3 3-wire Host Interface Protocol S5D4100X supports data communication based on 3-WIRE Host Interface Protocol. The address used is 15 bits, and the data depth is 8 bits. 3-WIRE is active in the section where the SCSN line is LOW. The upper 1 bit of the initial 16 bits indicates R/W (R: HIGH, W: LOW), and the remaining 15 bits indicate the address. The write (or read) data are after the address and before stop. In case of address or write data, the master (MCU) should send the data at the SCL rising edge, and the slave (S5D4100X) should receive the data at the SCL falling edge. On the contrary, for read data, the slave sends the data at the SCL falling edge, and the master receives the data at the SCL rising edge. Remark MS: MASTER Send to SLAVE MR: MASTER Receive SS: SLAVE Send to MASTER SR: SLAVE Receive MS MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR SR Start Stop SCSN SCL W SDA ADDRESS DATA 15 bits Address 8 bits Data Figure 35. 3-wire Host Interface Write Data Sequence MS MS SR MS SR MS SR MS SR MS SR MS SR MS SR MS SR SS SR SS MR SS MR SS MR SS MR SS MR Start SS MR SS MR SS MR MR Stop SCSN SCL SDA R ADDRESS 15 bits Address DATA 8 bits Data Figure 36. 3-wire Host Interface Read Data Sequence 45 DATASHEET S5D4100X 5.12.4 Pulse Width Modulation (PWM) PWM lets the high and low signal to have a regular width. S5D4100X has 2 PWMs; PWM0 and PWM1. To use the PWMs, Register PWM0_SEL and PWM1_SEL should be set to HIGH. In order to set PWM, PWM_PRE_SCALE should be set first. Register PWM_PRE_SCALE is 0 ~ 3, which makes PRE_SCALER to generate the clocks of bypass, 2-division, 4-division and 8-division, respectively, of CKOSC. PWM0/1 use the PRE_SCALER output as the clock, and send the HIGH signals in the unit of 256 clock for the value set in Register PWM_DATA0/1. If the final Register PWM_EN in the last output buffer is 1, the signal generated in PWM0/1 is displayed, and if it is 0, the function is disabled, and LOW signal is sent continuously. Then the signal is multiplexed by Register PWM0/1_SEL. CKOSC PRE_SCALE PWM0 GPO0 PWM_PRE_SCALE 1 0 PWM0 PWM_DATA0 PWM0_SEL PWM1 1 0 PWM1 GPO1 PWM_DATA1 PWM_EN PWM1_SEL Figure 37. PWM 5.12.5 General Purpose Outputs (GPO's) General Purpose Output (GPO) sends HIGH or LOW signal to Pins GO0~GO5 for the value set in GPO0 ~ GPO5 when Register SERIAL_ON is HIGH, and MCU controls the register. The product has 6 GPOs; GPO0 ~ GPO5. GPO0 and GPO1 can be sent to Pins PWM0/PWM1, regardless of Register SERIAL_ON, if Register PWM0_SEL and PWM1_SEL are LOW. 46 DATASHEET S5D4100X 5.13 DATA OUTPUT FORMATTER & SERIAL INTERFACE 5.13.1 Output Formatter S5D4100X supports output of various formats to meet various interfaces. — R/G/B Parallel Output for RGB-Pixel Panel — R/G/B Serial Output for RGB-Dot-Pixel LCD Panel — ITU-R656, 8-Bit 4:2:2 Data with Embedded Sync Output for External Application 5.13.2 R/G/B Parallel output S5D4100X sends 24-bit data to LCD panel via Output Pins RO0~RO7, GO0~GO7 and BO0~BO7, by setting Register SERIAL_ON to LOW for RGB-Pixel LCD Panel (Figure 38). ODD Line R G B R G B R G B R G B R G B R G B EVEN Line R G B R G B R G B R G B R G B R G B ODD Line R G B R G B R G B R G B R G B R G B EVEN Line R G B R G B R G B R G B R G B R G B Figure 38. Parallel interface Panel Architecture The product should support parallel data interface with the panel by sending 24-bit R/G/B data (Figure 39) in 1 clock in the R/G/B parallel output Interface mode. CLOCK Horizontal Active R Data[7:0] R1 R2 R3 R4 R5 R6 R7 ... G Data[7:0] G1 G2 G3 G4 G5 G6 G7 ... B Data[7:0] B1 B2 B3 B4 B5 B6 B7 ... Parallel Output Interface Data (24-bit) Figure 39. Parallel Output Data 47 DATASHEET S5D4100X 5.13.3 RGB Serial output S5D4100X sends the data in R/G/B serial output format through R Channel (OUTPUT PIN RO0~RO7) to correspond to RGB-Dot-Pixel LCD Panel (Figure 40). The product can send data to meet various delta type panel spec by setting Register SERIAL_ON HIGH, and Register ODD_SPL and EVEN_SPL. The R, G, B dot layout in Figure 40 may be changed depending on the panel spec. R ODD Line EVEN Line G B R ODD Line EVEN Line G B R G G R B G B G B R R B G R G .......... B B R .......... .......... .......... Figure 40. Delta Type Panel Architecture Unlike the existing parallel interface panel (Figure 40) in which R/G/B data are sent in 1 clock (24-bit Parallel Output Interface Data), in the serial output interface panel, only one data (8-bit serial interface data) out of R/G/B data can be sent in 1 clock. (See Figure 41) CLOCK Horizontal Active R Data[7:0] R1 R2 R3 R4 R5 R6 R7 ... G Data[7:0] G1 G2 G3 G4 G5 G6 G7 ... B Data[7:0] B1 B2 B3 B4 B5 B6 B7 ... Serial Output Data[7:0] R1 G2 B3 R4 G5 B6 R7 u Internal Signal Processing Data (24-bit) Serial Output Interface Data (8-bit) Figure 41. Serial Output Data 48 DATASHEET S5D4100X This table shows the sequence of R, G, B dot for register setting. Register HMODE = 1 (Based on DE Rising) Register HMODE = 0 (Based on HS Falling) R, G, B output order R, G, B output order 000 R ÆG ÆB 001 G ÆB ÆR 010 B ÆR ÆG R ÆG ÆB or G ÆB ÆR or B ÆR ÆG depending on the relationship between HS and DE 011 Not use 100 R ÆB ÆG 101 G (R (B 110 B (G (R 111 Not use Register ODD_SPL/ Register EVEN_SPL Not use R (B (G or G (R (B or B (G (R depending on the relationship between HS and DE Not use In the delta type panel in Figure 40, EVEN Line is the vertically same timing data with ODD Line, but is deviated by 0.5 Dot due to the panel structure. In order to improve the delta structure display quality, set Register 0X000E[0] to 1, and set the compensation type of 0x000E[1]. If (Compensation Type = 0) then, Compensated Pixel = (Previous Pixel + Current Pixel)/2, if (Compensation Type = 1) then, Compensated Pixel = (Current Pixel + Next Pixel)/2 5.13.4 ITU-656 output S5D4100X sends data in serial output format to the panel via the R channel, and at the same time the ITU-R656 data to Channel B (OUTPUT PIN BO0 ~ BO7) to use another application. Various path signals may be transformed to ITU-656 format in accordance with Register EN_656OUTSEL when Register SERIAL_ON and Register ENC_ON are HIGH. 49 DATASHEET S5D4100X 5.14 POWER DOWN CONTROL Power Down function is implemented as turning off each block and output pad. In case of Power Down Enable, you must set register value as below. — Block Enable Register GBI_ON(0x0001[5]) = 0 GBO_ON(0x0001[4]) = 0 BU_ON(0x0001[3]) = 0 OSD_ON(0x0001[2]) = 0 ENC_ON(0x0001[1]) = 0 SC_ON(0x0001[0]) = 0 — PLL Enable Register PLL_PW_DN(0x000B[4]) = 1 — Pad Output Enable Register PD_CTRL(0x0019[3]) = 1 RO_CTRL(0x0019[2]) = 1 GO_CTRL(0x0019[1]) = 1 BO_CTRL(0x0019[0]) = 1 In case of Power Down disable, you must set the value for before. 50 DATASHEET S5D4100X 6. REGISTER MAP Legend Address Bits No. Register Name Address Name (Default Value) R/W Function Description 6.1 GLOBAL 0x0000 7:6 GLOBAL_BLOCK_CONTROL1 (Default: 0x 08) R/W Reserved ITU-656 Input Channel Select 5 ITU656_CH 0: Uses the pins YI7~YI0 for 656 data input, VCKI pin for clock input, and VD pin for VS input. 1: Uses the pins CI7~CI0 for 656 data input, HD pin for clock input, and FLD pin for VS input. Dither Block ON/OFF Select 4 DTH_ON 0: Dither OFF 1: Dither ON Serial Output Mode ON/OFF 3 SERIAL_ON 0: Sends 24-bit R/G/B data to the pins RO7~RO0 / GO7~GO0 / BO7~BO0 1: Sends 8-bit serial data to RO7~RO0 2 TEST_PAT_ON The ON/OFF register determines whether to use the internally created test pattern as the scaler input regardless of the input image. 0: Test Pattern OFF 1: Test Pattern ON Back Ground Color ON/OFF Register 1 BG_COLOR_ ON If Back Ground Color is ON, a single color image is entered to the gamma block to display the single color image on the screen regardless of the input image. The color is selected by the values 0x008A~0x008C. 0: Back Ground Color OFF 1: Back Ground Color ON Pseudo Sync RUN Mode 0 FREE_RUN The ON/OFF register determines whether to display Pseudo Sync if no Sync is received to S5D4100X (in case of 656, when no data is received). 0: Pseudo Sync Output OFF 1: Pseudo Sync Output ON 51 DATASHEET S5D4100X 0x0001 7 SIX_WIRE_ON 6 GLOBAL_BLOCK_CONTROL2 (Default: 0x 3F) R/W If HIF Pin is 1, the default value is 3-wire. In order to use Six-Wire, SIX_WIRE_ON should be set to 1. 0: 3-WIRE MODE 1: 6-WIRE MODE Reserved Input Domain Clock ON/OFF 5 GBI_ON 0: Input Domain Clock OFF 1: Input Domain Clock ON Output Domain Clock ON/OFF 4 GBO_ON 3 BU_ON 2 OSD_ON 0: Output Domain Clock OFF 1: Output Domain Clock ON BOOSTUP Clock ON/OFF 0: BOOSTUP Clock OFF 1: BOOSTUP Clock ON OSD Clock ON/OFF 0: OSD Clock OFF 1: OSD Clock ON ENCODER Clock ON/OFF 1 ENC_ON 0: ENCODER Clock OFF 1: ENCODER Clock ON SCALER Clock ON/OFF 0 SC_ON 0x0002 0: SCALER Clock OFF 1: SCALER Clock ON GLOBAL_TEST_PATTERN_CONTROL (Default: 0x 3F) R/W YUV TEST Domain Select 7 TP_YCbCr_ON If TP_YUV_ON is 1, TEST_PATTERN is created in the YCbCr domain, and if TP_YUV_ON is 0, TEST_PATTERN is created in the RGB domain. 0: RGB Domain Select 1: YCbCr Domain Select Tests Sync ON 6 TP_SYNC_ON If TEST_PAT_ON and TP_SYNC_ON, the internally created test sync is used as the input for the scaler. Timing for test sync is described in Figure 11. 0: Test Sync OFF 5:0 52 TP_RGB_ON 1: Test Sync ON Test pattern RGB ON/OFF Register 2 bits are assigned and controlled for RGB respectively. [5:4] - R , [3:2] - G , [1:0] – B See Table 5.1 for description on the 2 bits. If TP_YCbCr_ON is 1, YCbCr is controlled instead of RGB. DATASHEET S5D4100X 0x0003 GLOBAL_TEST_PATTERN_SELECT (Default: 0x 00) R/W Test Pattern Select 7:0 TP_SEL 0x0004 The register is used for selection of test pattern. Figure 12 describes the register, and Figure 13 shows the types of patterns available. GLOBAL_TEST_PATTERN_CONST_LEVEL_CONTROL (Default: 0x 00) R/W Constant Test Pattern Level Control 7:0 TP_CONST_ LEVEL 0x0005 The register is enabled when Pattern No. 6 is selected in TP_SEL. The register is used to select a specific level. Details are described in 5.5.2 Test Pat. Gen. GLOBAL_TEST_PATTERN_CONST_WIDTH_CONTROL (Default: 0x 00) R/W Constant Test Pattern Width Control 7:0 TP_CONST_ WIDTH 0x0006 The register is enabled when Pattern No. 6 is selected in TP_SEL. The register is used to select a width of each level. Details are described in 5.5.2 Test Pat. Gen. GLOBAL_INPUT_CLOCK_AND_MASK_CONTROL (Default: 0x 03) R/W Input Clock Delay 7:4 CKI_DLY The register delays the clock selected by ITU656_CH. The most significant bit of the 4 bits is the inversion signal. Changeable 2-Times Scaler Output Clock Phase 3 CKI2_PHASE 2 CKI_SEL 0: Normal 1: Phase Reverse Input Clock Select (See Figure 7 Clock System) 0: CKOSC Select 1: VCK Select Input Blank Data Mask ON/OFF 1 BLANK_MASK_ ON The register masks the blank area to black. 0: Mask OFF 1: Mask ON Input Rolling Data Mask ON/OFF 0 ROLLING_ MASK_ON The register masks the unnecessary image displayed due to rolling at moving of screen position. 0: Mask OFF 1: Mask ON 53 DATASHEET S5D4100X 0x0007 GLOBAL_OUTPUT_CLOCK_AND_SYNC_CONTROL (Default: 0x 00) R/W Output Clock Delay 7:4 CKO_DLY 3 The register controls delay for the output clock sent to the PCKO pin. The most significant bit of the 4 bits is the inversion signal. Reserved Output Date Enable Signal (PDEO) Polarity 2 OPOL_DE 0: HIGH Active 1: LOW Active Output VS (PVSO) Polarity 1 OPOL_VS 0 OPOL_HS 0: LOW Active 1: HIGH Active Output HS (PHSO) Polarity 0x0008 0: LOW Active 1: HIGH Active GLOBAL_CLOCK_AND_SYNC_CONTROL (Default: 0x 04) R/W Encoder Clock Phase Control 7:4 M2CK_PHASE The register controls the clock phase when V601 is 1. It is controlled in the 2MUL block in Figure 7. CKOSC Clock Select 3 CKOSC_SEL 2:0 PDEO_DLY 0: XI Pin 1: The clock selected by ITU656_CH (VCK or VD Pin) PDEO Delay Output Data Enable Signal (PDEO Pin) 0x0009 7 GLOBAL_GPO (Default: 0x 40) Reserved CKO Domain Clock Select (See Figure 7 Clock System) 54 6 CKO_SEL 5 GPO5 General Purpose Output #5 (See 5.12.4) 4 GPO4 General Purpose Output #4 (See 5.12.4) 3 GPO3 General Purpose Output #3 (See 5.12.4) 2 GPO2 General Purpose Output #2 (See 5.12.4) 1 GPO1 General Purpose Output #1 (See 5.12.4) 0 GPO0 General Purpose Output #0 (See 5.12.4) 0: CKOSC Clock 1: PLL output Clock R/W DATASHEET S5D4100X 0x000A 7 VFP_CKO_DN 6:0 VDOWN 0x000B 7:6 PWM_PRE_ SCALE GLOBAL_VFP_CLOCK_DOWN (Default: 0x 01) R/W The ON/OFF signal used to determine whether to fix the PCKO clock in VFP section to LOW. 0: Normal mode 1: Clock Down The register designates the number of lines in which PCKO clock in VFP section should not be fixed to LOW when VFP_CKO_DN is HIGH. GLOBAL_PWM_CONTROL (Default: 0x 20) R/W Determines the level of PWM duty to divide based on CKOSC clock when using the pulse width modulation 00: CKOSC 01: 2_Divided CKOSC 10: 4_Divided CKOSC 11: 8_Divided CKOSC Pulse Width Modulation Enable 5 PWM_EN 4 PLL_PW_DN 0: Disable (LOW Output Signal) 1: Enable (PWM Output Signal) PLL Power Down 3:2 0: Disable 1: Enable Reserved 1 PWM1_SEL PWM1 is sent if PWM1_SEL is HIGH, or GPO1 signal if it is LOW. 0 PWM0_SEL PWM0 is sent if PWM0_SEL is HIGH, or GPO0 signal if it is LOW. 0x000C 7 PWM_DATA0 0x000D 7 PWM_DATA1 GLOBAL_PWM_DATA0 (Default: 0x 00) R/W Pulse Width Modulation 0 Creates, with the 256 clocks durations created by PWM_PRE_SCALE, the pulse of HIGH for the clock durations set in PWM_DATA0 and of LOW for the remaining clock durations. GLOBAL_PWM_DATA1 (Default: 0x 00) R/W Pulse Width Modulation1 Creates, with the 256 clocks durations created by PWM_PRE_SCALE, the pulse of HIGH for the clock durations set in PWM_DATA1 and of LOW for the remaining clock durations. 55 DATASHEET S5D4100X 0x000E 7:6 GLOBAL_SERIAL_CONTROL1 (Default: 0x 27) R/W Reserved Selects the reference of serial data between HACT and HS. 5 HMODE_SEL Since R/G/B of the serial format data should be transmitted in series, the internal counter is used. The register determines if the counter is started for HACT or HS. This indicates the section at which the valid data is transmitted via the actual serial output formatter. 0: HS 1: HACT 4 3:2 LINE_INV DATA_DLY The signal exchanges ODD line and EVEN line. LINE_INV is used for vertical inversion display to set the color. This register is used to give delay on the data in serial interface when HS is fixed. This is added to meet various panel structures. The default is DATA_DLY = [ 01]. 1 0 56 COMP_TYPE EVEN_COMP_ SEL Depending on the panel structure, the EVEN line may starts earlier/later than ODD line by 0.5 pixel. Therefore, compensation type can be divided as follows. 0: Compensation between the previous pixel and the current pixel 1: Compensation between the current pixel and the next pixel Although the EVEN Line is of the same timing data with the ODD Line, but it may be deviated by 0.5 Dot due to the panel structure. In order to improve the display quality of the delta structure, set Register 0X000E[0] to 1, and set the compensation type of 0x000E[1]. DATASHEET S5D4100X 0x000F 7 GLOBAL_SERIAL_CONTROL2 (Default: 0x01) R/W Reserved Sends the data in the ODD line in the following sequence. If 0X000F[6] = 0, …→ R → G → B → R → G → B → … If 0X000F[6] = 1, …→ R → B → G → R → B → G → … 6:4 ODD_SPL The first data of the line is determined in accordance with 0X000F[5:4]. If HMODE_SEL = HIGH, the first data are ODD_SPL[1:0]= [00] → R, ODD_SPL[1:0]= [01] → G, ODD_SPL[1:0]= [10] → B. If HMODE_SEL =LOW, because the counter is fixed, the first data may vary. 0x000F[5:4] = [11] is not used. 3 Reserved Sends the data in the EVEN line in the following sequence. If 0X000F[2] = 0, …→ R → G → B → R → G → B → … If 0X000F[2] = 1, …→ R → B → G → R → B → G → … 2:0 EVEN_SPL The first data of the line is determined in accordance with 0X000F[1:0]. If HMODE_SEL = HIGH, the first data are EVEN_SPL[1:0]= [00] → R, EVEN_SPL[1:0]= [01] → G, EVEN_SPL[1:0]= [10] → B. If HMODE_SEL = LOW, because the counter is fixed, the first data may vary. 0x000F[1:0] = [11] is not used. 0x0010 7:4 GLOBAL_OUTPUT_MASK_HMIN_MSB (Default: 0x 08) Reserved 3 DEMODE Horizontal Output MASK Mode Select 0: SYNC MODE 1: DE MODE 2:0 HOUTMIN[10:8] Horizontal Output MASK min number 0x0011 2:0 HOUTMIN[7:0] 0x0012 7:3 2:0 GLOBAL_OUTPUT_MASK_HMIN_LSB (Default: 0x 00) R/W Horizontal Output MASK min number GLOBAL_OUTPUT_MASK_HMAX_MSB (Default: 0x 00) R/W Reserved HOUTMAX [10:8] 0x0013 2:0 R/W HOUTMAX[7:0] Horizontal Output MASK max number GLOBAL_OUTPUT_MASK_HMAX_LSB (Default: 0x 00) R/W Horizontal Output MASK max number 57 DATASHEET S5D4100X 0x0014 7:3 2:0 VOUTMIN[10:8] VOUTMIN[7:0] 0x0016 7:3 2:0 Vertical Output MASK min number GLOBAL_OUTPUT_MASK_VMIN_LSB (Default: 0x 00) VOUTMAX[10:8] VOUTMAX[7:0] 0x0018 7 HS_DN_ON 6:0 HS_DN 0x0019 Vertical Output MASK min number GLOBAL_OUTPUT_MASK_VMAX_MSB (Default: 0x 00) GLOBAL_OUTPUT_MASK_VMAX_LSB (Default: 0x 00) PD_CTRL RO_CTRL GLOBAL_VFP_HS_DOWN (Default: 0x 00) GO_CTRL 0 BO_CTRL 0: Normal mode 1: HS down The register designates the number of lines in which PHSO in VFP section should not be fixed to LOW when HS_DN_ON is HIGH. GLOBAL_PAD_CONTROL (Default: 0x00) 0: Output enable 1: Output Disable 0: Output enable 1: Output Disable 0: Output enable 1: Output Disable BO0 ~ BO7 Output Enable Signal 58 R/W The ON/OFF signal used to determine whether to fix the PHSO in VFP section to LOW. GO0 ~ GO7 Output Enable Signal 1 R/W Vertical Output MASK max number RO0 ~ RO7 Output Enable Signal 2 R/W Vertical Output MASK max number PVSO/PHSO/PDEO/PCKO Output Enable Signal 3 R/W Reserved 0x0017 2:0 R/W Reserved 0x0015 2:0 GLOBAL_OUTPUT_MASK_VMIN_MSB (Default: 0x 00) 0: Output enable 1: Output Disable R/W DATASHEET S5D4100X 6.2 TIMING GENERATOR 0x0020 TG_TIMING_CONTROL (Default: 0x84) R/W Auto TOTAL setting register 7 AUTO_TOTAL Determines whether to use the internally calculated value or the register setting for the addresses 0x0021 ~ 0x0025. 1: Auto Set (Internally calculated value) 0: Manual Set (Register setting) 6 HVSO_DET 5 For inversion, resets and detects TG sync creation to create output sync. Reserved Sets the TG detection start frame (1 ~ 4 Frame). 4:3 DET_FRAME 2 Sets the number of frames to be referred for detection in order to create normal sync after inversion of HVSO_DET. Reserved PLL PFD Input Signal Select (See Figure 16) 1:0 PLL_FIN_SEL 0: Pre-Divider Output 1: Not Used 2, 3: HS 0x0021 7:0 ADDED_LINE TG _ADDED_LINE(Default: 0x 01) Sets the difference value between the odd and the even field. 0x0022 7:3 2:0 TG _INPUT_HTOTAL_MSB (Default: 0x 03) HTOTAL[10:8] Horizontal Input Total Pixel Value HTOTAL[7:0] TG _INPUT_HTOTAL_LSB (Default: 0x 5A) 7:3 TG _INPUT_VTOTAL_MSB (Default: 0x 01) R/W Reserved VTOTAL[10:8] 0x0025 7:0 R/W Horizontal Input Total Pixel Value 0x0024 2:0 R/W Reserved 0x0023 7:0 R/W VTOTAL[7:0] Vertical Input Total Pixel Value TG _INPUT_VTOTAL_LSB (Default: 0x 07) R/W Vertical Input Total Pixel Value 59 DATASHEET S5D4100X 0x0026 7:3 2:0 H_STR[10:8] H_STR[7:0] 0x0028 7:3 2:0 Horizontal Active Input Start Point TG _INPUT_H_START_LSB (Default: 0x86) Horizontal Active Input Start Point TG _INPUT_V_START_MSB (Default: 0x 00) V_STR[10:8] V_STR[7:0] TG _INPUT_V_START_LSB (Default: 0x 14) HOFP HOSW TG _HOFP (Default: 0x 2B) 2:0 TG _HOSW (Default: 0x 2E) HOBP [10:8] HOBP[7:0] 0x002E 7:0 VOFP[7:0] 0x002F 7:0 60 R/W Horizontal Output Sync Width TG L_HOBP_MSB (Default: 0x 00) R/W Reserved 0x002D 7:0 R/W Horizontal Output Front Porch 0x002C 7:3 R/W Vertical Active Input Start Point 0x002B 7:0 R/W Vertical Active Input Start Point 0x002A 7:0 R/W Reserved 0x0029 7:0 R/W Reserved 0x0027 7:0 TG _INPUT_H_START_MSB (Default: 0x 00) VOSW[7:0] Horizontal Output Back Porch TG_HOBP_LSB (Default: 0x 32) R/W Horizontal Output Back Porch TG_VOFP (Default: 0x 01) R/W Vertical Output Front Porch TG_VOSW (Default: 0x 03) Vertical Output Front Porch R/W DATASHEET S5D4100X 0x0030 7:3 2:0 TG_HIAS_MSB (Default: 0x 02) Reserved HIAS [10:8] Horizontal Input Active Size 0x0031 7:0 HIAS[7:0] TG_HIAS_LSB (Default: 0x D0) 7:3 TG_VIAS_MSB (Default: 0x 00) VIAS [10:8] Vertical Input Active Size VIAS[7:0] TG_VIAS_LSB (Default: 0x F0) 7:3 TG_HOAS_MSB (Default: 0x 00) HOAS [10:8] Horizontal Output Active Size HOAS[7:0] TG_HOAS_LSB (Default: 0x E0) 7:3 VOAS [10:8] VOAS[7:0] 0x0038 7:0 PLL_P[7:0] 0x0039 7:0 TG_VOAS_MSB (Default: 0x 00) R/W Reserved 0x0037 7:0 R/W Horizontal Output Active Size 0x0036 2:0 R/W Reserved 0x0035 7:0 R/W Vertical Input Active Size 0x0034 2:0 R/W Reserved 0x0033 7:0 R/W Horizontal Input Active Size 0x0032 2:0 R/W PLL_P[7:0] Vertical Output Active Size TG_VOAS_LSB (Default: 0x F0) R/W Vertical Output Active Size TG_PLL_P_MSB (Default: 0x 04) R/W PLL Programmable Pre-Divider TG_PLL_P_LSB (Default: 0x 38) R/W PLL Programmable Pre-Divider 61 DATASHEET S5D4100X 0x003A 7:6 5:0 TG_PLL_M_MSB (Default: 0x 0C) Reserved PLL_M [13:8] PLL Programmable Main-Divider 0x003B 7:0 PLL_M[7:0] TG_PLL_M_LSB (Default: 0x 21) 7:5 TG_PLL_S (Default: 0x 03) PLL_S PLL Programmable Post Scaler, S= PLL_S[ 4: 2 ] + PLL_S[ 1: 0 ] PLL_M_FRACT TG_PLL_M_FRACT_LSB (Default: 0x 92) 7:6 TG_HOFFSET_MSB (Default: 0x 00) HOFFSET[13:8] Horizontal Output Active Point Offset Delay HOFFSET[7:0] TG_HOFFSET_LSB (Default: 0x 84) 7:6 TG_HOFFSET_ODD_MSB (Default: 0x 00) HOFFSET_ODD [13:8] Horizontal Output Active Point Offset Delay. (Odd Field Only) HOFFSET_ODD [7:0] TG_HOFFSET_ODD_LSB (Default: 0x 00) 7:4 62 TG_HPOS_MSB (Default: 0x 00) Reserved HPOS[11:8] R/W Horizontal Output Active Point Offset Delay. (Odd Field Only) 0x0046 3:0 R/W Reserved 0x0045 7:0 R/W Horizontal Output Active Point Offset Delay 0x0044 5:0 R/W Reserved 0x0043 7:0 R/W TG's PLL_M register Fraction bits 0x0042 5:0 R/W Reserved 0x003D 7:0 R/W PLL Programmable Main-Divider 0x003C 4:0 R/W Horizontal Position (Engineering Test Mode, User Forbidden) R/W DATASHEET S5D4100X 0x0047 7:0 HPOS[7:0] 0x0048 7:0 VPOS[7:0] 0x004B 7:0 VMIN_ODD[7:0] 0x004C 7:0 VMIN_EVEN[7:0] TG_HPOS_LSB (Default: 0x 00) R/W Horizontal Position (Engineering Test Mode, User Forbidden) TG_VPOS (Default: 0x 00) R/W Vertical Position (Engineering Test Mode, User Forbidden) TG_VMIN_ODD RO Odd Field Output Vertical min number TG_VMIN_EVEN RO Odd Field Output Vertical min number 63 DATASHEET S5D4100X 6.3 YC PROCESSOR 0x0050 7 YCP_SYNC_CONTROL (Default: 0x7C) Reserved Decoding domain select 6 SEL_DI 0: YCbCr Domain 1: YUV Domain Input FIELD Signal Polarity 5 DI_FIELD_POL 0: Even Field HIGH, Odd Field LOW - 656 SPEC 1: Odd Field HIGH, Even Field LOW - Required Design HACT Signal Polarity 4 DI_HACT_POL 3 DI_VACT_POL 2 DI_SYNC_GEN 0: Active LOW - 656 SPEC 1: Active HIGH - Required Design VACT Signal Polarity 0: Active LOW - 656 SPEC 1: Active HIGH - Required Design Sync Generation Block Selection 0: New Adjustment (Required Design) 1: S5D0127X Version Chroma Sign Bit Determination 1 DI_C_SIGN 0: Positive Number – SPEC (Required Design) 1: 2’s Complementary - Non SPEC Cb / Cr Signal Input Type Selection 0 64 DI_CBCR_SEL 0: CB Y CR Y CB Y ... - SPEC (Required Design) 1: CR Y CB Y CR Y ... - NON_SPEC R/W DATASHEET S5D4100X 0x0051 YCP_SYNC_SELECT (Default: 0x80) R/W 601/656 Data Input Select 7 V601 0: ITU-R656 Format 1: ITU-R601 Format 6 Reserved Input Masking Enable 5 MASK_ON Input data is masked by the registers of 0X0057 ~ 0X005E. The register turns ON/OFF this masking process. 0: MASKING OFF 1: MASKING ON 4 INT_FLD_SEL Internal 601 Field select 0: External Field 1: Internal Field 3 FIELD_OUT_POL Field Output Polarity 656 Data Input Hsync Select 2 DI_HS_SEL 0: 656 Data Hsync use 1: HD Pin Input Hsync use 656 Data Input Vsync Select 1 DI_VS_SEL 0: 656 Data Vsync use 1: VD Pin Input Vsync use 0 Reserved 0x0052 YCP_VSYNC_DELAY (Default: 0x10) 7:4 VS_ODD_DLY Vsync Odd Field Vertical Delay Select 3:0 VS_EVEN_DLY Vsync Even Field Vertical Delay Select 0x0053 7:0 DI_HFP 0x0054 7:0 DI_HSW YCP_DI_HFP (Default: 0x0A) R/W R/W Horizontal Front Porch for HSync Output YCP_DI_HSW (Default: 0x1E) R/W Horizontal Pulse Width for HSync Output 65 DATASHEET S5D4100X 0x0055 7:0 DI_VFP YCP_DI_VFP (Default: 0x02) R/W Vertical Front Porch for VSync Output 0x0056 YCP_DI_VSW (Default: 0x08) R/W Vertical Pulse Width for VSync Output 7:0 DI_VSW This should be set to 0x01 if the setting should be made regardless of the scale factor. 0x0057 7:3 2:0 YCP_HACT_MIN_MSB (Default: 0x00) Reserved DI_HACT_MIN [10:8] Horizontal Active Input Start Point Sets the start point of the input image based on the rising time of the sync selected by DI_HS_SEL. 0x0058 7:0 DI_HACT_MIN [7:0] YCP_HACT_MIN_LSB (Default: 0x00) 7:3 Sets the start point of the input image based on the rising time of the sync selected by DI_HS_SEL. YCP_HACT_MAX_MSB (Default: 0x00) DI_HACT_MAX [10:8] Horizontal Active Input End Point Sets the end point of the input image based on the rising time of the sync selected by DI_HS_SEL. DI_HACT_MAX [7:0] YCP_HACT_MAX_LSB (Default: 0x00) 7:3 66 R/W Horizontal Active Input End Point Sets the end point of the input image based on the rising time of the sync selected by DI_HS_SEL. 0x005B 2:0 R/W Reserved 0x005A 7:0 R/W Horizontal Active Input Start Point 0x0059 2:0 R/W YCP_VACT_MIN_MSB (Default: 0x00) R/W Reserved DI_VACT_MIN [10:8] Vertical Active Input Start Point Sets the start point of the input image based on the rising time of the sync selected by DI_VS_SEL. DATASHEET S5D4100X 0x005C 7:0 DI_VACT_MIN [7:0] YCP_VACT_MIN_LSB (Default: 0x00) Vertical Active Input Start Point Sets the start point of the input image based on the rising time of the sync selected by DI_VS_SEL. 0x005D 7:3 2:0 YCP_VACT_MAX_MSB (Default: 0x00) DI_VACT_MAX [10:8] Vertical Active Input End Point Sets the end point of the input image based on the rising time of the sync selected by DI_VS_SEL. DI_VACT_MAX [7:0] YCP_VACT_MAX_LSB (Default: 0x00) INT_FIELD_601_ TH R/W Vertical Active Input End Point Sets the end point of the input image based on the rising time of the sync selected by DI_VS_SEL. 0x005F 7:0 R/W Reserved 0x005E 7:0 R/W YCP_FIELD_601_TH (Default: 0x00) R/W Internal 601 Field Threshold Sets the threshold for creation of internal field when INT_FLD_SEL is HIGH. 0x0060 YCP_CORE (Default: 0x00) 7:4 CORE_H EDGE Coring HIGH level (See Figure 10) 3:0 CORE_L EDGE Coring LOW level (See Figure 10) 0x0061 YCP_EDGE_CONTROL (Default: 0x54) R/W R/W EDGE Filter Select 7:6 EDGE_FIL_SEL 5:4 CORE_RATE 0: Filter0 1: Filter1 2: Not Use 3: Filter2 EDGE Coring Gain (See Figure 10) EDGE Gain 3:0 EDGE_GAIN The default value 4 means x1. The higher the value, the edge strength increases, and vice versa. (See 0x006E.) 67 DATASHEET S5D4100X 0x0062 7:0 YCP_BLACK YCP_BLACK (Default: 0x00) Black Level of Y element YOUT = (YIN – YCP_BLACK) * YCP_CONTRAST + YCP_BRIGHTNESS 0x0063 7:0 YCP_CONTRAST R/W YCP_CONTRAST (Default: 0x80) R/W Contrast Control of Y element YOUT = (YIN – YCP_BLACK) * YCP_CONTRAST + YCP_BRIGHTNESS 0x0064 YCP_BRIGHTNESS (Default: 0x00) R/W BRIGHTNESS Control of Y element 7:0 YCP_ BRIGHTNESS 2’s complement in negative number. YOUT = (YIN – YCP_BLACK) * YCP_CONTRAST + YCP_BRIGHTNESS 0x0065 7:2 YCP_HUE_MSB (Default: 0x00) R/W Reserved HUE Control 1:0 HUE[9:8] 2’complement between -512 and +511. The value is between -180 deg and +180 deg. 0x0066 YCP_HUE_LSB (Default: 0x00) R/W HUE Control 7:0 HUE[7:0] 0x0067 7:0 68 SATURATION 2’complement between -512 and +511. The value is between -180 deg and +180 deg. YCP_SATURATION (Default: 0x80) SATURATION Control R/W DATASHEET S5D4100X 0x0068 7:6 EN_656OUTSEL 5 YCP_ENCODER_SELECT (Default: 0x18) 656 OUTPUT SELECT (See Table 2) Reserved 4 EN_HPOL Encoder Horizontal Active Polarity Select 3 EN_VPOL Encoder Vertical Active Polarity Select 2 EN_FPOL Encoder Field Polarity Select 1 EN_LIM16 Encoder Data Range Select (1:16 ~ 240, 0:1~254) 0 R/W EN_VSO_SEL Encoder Vertical Timing Select 0: Vertical Active Signal Select 1: Vsync Signal Select 0x0069 7:4 YCP_ENCODER_CLOCK_DELAY (Default: 0x00) R/W Reserved Encoder Output Clock Delay 3:0 EN_CK_DLY 0x006A 7 HOUT_DET The register controls delay for the output clock sent to the Pin GO7 when the encoder runs. The most significant bit of the 4 bits is the inversion signal. YCP_OUT_HSYNC_CONTROL_MSB (Default: 0x02) R/W Horizontal Timing Detection Select 0:Falling Time 1:Rising Time 6:3 2:0 Reserved IN_WIDTH[10:8] 0x006B 7:0 IN_WIDTH[7:0] 0x006C 7 VOUT_DET Horizontal Timing Width (Used in timing detection) YCP_OUT_HSYNC_CONTROL_LSB (Default: 0xD0) R/W Horizontal Timing Width (Used in timing detection) YCP_OUT_VSYNC_CONTROL_MSB (Default: 0x00) R/W Vertical Timing Detection Select 0: Falling Time 1: Rising Time 6:3 2:0 Reserved IN_LINE[10:8] Vertical Timing Line (Used in timing detection) 69 DATASHEET S5D4100X 0x006D 7:0 IN_LINE[7:0] YCP_OUT_VSYNC_CONTROL_LSB (Default: 0xF0) Vertical Timing Line (Used in timing detection) 0x006E 7 6:0 70 YCP_EDGE_LIMIT (Default: 0x10) Reserved EDGE_LIM R/W EDGE LIMIT (See Figure 10) R/W DATASHEET S5D4100X 6.4 SCALER 0x0071 7:0 IVZOOM[23:16] SCALER_IVZOOM_MSB (Default: 0x20) Inversed Vertical Zoom Ratio (= VIAS/VOAS) 0x0072 7:0 IVZOOM[15:8] SCALER_IVZOOM_MID (Default: 0x00) IVZOOM[7:0] SCALER_IVZOOM_LSB (Default: 0x00) IHZOOM[23:16] SCALER_IHZOOM_MSB (Default: 0x2F) IHZOOM[15:8] SCALER_IHZOOM_MID (Default: 0x55) IHZOOM[7:0] SCALER_IHZOOM_LSB (Default: 0x55) 4:0 SCALER_HSTR_OFFSET (Default: 0x00) R/W Reserved HSTR_OFFSET Always 0 Setting 0x0079 7:5 4:0 R/W Inversed Horizontal Zoom Ratio (= VIAS/VOAS) 0x0078 7:5 R/W Inversed Horizontal Zoom Ratio (= VIAS/VOAS) 0x0077 7:0 R/W Inversed Horizontal Zoom Ratio (= VIAS/VOAS) 0x0076 7:0 R/W Inversed Vertical Zoom Ratio (= VIAS/VOAS) 0x0075 7:0 R/W Inversed Vertical Zoom Ratio (= VIAS/VOAS) 0x0073 7:0 R/W SCALER_VSTR_OFFSET (Default: 0x00) R/W Reserved VSTR_OFFSET Always 0 Setting 71 DATASHEET S5D4100X 0x007A SCALER_FILTER_SELECT (Default: 0x04) 7:6 HFSEL Horizontal Scaling Filter Select 5:4 VFSEL Vertical Scaling Filter Select R/W Scaler Frequency Control Select 3 DP_ARCH 0: Normal Data Control 1: abnormal Data Control 2:0 Reserved 0x007B 7:5 4:0 72 SCALER_VSTR_OFFSET_ODD (Default: 0x00) Reserved VSTR_OFFSET_ ODD Always 0 Setting R/W DATASHEET S5D4100X 6.5 CONTRAST 0x0080 CONTRAST_CONTROL (Default: 0x17) 7:5 Reserved 5:4 Decides the ratio of the contrast control area 00: 0 ~ 0.99609375 01: 0.5 ~ 1.49609375 10: 0 ~ 1.9921875 11: 0 ~ 3.984375 CONT_TYPE 3 Reserved 2 BLACK_CT Black level control type 1: Adjust R/G/B simultaneously based on R 0: Adjust R/G/B individually 1 CONT_CT Contrast control type 0: Adjust R/G/B individually 1: Adjust R/G/B simultaneously based on R 0 BRIGHT_CT Brightness control type 0: Adjust R/G/B individually 1: Adjust R/G/B simultaneously based on R 0x0081 7:5 5:0 CONTRAST_R_BLACK (Default: 0x00) R_BLACK 7:5 Adjusts R Channel Black level CONTRAST_G_BLACK (Default: 0x00) R/W Reserved G_BLACK Adjusts G Channel Black level 0x0083 7:5 5:0 R/W Reserved 0x0082 5:0 R/W CONTRAST_B_BLACK (Default: 0x00) R/W Reserved B_BLACK Adjusts B Channel Black level 73 DATASHEET S5D4100X 0x0084 7:0 R_CONTRAST 0x0085 7:0 G_CONTRAST 0x0086 7:0 B_CONTRAST 0x0087 7:0 R_BRIGHT 0x0088 7:0 G_BRIGHT 0x0089 7:0 B_BRIGHT 0x008A CONTRAST_R_CONTRAST (Default: 0x80) R/W Adjusts R Channel Contrast level CONTRAST_G_CONTRAST (Default: 0x80) R/W Adjusts G Channel Contrast level CONTRAST_B_CONTRAST (Default: 0x80) R/W Adjusts B Channel Contrast level CONTRAST_R_ BRIGHTNESS (Default: 0x00) R/W Adjusts R Channel Brightness level CONTRAST_G_ BRIGHTNESS (Default: 0x00) R/W Adjusts G Channel Brightness level CONTRAST_B_BRIGHTNESS (Default: 0x00) R/W Adjusts B Channel Brightness level CONTRAST_BG_COLOR_R (Default: 0x00) R/W R Channel Background Color 7:0 BG_COLOR_R 0x008B If BG_COLOR_ON is HIGH, the color selected by BG_COLOR_R, BG_COLOR_G and BG_COLOR_B is displayed on the entire screen. CONTRAST_BG_COLOR_G (Default: 0x00) R/W G Channel Background Color 7:0 BG_COLOR_G 0x008C If BG_COLOR_ON is HIGH, the color selected by BG_COLOR_R, BG_COLOR_G and BG_COLOR_B is displayed on the entire screen. CONTRAST_BG_COLOR_B (Default: 0x00) B Channel Background Color 7:0 74 BG_COLOR_B If BG_COLOR_ON is HIGH, the color selected by BG_COLOR_R, BG_COLOR_G and BG_COLOR_B is displayed on the entire screen. R/W DATASHEET S5D4100X 6.6 GAMMA 0x0090 RAM_R_LUT_1_2 R/W 0x00AF RAM_R_LUT_31_32 R/W 7:0 RYAV1 7:0 RYAV2 7:0 RYAV3 7:0 RYAV4 RYAV32 8'h20 7:0 RYAV5 RYAV31 8'h28 7:0 RYAV6 RYAV30 8'h30 7:0 RYAV7 8'h38 7:0 RYAV8 8'h40 7:0 RYAV9 8'h48 7:0 RYAV10 8'h50 7:0 RYAV11 RED Output (Y) Axis Value for Input (X) Axis Value 8, 16, … , 240, 248, 255 8'h08 8'h10 8'h18 Y 8'h58 RYAV4 7:0 7:0 7:0 7:0 8'h60 RYAV12 RYAV13 RYAV14 RYAV15 RYAV3 8'h68 RYAV2 8'h70 RYAV1 8'h78 X 7:0 RYAV16 7:0 RYAV17 8'h88 7:0 RYAV18 8'h90 7:0 RYAV19 8'h98 7:0 RYAV20 8'hA0 7:0 RYAV21 8'hA8 7:0 RYAV22 8'hB0 7:0 RYAV23 8'hB8 7:0 RYAV24 8'hC0 7:0 RYAV25 8'hC8 7:0 RYAV26 8'hD0 7:0 RYAV27 8'hD8 7:0 RYAV28 8'hE0 7:0 RYAV29 8'hE8 7:0 RYAV30 8'hF0 7:0 RYAV31 8'hF8 7:0 RYAV32 8'hFF 0 8 16 24 32 . . . . . . . . . . 240 248 255 8'h80 75 DATASHEET S5D4100X 0x00B0 GAM_G_LUT_1_2 R/W 0x00CF GAM_G_LUT_31_32 R/W GREEN Output (Y) Axis Value for Input (X) Axis Value 8, 16, … , 240, 248, 255 8'h08 7:0 GYAV1 7:0 GYAV2 7:0 GYAV3 7:0 GYAV4 GYAV32 8'h20 7:0 GYAV5 GYAV31 8'h28 7:0 GYAV6 GYAV30 8'h30 7:0 GYAV7 8'h38 7:0 GYAV8 8'h40 7:0 GYAV9 8'h48 7:0 GYAV10 8'h50 7:0 GYAV11 8'h10 8'h18 Y 8'h58 GYAV4 7:0 7:0 7:0 7:0 76 8'h60 GYAV12 GYAV13 GYAV14 GYAV15 GYAV3 8'h68 GYAV2 8'h70 GYAV1 8'h78 X 7:0 GYAV16 7:0 GYAV17 8'h88 7:0 GYAV18 8'h90 7:0 GYAV19 8'h98 7:0 GYAV20 8'hA0 7:0 GYAV21 8'hA8 7:0 GYAV22 8'hB0 7:0 GYAV23 8'hB8 7:0 GYAV24 8'hC0 7:0 GYAV25 8'hC8 7:0 GYAV26 8'hD0 7:0 GYAV27 8'hD8 7:0 GYAV28 8'hE0 7:0 GYAV29 8'hE8 7:0 GYAV30 8'hF0 7:0 GYAV31 8'hF8 7:0 GYAV32 8'hFF 0 8 16 24 32 . . . . . . . . . . 240 248 255 8'h80 DATASHEET S5D4100X 0x00D0 GAM_B_LUT_1_2 R/W 0x00EF GAM_B_LUT_31_32 R/W 7:0 BYAV1 7:0 BYAV2 7:0 BYAV3 7:0 BYAV4 7:0 BYAV5 BLUE Output (Y) Axis Value for Input (X) Axis Value 8, 16, … , 240, 248, 255 8'h08 8'h10 8'h18 Y 8'h20 BYAV32 8'h28 BYAV31 7:0 8'h30 BYAV6 BYAV30 7:0 BYAV7 8'h38 7:0 BYAV8 8'h40 7:0 BYAV9 8'h48 7:0 BYAV10 8'h50 7:0 BYAV11 8'h58 7:0 BYAV12 BYAV4 8'h60 7:0 BYAV13 BYAV3 8'h68 7:0 BYAV14 BYAV2 8'h70 7:0 BYAV15 7:0 BYAV16 7:0 BYAV17 7:0 BYAV18 8'h90 7:0 BYAV19 8'h98 7:0 BYAV20 8'hA0 7:0 BYAV21 8'hA8 7:0 BYAV22 8'hB0 7:0 BYAV23 8'hB8 7:0 BYAV24 8'hC0 7:0 BYAV25 8'hC8 7:0 BYAV26 8'hD0 7:0 BYAV27 8'hD8 7:0 BYAV28 8'hE0 7:0 BYAV29 8'hE8 7:0 BYAV30 8'hF0 7:0 BYAV31 8'hF8 7:0 BYAV32 8'hFF 8'h78 BYAV1 X 0 8 16 24 32 . . . . . . . . . . 240 248 255 8'h80 8'h88 77 DATASHEET S5D4100X 6.7 OSD 0x0100 7 6:5 FADE_EN FADE_CTRL OSD_FADE_ENABLE, FONT_SIZE (Default: 0 x 00) R/W Fade function enable. 0: Disable 1: Enable Fade function Speed Control 0: x 4 1: x 3 2: x 2 3: x 1 (for 1 frame) OSD ON/OFF Register 4 OSD_EN 0: Disable 1: Enable Determines the character horizontal size based on the default font size (12 * 18). For example, if CH_HSZ is 1, the character horizontal size is 24(12*2) pixel. 3:2 CH_HSZ 0: 12 1: 24 2: 36 3: 48 Determines the character vertical size based on the default font size (12 * 18). For example, if CH_VSZ is 3, the character vertical size is 36(18*2) pixel. 1:0 CH_VSZ 0: 18 1: 36 2: 54 3: 72 0x0101 7 6:4 3:0 OSD_SPACE_SIZE (Default: 0 x 00) R/W Reserved COL_SP ROW_SP Controls the number of column spaces between the fonts. Column Space = COL_SP * CH_HSZ * 2 pixel Controls the number of row spaces between the fonts. The number of vertical pixels is determined in accordance with the character vertical size. For example, if ROW_SP is 2 and CH_VSZ is 2, the row spaces are 4 lines. 0x0102 7 6:0 78 OSD_HFONT (Default: 0 x 00) Reserved OSD_HFONT The number of horizontal fonts of OSD R/W DATASHEET S5D4100X 0x0103 7:6 5:0 OSD_VFONT (Default: 0 x 00) Reserved OSD_VFONT The number of vertical fonts of OSD 0x0104 7:3 2:0 OSD_HSP_MSB (Default: 0 x 00) OSD_HSP[10:8] Horizontal start point of OSD OSD_HSP[7:0] OSD_HSP_LSB(Default: 0 x 00) 7:3 OSD_VSP_MSB (Default: 0 x 00) R/W Reserved OSD_VSP[10:8] Vertical start point of OSD 0x0107 7:0 R/W Horizontal start point of OSD 0x0106 2:0 R/W Reserved 0x0105 7:0 R/W OSD_VSP[7:0] 0x0108 OSD_VSP_LSB (Default: 0 x 00) R/W Vertical start point of OSD OSD_BORDER_SHADOW_COLTROL (Default: 0 x 00) R/W Selects thickness of Border/Shadow 7 BDSH_TYPE_SEL 1: Border/Shadow is fixed to 1 pixel regardless of the character size. 0: Border/Shadow pixel interworks with the character size. See Figure 21. 6 BDSH_PASS 1: The font border/shadow is shifted to the next font if the right side of the current font is full. (When the next font is Borer/Shadow On) 0: Border/Shadow is displayed within the font area only. 5 G_BDSH_EN 4 BDSH_SEL 3:0 CH_BSC Controls Character Border/Shadow globally 1: Controls border/shadow with DSRAM[13] 0: Border/Shadow is disabled regardless of DSRAM[13] Selects Border or Shadow when Character Border/Shadow On (G_BDSH_EN = 1 & DSRAM[13]=1) 1: Border select 0: Shadow select Selects Character Border / Shadow Color as G_BDSH_EN = 1 79 DATASHEET S5D4100X 0x0109 OSD_MCF_CONTROL (Default: 0 x 00) R/W Multi Color Font Mode Select 7 MCF_SEL 0: MCF3 mode (3 fonts combination) 1: MCF2 mode (2 fonts combination) 6:0 N_MCF Number of Multi-Colored RAM Font 0x010A 7:5 OSD_BLINK_CONTROL (Default: 0 x 00) R/W Reserved Blink duty (visible: invisible) Select 4:2 BLNK_SEL 1 BL_NTRA 0 BLNC_C 0: 0.5sec: 0.5sec 1: 1sec: 0.5sec 2: 0.5sec: 1sec 3: 1sec: 1sec 4: 1.5sec: 1.5sec 5: 2sec: 1sec 6: 1sec: 2sec 7: 2sec: 2sec Blink or No_Tone_Raster 1: Blink Enable Blink Color inversion 1: On 0x010B 7 G_RA_EN 0: No tone Raster 0: OFF OSD_HALF_TONE_CONTROL (Default: 0 x 00) 1: Global Raster Enable 0: disable (default) Character half Toning 6 CH_TONE 1: Half tone is applied to the character 0: Half tone is not applied to the character OSD half Toning 5 G_HT_EN 1:Global Half Ton Enable 0:Half Tone Disable OSD half Tone Level Control 0: 0% OSD 1: 1/32 % OSD 4:0 HALF_TONE_ CTRL 2: 2/32% OSD 3: 3/32%OSD …. 31:31/33%OSD 80 R/W DATASHEET S5D4100X 0x010C 7:3 OSD DSRAM CONTROL (Default: 0x7C) R/W Reserved FRONT OSD ON (OSD mixing before scaling) 2 FRONT_OSD 1 DSRAM_ATTR_ CON 0 G_INT 0x010D 7:5 4:0 FTRAM_CS_ START_ADDR[8] FTRAM_CS_START _ADDR[7:0] 0x010F 7:5 4:0 1: INT (Intensity) is selected for the display RAM attribute [15] 0: OSD HT_EN is selected for the display RAM attribute [15] Global attribute is applied if INT is not selected for DSRAM attribute 1: Intensity On 0: Intensity Off OSD_FTRAM_CS_START_OFFSET_ADDR_MSB (Default: 0 x 00) Designates the Font RAM Checksum Start offset Address OSD_FTRAM_CS_START_OFFSET_ADDR_LSB (Default: 0 x 00) R/W Designates the Font RAM Checksum Start offset Address OSD_FTRAM_CS_END_OFFSET_ADDR_MSB (Default: 0 x 11) FTRAM_CS_END_ ADDR[8] R/W FTRAM_CS_END_ ADDR[7:0] Designates the Font RAM Checksum End Offset Address OSD_FTRAM_CS_END_OFFSET_ADDR_LSB (Default: 0 x FF) 7:4 R/W Designates the Font RAM Checksum End Offset Address 0x0111 3:0 R/W Reserved 0x0110 7:0 Designates the attribute or the display RAM attribute [15] Reserved 0x010E 7:0 1: ON 0: OFF (Default) FTRAM_CHECKSUM_MSB RO Reserved FTRAM_ CHECKSUM[11:8] Font RAM Checksum, Read Only 81 DATASHEET S5D4100X 0x0112 7:0 FTRAM_ CHECKSUM[7:0] 0x0113 7:1 0 DSRAM_CS_ START_ADDR[8] DSRAM_CS_START _ADDR[7:0] 0x0115 7:1 0 Font RAM Checksum, Read Only DSRAM_CS_START_OFFSET_ADDR_MSB (Default: 0 x 00) Designates the Display RAM Checksum Start Offset Address DSRAM_START_OFFSET_ADDR_LSB (Default: 0 x 00) DSRAM_CS_END_OFFSET_ADDR_MSB (Default: 0 x 01) DSRAM_CS_ END_ADDR[8] DSRAM_CS_ END_ADDR[7:0] DSRAM_CS_END_OFFSET_ADDR_LSB (Default: 0 x C1) DSRAM_ CHECKSUM[15:8] DSRAM_ CHECKSUM[7:0] 7:2 R/W Designates the Display RAM Checksum End Offset Address DSRAM_CHECKSUM_MSB RO Displays RAM Checksum, Read Only DSRAM_CHECKSUM_LSB RO Displays RAM Checksum, Read Only 0x0119 82 R/W Designates the Display RAM Checksum End Offset Address 0x0118 7:0 R/W Designates the Display RAM Checksum Start Offset Address 0x0117 7:0 R/W Reserved 0x0116 7:0 RO Reserved 0x0114 7:0 FTRAM_CHECKSUM_LSB OSD_RAM_CHECKSUM_END_FLAG Reserved 1 DSRAM_CS_ END_FLAG 0 → 1 at the end of display RAM checksum 0 FTRAM_CS_ END_FLAG 0 → 1 at the end of front RAM checksum RO DATASHEET S5D4100X 0x011A 7:4 MEMORY CHECKSUM & CLEAR (Default: 0 x 00) Reserved 3 DSRAM_ CHECKSUM_EN DSRAM CHECKSUM START 2 FTRAM_ CHECKSUM_EN FTRAM CHECKSUM START 1 DSRAM_CLRN 0 LUT0[7:0] 0x0121 7:0 LUT1[7:0] 0x0122 7:0 LUT2[7:0] 0x0123 7:0 LUT3[7:0] 0x0124 7:0 LUT4[7:0] 0x0125 7:0 LUT5[7:0] 0x0126 7:0 LUT6[7:0] 0x0127 7:0 DSRAM Clear Reserved 0x0120 7:0 R/W LUT7[7:0] OSD_LUT0 (Default: 0 x 00) R/W Look Up Table #0 OSD_LUT1 (Default: 0 x 00) R/W Look Up Table #1 OSD_LUT2 (Default: 0 x 00) R/W Look Up Table #2 OSD_LUT3 (Default: 0 x 00) R/W Look Up Table #3 OSD_LUT4 (Default: 0 x 00) R/W Look Up Table #4 OSD_LUT5 (Default: 0 x 00) R/W Look Up Table #5 OSD_LUT6 (Default: 0 x 00) R/W Look Up Table #6 OSD_LUT7 (Default: 0 x 00) R/W Look Up Table #7 83 DATASHEET S5D4100X 0x0128 7:0 LUT8[7:0] 0x0129 7:0 LUT9[7:0] 0x012A 7:0 LUT10[7:0] 0x012B 7:0 LUT11[7:0] 0x012C 7:0 LUT12[7:0] 0x012D 7:0 LUT13[7:0] 0x012E 7:0 LUT14[7:0] 0x012F 7:0 84 LUT15[7:0] OSD_LUT8 (Default: 0 x 00) R/W Look Up Table #8 OSD_LUT9 (Default: 0 x 00) R/W Look Up Table #9 OSD_LUT10 (Default: 0 x 00) R/W Look Up Table #10 OSD_LUT11 (Default: 0 x 00) R/W Look Up Table #11 OSD_LUT12 (Default: 0 x 00) R/W Look Up Table #12 OSD_LUT13 (Default: 0 x 00) R/W Look Up Table #13 OSD_LUT14 (Default: 0 x 00) R/W Look Up Table #14 OSD_LUT15 (Default: 0 x 00) Look Up Table #15 R/W DATASHEET S5D4100X 6.8 BOOSTUP 0x0140 7:3 2:0 BU_X1_MSB (Default: 0x 00) Reserved X1[10:8] Boost Up Calculation Area for Left Top Horizontal point 0x0141 7:0 X1[7:0] BU_X1_LSB (Default: 0x 00) 7:3 BU_Y1_MSB (Default: 0x 00) Y1[10:8] Boost Up Calculation Area for Left Top Vertical point Y1[7:0] BU_Y1_LSB (Default: 0x 00) 7:3 BU_X2_MSB (Default: 0x 02) X2[10:8] Boost Up Calculation Area for Right Bottom Horizontal point X2[7:0] BU_X2_LSB (Default: 0xD0) 7:3 BU_Y2_MSB (Default: 0x 00) R/W Reserved Y2[10:8] Boost Up Calculation Area for Right Bottom Vertical point 0x0147 7:0 R/W Boost Up Calculation Area for Right Bottom Horizontal point 0x0146 2:0 R/W Reserved 0x0145 7:0 R/W Boost Up Calculation Area for Left Top Vertical point 0x0144 2:0 R/W Reserved 0x0143 7:0 R/W Boost Up Calculation Area for Left Top Horizontal point 0x0142 2:0 R/W Y2[7:0] BU_Y2_LSB (Default: 0x F0) R/W Boost Up Calculation Area for Right Bottom Vertical point 0x0148 BU_X3_MSB (Default: 0x 00) R/W Boost Up Display Area Select 7 DISP_AREA_SEL 0: The value set in 0x0148 ~ 0x014F is applied to the display area. 1: The value set in 0x0140 ~ 0x0147 is applied to the display area. 6:3 2:0 Reserved X3[10:8] Boost Up Display Area for Left Top Horizontal point 85 DATASHEET S5D4100X 0x0149 7:0 X3[7:0] BU_X3_LSB (Default: 0x00) Boost Up Display Area for Left Top Horizontal point 0x014A 7:3 2:0 BU_Y3_MSB (Default: 0x 00) Y3[10:8] Boost Up Display Area for Left Top Vertical point Y3[7:0] BU_Y3_LSB (Default: 0x 00) 7:3 BU_X4_MSB (Default: 0x 02) X4[10:8] Boost Up Display Area for Right Bottom Horizontal point X4[7:0] BU_X4_LSB (Default: 0xD0) 7:3 86 BU_Y4_MSB (Default: 0x 00) R/W Reserved Y4[10:8] 0x014F 7:0 R/W Boost Up Display Area for Right Bottom Horizontal point 0x014E 2:0 R/W Reserved 0x014D 7:0 R/W Boost Up Display Area for Left Top Vertical point 0x014C 2:0 R/W Reserved 0x014B 7:0 R/W Y4[7:0] Boost Up Display Area for Right Bottom Vertical point BU_Y4_LSB (Default: 0x F0) Boost Up Display Area for Right Bottom Vertical point R/W DATASHEET S5D4100X 0x0150 BU_ACC (Default: 0x 10) R/W The calculation area is indicated on the screen. 7 CAL_AREA_ON 0: Calculation area indication OFF 1: Calculation area indication ON The display area is indicated on the screen. 6 DISP_AREA_ON 0: Display area indication OFF 1: Display area indication ON The LUT graph is displayed on the screen. 5 GRAPH_ON 0: LUT GRAPH OFF 1: LUT GRAPH ON Adaptive Contrast Control ON/OFF 4 BU_ST_ON 0: OFF 1: ON Method of modifying Max value used in adaptive contrast control 3:2 Ymax_ctrl 0: 1/2 of the initially created Max value 1: 1/4 of the initially created Max value 2: 1/8 of the initially created Max value 3: 1/16 of the initially created Max value Method of modifying Min value used in adaptive contrast control 1:0 Ymin_ctrl 0x0151 7 Ymax_num 0x0152 7 Ymin_num 0x0153 0: 1/2 of the initially created Min value 1: 1/4 of the initially created Min value 2: 1/8 of the initially created Min value 3: 1/16 of the initially created Min value BU_MAX_NUM (Default: 0x 80) Minimum pixels to be found with the MAX value BU_MIN_NUM (Default: 0x 80) BU_MAX_MIN_ALPHA (Default: 0x 44) MAX_ALPHA Adaptive IIR Filter Gain for MAX value 3:0 MIN_ALPHA Adaptive IIR Filter Gain for MIN value 7:0 TURN_POINT R/W Minimum pixels to be found with the MIN value 7:4 0x0154 R/W BU_TURN_POINT (Default: 0x 00) R/W R/W Inflection point of the LUT ram graph 87 DATASHEET S5D4100X 0x0155 7:0 BU_CORING 0x0156 7:4 AVR_ALPHA 3:0 BU_GAIN 0x0157 2:0 DI_HTOTAL[10:8] 0x0158 7:0 DI_HTOTAL[7:0] 0x0159 2:0 DI_VTOTAL_ ODD [10:8] 0x015A 7:0 DI_VTOTAL_ ODD [7:0] 0x015B 2:0 DI_VTOTAL_ EVEN[10:8] 0x015C 7:0 88 DI_VTOTAL_ EVEN[7:0] BU_CORING (Default: 0x 00) R/W Adaptive Brightness Control Coring Value BU_AVR_ALPHA_GAIN (Default: 0x 44) R/W Adaptive IIR Filter Gain for Average value Adaptive Brightness Control Gain value DI_HTOTAL_MSB RO Horizontal Input Total Pixel Value, Read Only DI_HTOTAL_LSB RO Horizontal Input Total Pixel Value, Read Only DI_VTOTAL_ODD_MSB RO Vertical Input Total ODD Pixel Value, Read Only DI_VTOTAL_ODD_LSB RO Vertical Input Total ODD Pixel Value, Read Only DI_VTOTAL_EVEN_MSB RO Vertical Input Total EVEN Pixel Value, Read Only DI_VTOTAL_EVEN_LSB Vertical Input Total EVEN Pixel Value, Read Only RO DATASHEET S5D4100X 7. ELECTRICAL SPECIFICATION 7.1 ABSOLUTE MAXIMUM RATINGS Table 4. Absolute Maximum Ratings Characteristics DC Supply Voltage DC Input Voltage DC Output Voltage Symbol VDD VIN VOUT Latch Up Current ILatch Storage temperature TSTG Rating Unit 1.8V VDD 2.7 3.3V VDD 3.8 3.3V input buffer 3.8 3.3V interface / 5V tolerant input buffer 6.5 1.8V output buffer 2.7 3.3V output buffer 3.8 ± 100 Plastic V mA - 65 to 150 °C 7.2 RECOMMENDED OPERATION CONDITIONS Table 5. Recommended Operating Conditions Characteristics DC Supply Voltage DC Input Voltage DC Output Voltage Operating Temperature Symbol VDD VIN VOUT TA Rating Unit 1.8V VDD 1.8 ± 0.15 3.3V VDD 3.3 ± 0.3 3.3V input buffer 3.3 ± 0.3 3.3V interface / 5V tolerant input buffer 3.0 ~ 5.25 1.8V output buffer 1.8 ± 0.15 3.3V output buffer 3.3 ± 0.3 Commercial 0 to 70 V °C 89 DATASHEET S5D4100X 7.3 DC ELECTRICAL CHARACTERISTICS Table 6. DC Electrical Characteristics at 3.3V VDD1 = 3.3V ± 0.3V, VDD2 = VDDA = 1.8V ± 0.15V, TA = 25°C Item Digital Power 1 Supply Voltage Digital Power 2 Min. Typ. Max. Unit VDD1 3.0 3.3 3.6 V VDD2 1.65 1.8 1.95 V VDDA 1.65 1.8 1.95 V Symbol VDD Analog Power High Level VIH Low Level VIL Condition 2.0 V 0.8 V Input IOH = -4mA 2.4 V Voltage IOH = -20mA 2.4 V IOL = 4mA 0.4 V IOL = 20mA 0.4 V 2.0 V Positive-going threshold VT+ CMOS Negative-going threshold VT- CMOS Input buffer with Pull-down IIH VIN = VDD Input buffer IIL VIN = VSS Tri-state Output Leakage Current IOZ VOUT = VSS or VDD Power Consumption Pd PCKO = 80MHz Schmitt Trigger Input Current 90 High Level Low Level 0.8 V 10 µA 60 µA -10 10 µA -10 10 µA 600 mW -10 Input buffer 10 -33 DATASHEET S5D4100X 7.4 AC ELECTRICAL CHARACTERISTICS 7.4.1 Video Input Timing Characteristics TV (= 1 / FV) TVH TVL VCK TSU YI0~7, CI0~7, HD, VD, FLD THD Valid Data Item Valid Data Valid Data Symbol Min. Typ. Max. Units Setup Time to VCK, input YI0~7, CI0~7, HD, VD, FLD TSU 2.0 ns Hold Time to VCK, input YI0~7, CI0~7, HD, VD, FLD THD 2.0 ns Input Frequency FV Input High Duration Time TVH 3.0 ns Input Low Duration Time TVL 3.0 ns 27 MHz 91 DATASHEET S5D4100X 7.4.2 Display Output Timing Characteristics TD (= 1 / FD) PCKO (PCKO_PHASE[2] = 0) PCKO (PCKO_PHASE[2] = 1) 90% 10% Tr Tf TPD TPD RO0~7, GO0~7, BO0~7, PHSO, PVSO, PDEN Valid Data Valid Data Item Symbol Min. Typ. Max. Units Propagation Delay Time from PCKO, Output RO0~7, GO0~7, BO0~7, PHSO, PVSO, PDEN TPD -3 0 3 ns Frequency, Output Display Clock PCKO FD 80 MHz Duty Cycle, Output Display Clock PCKO Cduty 55 % Rise Time, Output Display Clock PCKO Tr 3 ns Fall Time, Output Display Clock PCKO Tf 3 ns 92 45 50 DATASHEET S5D4100X 8. PACKAGE DIMENSION 8.1 88-FBGA-0707 0.15 C A 7.00 7.00 B 0.50 0.15 C C 0.50 #A1 INDEX MARK 13 12 11 10 9 8 7 6 5 4 3 2 1 0.50 A B C D E F G H J K L M N 0.15 1.2 0.50 88-φ0.30 φ0.15 φ0.05 M M C A B C 93 DATASHEET S5D4100X 8.2 80-TQFP-1212 14.00 ± 0.20 0-7 12.00 12.00 80-TQFP-1212 0.60 ± 0.15 14.00 ± 0.20 0.09-0.20 #80 #1 0.50 0.17-0.27 0.08 MAX M 0.05-0.15 (1.25) 1.00 ± 0.05 1.20 MAX NOTE: Dimensions are in millimeters. 94