STMICROELECTRONICS M54HC182F1R

M54HC182
M74HC182
FUNCTION LOOK AHEAD CARRY GENERATOR
.
.
.
.
.
.
.
.
HIGH SPEED
tPD = 14 ns (TYP.) at VCC = 5 V
LOW POWER DISSIPATION
ICC = 4 µA (MAX.) at TA = 25 °C
HIGH NOISE IMMUNITY
VNIH = VNIL = 28 % VCC (MIN.)
OUTPUT DRIVE CAPABILITY
10 LSTTL LOADS
SYMMETRICAL OUTPUT IMPEDANCE
IOH = IOL = 4 mA (MIN.)
BALANCED PROPAGATION DELAYS
tPLH = tPHL
WIDE OPERATING VOLTAGE RANGE
VCC (OPR) = 2 V to 6 V
PIN AND FUNCTION COMPATIBLE
WITH 54/74LS182
DESCRIPTION
The M54/74HC182 is a high speed CMOS FUNCTION LOOK AHEAD CARRY GENERATOR
2
fabricated in silicon gate C MOS technology. It has
the same high speed performance of LSTTL combined with true CMOS low power consumption.
These circuit are capable of anticipating a carry
across four binary adders or group of adders. They
are cascadable to perform full look-ahead across nbit
adders.
Carry,
generate-carry,
and
propagate-carry functions are provided as shown in
the pin connection table. When used in conjunction
with the HC181 arithmetic logic unit, these generators provide high-speed carry look-ahead
capability for any word length. Each HC182 generates the look-ahead (anticipated carry) across a
group of four ALU’s and, in addition, other carry lookahead circuits may be employed to anticipate carry
across sections of four look-ahead packages up to
n-bits. The method of cascading circuits to perform
multi-level look-ahead is illustrated under typical application data.
Carry input and output of the ALUs are in their true
form, and the carry propagate (P) and carry generate (G) are in negated form ; therefore, the carry
functions (inputs, outputs, generate, and propagate)
of the look-ahead generators are implemented in
the compatible forms for direct connection to the
ALU. Reinterpretation of carry functions as explained on the HC181 data sheet are also applicable
to and compatible with the look-ahead generator. All
inputs are equipped with protection circuits against
static discharge and transient excess voltage.
March 1993
B1R
(Plastic Package)
F1R
(Ceramic Package)
M1R
(Micro Package)
C1R
(Chip Carrier)
ORDER CODES :
M54HC182F1R
M74HC182M1R
M74HC182B1R
M74HC182C1R
PIN CONNECTIONS (top view)
NC =
No Internal
Connection
1/12
M54/M74HC182
FUNCTION TABLES
FOR G OUTPUT
G3
G2
G1
INPUTS
G0
P3
P2
P1
OUTPUT
G
L
X
X
X
X
X
X
L
X
X
L
X
X
L
X
X
L
L
X
L
X
X
L
L
X
X
X
L
L
L
L
L
ALL OTHER COMBINATIONS
H
FOR P OUTPUT
INPUTS
P3
L
P2
L
OUTPUT
P1
L
P0
L
P
L
ALL OTHER COMBINATIONS
H
FOR Cn+x OUTPUT
INPUTS
OUTPUT
G0
P0
Cn
Cn+x
L
X
X
L
X
H
H
H
ALL OTHER COMBINATIONS
L
FOR Cn+y OUTPUT
INPUTS
OUTPUT
G1
G0
P1
P0
Cn
Cn+y
L
X
X
X
L
X
X
L
L
X
X
L
X
X
H
H
H
H
ALL OTHER COMBINATIONS
L
FOR Cn+z OUTPUT
INPUTS
Cn+x
Cn+y
Cn+z
G
P
or
Cn+x
Cn+y
Cn+z
G
P
2/12
OUTPUT
G2
L
X
G1
X
L
G0
X
X
P2
X
L
P1
X
X
P0
X
X
X
X
L
L
L
X
X
X
L
L
ALL OTHER COMBINATIONS
= G0 + P0Cn
= G1 + P1G0 + P1P0Cn
= G2 + P2G1 + P2P1G0 + P2P1P0Cn
= G3 + G3 + P3G2 + P3P2G1 + P3P2P1G0
= P3P2P1P0
= Y0 + (X0 + Cn)
= Y1 + [X1 + Y0(X0 + Cn)]
= Y2 + {X2 + Y1[X1 + Y0(X0 +Cn)]}
= Y3 + (X3 + Y2)(X3 + X2 + Y1)(X3 + X2 + X1 + Y0)
= X3 + X2 + X1 + X0
Cn
X
X
Cn+z
H
H
X
X
H
L
H
H
L
M54/M74HC182
LOGIC DIAGRAM
3/12
M54/M74HC182
INPUT AND OUTPUT EQUIVALENT CIRCUIT
PIN DESCRIPTION
PIN No
SYMBOL
3, 1, 14, 5
G0 to G3
4, 2, 15, 6
P0 to P3
7
P
NAME AND FUNCTION
Carry Generate Inputs
(Active LOW)
Carry Propagate Inputs
(Active LOW)
Carry Propagate Output
(Active LOW)
9
Cn+z
10
G
Function Output
11
12
Cn+y
Cn+x
Function Output
Function Output
13
8
Cn
GND
Ground (0V)
16
VCC
Positive Supply Voltage
Carry Generate Output
(Active LOW)
IEC LOGIC SYMBOLS
ABSOLUTE MAXIMUM RATINGS
Symbol
ICC
Value
Unit
VCC
VI
Supply Voltage
DC Input Voltage
Parameter
-0.5 to +7
-0.5 to VCC + 0.5
V
V
VO
DC Output Voltage
-0.5 to VCC + 0.5
V
IIK
DC Input Diode Current
± 20
mA
IOK
DC Output Diode Current
± 20
mA
IO
or IGND
DC Output Source Sink Current Per Output Pin
DC VCC or Ground Current
± 25
± 50
mA
mA
PD
Power Dissipation
500 (*)
mW
Tstg
TL
Storage Temperature
Lead Temperature (10 sec)
-65 to +150
300
o
o
C
C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition isnotimplied.
(*) 500 mW: ≅ 65 oC derate to 300 mW by 10mW/oC: 65 oC to 85 oC
4/12
M54/M74HC182
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
VCC
VI
Supply Voltage
Input Voltage
VO
Output Voltage
Top
Operating Temperature: M54HC Series
M74HC Series
Input Rise and Fall Time
tr, tf
Value
Unit
2 to 6
0 to VCC
V
V
0 to VCC
V
o
-55 to +125
-40 to +85
0 to 1000
VCC = 2 V
VCC = 4.5 V
0 to 500
VCC = 6 V
0 to 400
C
C
ns
o
DC SPECIFICATIONS
Test Conditions
Symbol
VIH
V IL
V OH
VOL
Parameter
High Level Input
Voltage
Low Level Input
Voltage
High Level
Output Voltage
Low Level Output
Voltage
VCC
(V)
2.0
Min.
1.5
4.5
3.15
6.0
2.0
4.2
6.0
2.0
Max.
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min.
1.5
Max.
3.15
Min.
1.5
4.2
4.2
0.5
0.5
1.35
1.35
1.35
1.8
2.0
1.9
1.9
4.5
4.4
4.4
6.0
4.5
5.9
4.18
6.0
4.31
5.9
4.13
5.9
4.10
6.0
IO=-7.8 mA
5.68
5.8
5.63
5.60
6.0
V
1.8
1.9
4.4
2.0
4.5
V
0.5
1.8
Unit
Max.
3.15
VI =
IO=-20 µA
VIH
or
V IL IO=-6.0 mA
4.5
4.5
6.0
Input Leakage
Current
Typ.
4.5
6.0
II
Value
TA = 25 oC
54HC and 74HC
V
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.0
0.1
0.1
0.1
0.17
0.18
0.26
0.26
0.37
0.37
0.40
0.40
VI = VCC or GND
±0.1
±1
±1
µA
VI =
IO= 20 µA
VIH
or
V IL IO= 6.0 mA
IO= 7.8 mA
V
IOZ
3 State Output
Off State Current
6.0
VI = VIH or VIL
VO = VCC or GND
±0.5
±5.0
±10
µA
ICC
Quiescent Supply
Current
6.0
VI = VCC or GND
4
40
80
µA
5/12
M54/M74HC182
AC ELECTRICAL CHARACTERISTICS (C L = 50 pF, Input t r = tf = 6 ns)
Test Conditions
Symbol
Parameter
tTLH
tTHL
Output Transition
Time
tPLH
tPHL
Propagation
Delay Time
(Gn, Pn - Cn+xyz)
tPLH
tPHL
Propagation
Delay Time
(Gn, Pn - G)
tPLH
tPHL
Propagation
Delay Time
(Pn - P)
tPLH
tPHL
Propagation
Delay Time
(Cn - Cn+xyz)
CIN
CPD (*)
Value
o
VCC
(V)
TA = 25 C
54HC and 74HC
Min. Typ. Max.
-40 to 85 oC -55 to 125 oC
74HC
54HC
Min. Max. Min. Max.
2.0
30
75
95
110
4.5
6.0
8
7
15
13
19
16
22
19
2.0
62
135
170
205
4.5
17
27
34
41
6.0
13
23
29
35
2.0
72
150
190
225
4.5
6.0
19
14
30
26
38
32
45
38
Unit
ns
ns
ns
2.0
62
135
170
205
4.5
6.0
17
13
27
23
34
29
41
35
2.0
62
135
170
205
4.5
6.0
17
13
27
23
34
29
41
35
ns
Input Capacitance
5
10
10
10
pF
Power Dissipation
Capacitance
61
ns
pF
(*) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load.
(Refer to Test Circuit). Average operting current can be obtained by the following equation. ICC(opr) = CPD •VCC •fIN + ICC/2 (per FLIP/FLOP)
6/12
M54/M74HC182
SWITCHING CHARACTERISTICS TEST WAVEFORM
TEST CIRCUIT ICC (Opr.)
INPUT WAVEFORM IS THE SAME AS THAT IN CASE OF SWITCHING CHARACTERISTICS TEST.
TYPICAL APPLICATION
64-BIT ALU, FULL-CARRY LOOK-AHEAD IN THREE LEVELS.
7/12
M54/M74HC182
Plastic DIP16 (0.25) MECHANICAL DATA
mm
DIM.
MIN.
a1
0.51
B
0.77
TYP.
inch
MAX.
MIN.
TYP.
MAX.
0.020
1.65
0.030
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
17.78
0.700
F
7.1
0.280
I
5.1
0.201
L
Z
3.3
0.130
1.27
0.050
P001C
8/12
M54/M74HC182
Ceramic DIP16/1 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
20
0.787
B
7
0.276
D
E
3.3
0.130
0.38
e3
0.015
17.78
0.700
F
2.29
2.79
0.090
0.110
G
0.4
0.55
0.016
0.022
H
1.17
1.52
0.046
0.060
L
0.22
0.31
0.009
0.012
M
0.51
1.27
0.020
0.050
N
P
Q
10.3
7.8
8.05
5.08
0.406
0.307
0.317
0.200
P053D
9/12
M54/M74HC182
SO16 (Narrow) MECHANICAL DATA
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.004
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45° (typ.)
D
9.8
E
5.8
10
0.385
6.2
0.228
0.393
0.244
e
1.27
0.050
e3
8.89
0.350
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.62
0.024
8° (max.)
P013H
10/12
M54/M74HC182
PLCC20 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
9.78
10.03
0.385
0.395
B
8.89
9.04
0.350
0.356
D
4.2
4.57
0.165
0.180
d1
2.54
0.100
d2
0.56
0.022
E
7.37
8.38
0.290
0.330
e
1.27
0.050
e3
5.08
0.200
F
0.38
0.015
G
0.101
0.004
M
1.27
0.050
M1
1.14
0.045
P027A
11/12
M54/M74HC182
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
12/12