HCC/HCF4031B 64-STAGE STATIC SHIFT REGISTER . . .. . . .. .. FULLY STATIC OPERATION : DC to 16MHz (TYP.) @ VDD – VSS = 15V STANDARD TTL DRIVE CAPABILITY ON Q OUTPUT RECIRCULATION CAPABILITY THREE CASCADING MODES : DIRECT CLOCKING FOR HIGH-SPEED OPERATION DELAYED CLOCKING FOR REDUCED CLOCK DRIVE REQUIREMENTS ADDITIONAL 1/2 STAGE FOR SLOW CLOCKS QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE STANDARDIZED, SYMMETRICAL OUTPUT CHARACTERISTICS 5V, 10V, AND 15V PARAMETRIC RATINGS INPUT CURRENT OF 100nA at 18V AND 25°C FOR HCC DEVICE 100% TESTED FOR QUIESCENT CURRENT MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD NO. 13A, ”STANDARD SPECIFICATIONS FOR DESCRIPTION OF ”B” SERIES CMOS DEVICES” EY (Plastic Package) F (Ceramic Package) C1 (Chip Carrier) ORDER CODES : HCC4031BF HCF4031BEY HCF4031BC1 PIN CONNECTIONS DESCRIPTION The HCC4031B (extended temperature range) and HCF4031B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package. The HCC/HCF4031B is a static shift register that contains 64 D-type, master-slave flip-flop stages and one stage which is a D-type master flip-flop only (referred to as a 1/2 stage). The logic level present at the DATA input is transferred into the first stage and shifted one stage at each positive-going clock transition. Maximum clock frequencies up to 16 Megahertz (typical) can be obtained. Because fully static operation is allowed, information can be permanently stored with the clock line in either the low or high state. The HCC/HCF4031B has a MODE CONTROL input that, when in the high state, allows operation in the recirculating mode. The MODE CONTROL input can also be used to select between two separate data sources. Register packages can be cascaded and the clock lines driven directly for high-speed operation. Alternatively, a delayed clock output(CLD) is provided that enables cascading regJune 1989 1/12 HCC/HCF4031B ister packages while allowing reduced clock drive fan-out and transition-time requirements. A third cascading option makes use of the Q’ output from the 1/2 stage, which is available on the next nega- tive-going transition of the clock after the Q output occurs. This delayed output, like the delayed clock CLD, is used with clocks having slow rise and fall times. FUNCTIONAL DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol V DD* Parameter Supply Voltage : HC C Types H C F Types VI Input Voltage II Value Unit – 0.5 to + 20 – 0.5 to + 18 V V – 0.5 to V DD + 0.5 V DC Input Current (any one input) ± 10 mA Pt ot Total Power Dissipation (per package) Dissipation per Output Transistor for T o p = Full Package-temperature Range 200 mW 100 mW Top Operating Temperature : HCC Types H CF Types – 55 to + 125 – 40 to + 85 °C °C Tstg Storage Temperature – 65 to + 150 °C Stresses above those listed under ”Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theseor any other conditions abovethose indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltage values are referred to VSS pin voltage. RECOMMENDED OPERATING CONDITIONS Symbol V DD VI T op 2/12 Parameter Value Unit Supply Voltage : HCC Types HC F Types 3 to + 18 3 to + 15 V V Input Voltage 0 to V DD V – 55 to + 125 – 40 to + 85 °C °C Operating Temperature : H CC Types H C F Types HCC/HCF4031B LOGIC DIAGRAM AND TRUTH TABLES INPUT CONTROL CIRCUIT Data Recirc. Mode Bit Into Stage 1 1 X 0 1 0 X 0 0 X 1 1 1 X 0 1 0 TYPICAL STAGE Data 0 1 X 1 = HIGH LEVEL OUTPUT FROM Q’ (pin 5) CL – –/ – –/ –\ – D ata + 1 Data + 6 4 0 0 1 1 NC X 0 = LOW LEVEL X = DON’T CARE CL –\ – –\ – – –/ Data + 64.5 0 1 NC NC = NO CHANGE 3/12 HCC/HCF4031B STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions) Symbol IL Parameter Quiescent Current HCC Types HCF Types V OH V OL V IH V IL I OH I OL Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output Source Current (Source) Q, Q, Q CL D HCC Types HCF Types Output HCC Sink Current Q Types HCF Types I OL I IH , I IL CI Output Sink Current Q, Q’ CL D Input Leakage Current HCC Types HCF Types Test Conditions VO |I O | V D D VI (V) (V) (µA) (V) 0/ 5 5 0/10 10 0/15 15 0/20 20 0/ 5 5 0/10 10 0/15 15 0/ 5 <1 5 0/10 <1 10 0/15 <1 15 5/0 <1 5 10/0 <1 10 15/0 <1 15 0.5/4.5 < 1 5 1/9 <1 10 1.5/13.5 < 1 15 4.5/0.5 < 1 5 9/1 <1 10 13.5/1.5 < 1 15 0/ 5 2.5 5 0/ 5 4.6 5 0/10 9.5 10 0/15 13.5 15 0/ 5 2.5 5 0/ 5 4.6 5 0/10 9.5 10 0/15 13.5 15 0/ 5 0.4 5 0/10 0.5 10 0/15 1.5 15 0/ 5 0.4 5 0/10 0.5 10 0/15 1.5 15 0/ 5 0.4 5 0/10 0.5 10 0/15 1.5 15 0/ 5 0.4 5 0/10 0.5 10 0/15 1.5 15 HCC 0/18 Types HCF 0/15 Types Input Capacitance T L o w* Min. Max. 5 10 20 100 20 40 80 4.95 9.95 14.95 0.05 0.05 0.05 3.5 7 11 1.5 3 4 – 2 – 0.64 – 1.6 – 4.2 – 1.53 – 0.52 – 1.3 – 3.6 2.56 6.4 16.8 2.08 5.01 13.6 0.64 1.6 4.2 0.52 1.3 3.6 Value 25 °C Min. Typ. Max. 0.04 5 0.04 10 0.04 20 0.08 100 0.04 20 0.04 40 0.04 80 4.95 9.95 14.95 0.05 0.05 0.05 3.5 7 11 1.5 3 4 – 1.6 – 3.2 – 0.51 – 1 – 1.3 – 2.6 – 3.4 – 6.8 – 1.36 – 3.2 – 0.44 – 1 – 1.1 – 2.6 – 3.0 – 6.8 2.04 4 5.2 10.4 13.6 27.2 1.74 4 4.42 10.4 11.56 27.2 0.51 1 1.3 2.6 3.4 6.8 0.44 1 1.1 2.6 3.0 6.8 18 ± 0.1 ±10 – 5 ± 0.1 ± 1 15 ± 0.3 ±10 – 5 ± 0.3 ± 1 T Hi g h * Min. Max. 150 300 600 3000 150 300 600 4.95 9.95 14.95 0.05 0.05 0.05 3.5 7 11 1.5 3 4 – 1.15 – 0.36 – 0.9 – 2.4 – 1.1 – 0.36 – 0.9 – 2.4 1.44 3.6 9.6 1.43 3.74 9.52 0.36 0.9 2.4 0.36 0.9 2.4 5 7.5 * TLow = – 55°C for HCC device : – 40°C for HCF device. * THigh = + 125°C for HCC device : + 85°C for HCF device. The Noise Margin for both ”1” and ”0” level is : 1V min. with V DD = 5V, 2V min. with VDD = 10V, 2.5 V min. with VDD = 15V. 4/12 µA V V V V mA mA mA µA Any Input Any Input Unit pF HCC/HCF4031B DYNAMIC ELECTRICAL CHARACTERISTICS (T amb = 25°C, C L = 50pF, R L = 200kΩ, typical temperature coefficient for all V DD values is 0.3%/°C, all input rise and fall times = 20ns) Symbol Parameter Test Conditions Value V D D (V) Min. Typ. Max. t P HL , Propagation Delay Time : t PL H, t PL H Clock to Q, Clock to Q 5 250 500 10 110 220 15 90 180 t P HL , Propagation Delay Time : t PL H, t PHL Clock to Q’ Clock to Q 5 190 380 10 80 160 15 65 130 Clock to CL D 5 100 200 10 50 100 t THL ’ , t T L H Transition Time : (any output, except Qt THL ) t T HL tset up t h o ld tW f max t r, t f Q, Data Setup Time Data Hold Time Clock Pulse Width Maximum Clock Input Frequency** Clock Input Rise or Fall Time* 15 40 80 5 100 200 10 50 100 15 40 80 5 50 100 10 25 50 15 20 40 5 30 60 10 15 30 15 10 20 5 30 60 10 15 30 15 10 20 5 120 240 10 50 100 15 40 80 5 2 4 10 5 10 15 6 12 Unit ns ns ns ns ns ns ns ns MHz 5 1000 10 1000 15 200 µs * If more than one unit is cascaded in the parallel clocked application, trCL should be made less than or equal to the sum of the propagation delay at 50pF and the transmition time of the output driving stage. * * Maximum Clock Frequency for Cascaded Units; a) Using Delayed Clock Feature in Recirculation Mode : 1 fmax = where n = nimber of packages (n-1) CLD prop. delay + Q prop. delay + set-up time b) Not Usng Delaye Clock : 1 fmax = propagation delay + set-up time 5/12 HCC/HCF4031B Typical Output Low (sink) Current Characteristics. Minimum teristics. Typical Output High (source) Current Characteristics. Minimum Output High (source) Current Characteristics. 6/12 Output Low (sink) Current Charac- HCC/HCF4031B TYPICAL APPLICATIONS CASCADING USING DIRECT CLOCKING FOR HIGH SPEED OPERATION (SEE CLOCK RISE AND FALL TIME REQUIREMENT). CASCADING USING DELAYED CLOCKING FOR REDUCED CLOCK DRIVE REQUIREMENTS. 7/12 HCC/HCF4031B TYPICAL APPLICATIONS (continued) CASCADING USING HALF- CLOCK-PULSE DELAYED DATA OUTPUT (Q’) TO PERMIT USE OF SLOW RISE AND FALL TIME CLOCK INPUTS. TEST CIRCUITS Quiescent Device Current. Input Leakage Current. 8/12 Noise Immunity. HCC/HCF4031B Plastic DIP16 (0.25) MECHANICAL DATA mm DIM. MIN. a1 0.51 B 0.77 TYP. inch MAX. MIN. TYP. MAX. 0.020 1.65 0.030 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 17.78 0.700 F 7.1 0.280 I 5.1 0.201 L Z 3.3 0.130 1.27 0.050 P001C 9/12 HCC/HCF4031B Ceramic DIP16/1 MECHANICAL DATA mm DIM. MIN. TYP. inch MAX. MIN. TYP. MAX. A 20 0.787 B 7 0.276 D E 3.3 0.130 0.38 e3 0.015 17.78 0.700 F 2.29 2.79 0.090 0.110 G 0.4 0.55 0.016 0.022 H 1.17 1.52 0.046 0.060 L 0.22 0.31 0.009 0.012 M 0.51 1.27 0.020 0.050 N P Q 10.3 7.8 8.05 5.08 0.406 0.307 0.317 0.200 P053D 10/12 HCC/HCF4031B PLCC20 MECHANICAL DATA mm DIM. MIN. TYP. inch MAX. MIN. TYP. MAX. A 9.78 10.03 0.385 0.395 B 8.89 9.04 0.350 0.356 D 4.2 4.57 0.165 0.180 d1 2.54 0.100 d2 0.56 0.022 E 7.37 8.38 0.290 0.330 e 1.27 0.050 e3 5.08 0.200 F 0.38 0.015 G 0.101 0.004 M 1.27 0.050 M1 1.14 0.045 P027A 11/12 HCC/HCF4031B Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A 12/12