STMICROELECTRONICS M616Z08

M616Z08
128 Kbit (8 Kbit x 16) SRAM WITH OUTPUT ENABLE
FEATURES SUMMARY
■ OPERATION VOLTAGE: 2.34V to 3.6V
■
8 Kbit x 16 SRAM
■
EQUAL CYCLE and ACCESS TIMES: AS
FAST AS 20ns
■
TRI-STATE COMMON I/O
■
TWO WRITE ENABLE PINS ALLOW WRITING
TO UPPER AND LOWER BYTES
Figure 1. 44-pin, Hatless SOIC Package
44
1
SO44 (MH)
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A12
VCC
DQ0-DQ15
13
16
A0-A12
WE0
DQ0-DQ15
Address Inputs
Data Input/Output
CE
Chip Enable
OE
Output Enable
WE0
WRITE Enable DQ 0-7
WE1
WRITE Enable DQ 8-15
VCC
Supply Voltage
VSS
Ground
TO
Time-Out Pin
M616Z08
WE1
TO
CE
OE
Note: TO Pin should be connected to VCC.
VSS
AI04213
July 2002
1/14
M616Z08
TABLE OF CONTENTS
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
44-pin Connections (Figure 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Absolute Maximum Ratings (Table 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC and AC Measurement Conditions (Table 3.) . . .
AC Testing Load Circuit (Figure 4.) . . . . . . . . . . . . .
Capacitance (Table 4.) . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics (Table 5.) . . . . . . . . . . . . . . . . .
.......
.......
.......
.......
......
......
......
......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
.....5
.....5
.....5
.....6
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
READ Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address Controlled, READ Mode AC Waveforms (Figure 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chip Enable or Output Enable Controlled, READ Mode AC Waveforms (Figure 6.). . . . . . . . . . . . . 7
READ Mode AC Characteristics (Table 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WRITE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
WRITE Enable Controlled, WRITE Mode AC Waveforms (Figure 7.) . . . . . . . . . . . . . . . . . . . . . . . . 8
Chip Enable Controlled, WRITE Mode AC Waveforms (Figure 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . 8
WRITE Mode AC Characteristics (Table 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
“Operational” Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Noise Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
WE(0,1) States during Access (Table 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Operating Modes (Table 9.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/14
M616Z08
DESCRIPTION
The M616Z08 is a 128 Kbit (131,072 bit) CMOS
SRAM, organized by 16 bits. The device features
fully static operation requiring no external clocks or
timing strobes, with equal address access and cycle times. It requires a single 2.6V ± 10% or
3.3V ± 10% supply, and all inputs and outputs are
TTL compatible.
The M616Z08 is available in a 44-lead SOIC package.
Figure 3. 44-pin Connections
DQ0
DQ1
DQ2
DQ3
VCC
VSS
DQ4
DQ5
DQ6
DQ7
VCC
VSS
DQ8
DQ9
DQ10
DQ11
VSS
VCC
DQ12
DQ13
DQ14
DQ15
44
1
43
2
3
42
4
41
40
5
39
6
38
7
37
8
36
9
35
10
34
11
M616Z08
33
12
32
13
31
14
30
15
29
16
28
17
27
18
26
19
25
20
24
21
23
22
A12
A11
A10
A9
VCC
VSS
A08
A07
TO
CE
OE
WE1
WE0
A06
A05
A04
VSS
VCC
A03
A02
A01
A00
AI04212
Note: TO Pin should be connected to VCC.
3/14
M616Z08
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability.
Refer
also
to
the
STMicroelectronics SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
Ambient Operating Temperature
–40 to 125
°C
TSTG(1)
Storage Temperature
–65 to 150
°C
VIO(2,3)
Input or Output Voltage
–0.3 to VCC + 0.3
V
TA
Parameter
VCC
Supply Voltage
–0.3 to 4.0
V
IO(4)
Output Current
10
mA
Power Dissipation
270
mW
PD
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 and 120
seconds).
2. Up to a maximum operating VCC of 3.6V only.
3. VIL(min) = VSS – 2.0V AC (pulse width ≤ 10% tAVAV(min))
VIH(max) = VCC + 2.0V AC (pulse width ≤ 10% tAVAV(min))
4. One output at a time, not to exceed 1 second duration.
4/14
M616Z08
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. DC and AC Measurement Conditions
Parameter
M616Z08
VCC Supply Voltage
2.34 to 3.0V or 3.0 to 3.6V
Ambient Operating Temperature
–40 to 125°C
Load Capacitance (CL)
50pF
Input Rise and Fall Times
≤ 5ns
Input Pulse Voltages
0 to 3V
Input and Output Timing Ref. Voltages
1.5V
Note: Output High Z is defined as the point where data is no longer driven.
Figure 4. AC Testing Load Circuit
3.0V
2.6 KΩ
DEVICE
UNDER
TEST
OUT
2.6 KΩ
CL = 50 pF
or 5pF
AI05650
Table 4. Capacitance
Parameter(1,2)
Symbol
CIN
COUT(3)
Min
Max
Unit
Input Capacitance on all pins (except DQ)
10
pF
Output Capacitance
10
pF
Note: 1. Effective capacitance measured with power supply at 3.3V; sampled only, not 100% tested.
2. At 25°C; f = 1MHz.
3. Outputs deselected.
5/14
M616Z08
Table 5. DC Characteristics
Sym
ILI
Test Condition(1)
Parameter
Input Leakage Current
Min
Typ
Max
Unit
65
125
µA
±1
µA
0V ≤ VOUT ≤ VCC
±1
µA
VCC = 3.6V
75
mA
VCC = 3.6V,
CE ≥ VCC – 0.2V, f = 0
1
mA
TO Pin(2)
0V ≤ VIN ≤ VCC
All other inputs
ILO
Output Leakage Current
ICC1(3)
Supply Current
ICC3(4)
Supply Current (Standby)
CMOS
VIL
Input Low Voltage
–0.3
0.3VCC
V
VIH
Input High Voltage
0.7VCC
VCC + 0.3
V
VOL
Output Low Voltage
0.2
V
VOH
Output High Voltage
Note: 1.
2.
3.
4.
IOL = 1mA
2.34 to 3.0V
VCC–0.2V
3.0 to 3.6V
VCC–0.3V
IOH = –1mA
V
Valid for Ambient Operating Temperature: TA = –40 to 125°C; VCC = 3.0 to 3.6V or 2.34 to 3.0V (except where noted).
Input leakage on TO Pin due to internal pull-down to VSS.
Average AC current, Outputs open, cycling at tAVAV minimum.
All other Inputs at VIL ≤ 0.2V or VIH ≥ VCC –0.2V.
OPERATION
READ Mode
The M616Z08 is in the READ Mode whenever
WRITE Enable (WE0 or WE1) is High with Output
Enable (OE) Low, and Chip Enable (CE) is asserted. This provides access to data from sixteen of
the 131,072 locations in the static memory array,
specified by the 13 address inputs. Valid data will
be available at the sixteen output pins within tAVQV
after the last stable address, providing OE is Low
and CE is Low. If Chip Enable or Output Enable
access times are not met, data access will be
measured from the limiting parameter (tELQV or
tGLQV) rather than the address. Data out may be
indeterminate at tELQX and tGLQX, but data lines
will always be valid at tAVQV.
Figure 5. Address Controlled, READ Mode AC Waveforms
tAVAV
VALID
A0-A12
tAVQV
DQ0-DQ15
tAXQX
DATA VALID
AI04210
Note: CE = Low, OE = Low, WE(0,1) = High.
6/14
M616Z08
Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms
tAVAV
VALID
A0-A12
tAVQV
tAXQX
tELQV
tEHQZ
CE
tELQX
tGLQV
tGHQZ
OE
tGLQX
DQ0-DQ15
VALID
AI05638
Table 6. READ Mode AC Characteristics
M616Z08
Symbol
Parameter(1)
–20
2.34 to 3.0V
Min
Max
3.0 to 3.6V
Min
Unit
Max
tAVAV
READ Cycle Time
tAVQV
Address Valid to Output Valid
36
20
ns
tELQV
Chip Enable Low to Output Valid
36
20
ns
tGLQV
Output Enable Low to Output Valid
20
10
ns
tELQX
Chip Enable Low to Output Transition
0
0
ns
tGLQX
Output Enable Low to Output Transition
0
0
ns
tEHQZ
(2)
tGHQZ(2)
tAXQX
36
20
ns
Chip Enable High to Output Hi-Z
10
10
ns
Output Enable High to Output Hi-Z
10
10
ns
Address Transition to Output Transition
0
0
ns
Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 125°C (except where noted).
2. CL = 5pF.
7/14
M616Z08
WRITE Mode
The M616Z08 is in the WRITE mode whenever the
WE0 (low memory addresses) or WE1 (high memory addresses) and CE pins are low (see Table 8,
page 10). Either the Chip Enable input (CE) or the
WRITE Enable input (WE0 or WE1) must be deasserted during Address transitions for subsequent WRITE cycles. WRITE begins with the concurrence of Chip Enable being active with WE0 or
WE1 low. Therefore, address setup time is referenced to WRITE Enable and Chip Enable as tAVWL
and tAVEH respectively, and is determined by the
latter occurring edge.
The WRITE cycle can be terminated by the earlier
rising edge of CE, or WE0/WE1.
if the Output is enabled (CE = Low and OE = Low),
then WE0 or WE1 will return the outputs to high
impedance within tWLQZ of its falling edge. Care
must be taken to avoid bus contention in this type
of operation. Data input must be valid for tDVWH
before the rising edge of WRITE Enable, or for tDVEH before the rising edge of CE, whichever occurs first, and remain valid for tWHDX or tEHDX.
Note: When using MCP555 with TO Pin high, relaxed WRITE timing (CSNT = 1 in the chip select
configuration register) should be selected.
Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveforms
tAVAV
VALID
A0-A12
tAVWH
tWHAX
tAVEL
CE
tWLWH
tAVWL
WE (0,1)
tWLQZ
tWHQX
tWHDX
DATA INPUT
DQ0-DQ15
tDVWH
AI04211
Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms
tAVAV
VALID
A0-A12
tAVEH
tELEH
tAVEL
tEHAX
CE
tAVWL
WE (0,1)
tEHDX
DQ0-DQ15
DATA INPUT
tDVEH
AI05639
Note: 1. Output Enable (OE) = High.
2. If CE goes High with WE0 or WE1 high, the output remains in a high-impedance state.
8/14
M616Z08
Table 7. WRITE Mode AC Characteristics
M616Z08
Parameter(1)
Symbol
–20
Unit
2.34 to 3.0V
Min
Max
3.0 to 3.6V
Min
Max
tAVAV
WRITE Cycle Time
36
20
ns
tAVWL
Address Valid to WRITE Enable Low
2
2
ns
tAVWH
Address Valid to WRITE Enable High
34
18
ns
tAVEH
Address Valid to Chip Enable High
34
18
ns
tWLWH
WRITE Enable Pulse Width
25
11
ns
tWHAX
WRITE Enable High to Address Transition
2
2
ns
tWHDX
WRITE Enable High to Input Transition
2
2
ns
tWHQX(3)
WRITE Enable High to Output Transition
0
0
ns
tWLQZ(2,3)
WRITE Enable Low to Output Hi-Z
tAVEL
Address Valid to Chip Enable Low
2
2
ns
tELEH
Chip Enable Low to Chip Enable High
25
11
ns
tEHAX
Chip Enable High to Address Transition
2
2
ns
tEHDX
Chip Enable High to Input Transition
2
2
ns
tDVWH
Input Valid to WRITE Enable High
20
8
ns
tDVEH
Input Valid to Chip Enable High
20
8
ns
10
10
ns
Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 125°C (except where noted).
2. CL = 5pF
3. At any given temperature and voltage condition, t WLQZ is less than tWHQX for any given device.
9/14
M616Z08
“Operational” Mode
The M616Z08 has a Chip Enable power down feature which invokes an automatic standby mode
whenever Chip Enable is de-asserted (CE = High).
An Output Enable (OE) signal provides a high
speed tri-state control, allowing fast READ/WRITE
cycles to be achieved with the common I/O data
bus. Operational modes are determined by device
control inputs WE0 or WE1 and CE as summarized in “Operating Modes” (see Table 8 and Table
9).
Noise Immunity
When designing with high speed memory, proper
power trace layout and capacitive decoupling
must be maintained to ensure proper system operation. Power and ground line inductance should be
reduced by providing separate power planes. The
impedance of the decoupling path from the power
pin through the decoupling capacitor should also
be kept to a minimum. Small decoupling capacitors (10nF) should be located as close to the device pins as possible to limit the high frequency
noise. Larger capacitor values (10uF and 1uF) are
recommended to reduce low frequency noise and
should be placed next to the power entry point of
the board. Proper line termination should also be
employed to minimize signal reflection.
See Motorola Semiconductor Application Note
AN2127/D for additional Electromagnetic Compatibility (EMC) system design guidelines.
Table 8. WE(0,1) States during Access
WRITE Enable
Used during 16-bit Port Access
WE0
WRITE Enable for DQ (0-7)
WE1
WRITE Enable for DQ (8-15)
Table 9. Operating Modes
Operation
CE
OE
WE0
WE1
DQ0–DQ7
DQ8–15
Deselect
VIH
X(1)
X(1)
X(1)
Hi-Z
Hi-Z
Word WRITE
VIL
VIH
VIL
VIL
Hi-Z
Hi-Z
Byte 0 WRITE
VIL
VIH
VIL
VIH
Hi-Z
Hi-Z
Byte 1 WRITE
VIL
VIH
VIH
VIL
Hi-Z
Hi-Z
Byte 0 WRITE, Byte 1 READ
VIL
VIL
VIL
VIH
Hi-Z
Data
Byte 1 WRITE, Byte 0 READ
VIL
VIL
VIH
VIL
Data
Hi-Z
Word READ
VIL
VIL
VIH
VIH
Data
Data
Note: 1. X = '1' or '0'
10/14
M616Z08
PART NUMBERING
Table 10. Ordering Information Example
Example:
M6
16Z08
–20
MH
3
TR
Device Type
M6
Device Function
16Z08 = 128Kbit (8 x16)
Speed
–20 = 20ns (3.0 to 3.6V)
Package
MH = 44-lead, Hatless SOIC
Temperature Range
3 = –40 to 125°C
Shipping Method for SOIC
blank = Tubes
TR = Tape & Reel
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the ST Sales Office nearest to you.
11/14
M616Z08
PACKAGE MECHANICAL INFORMATION
Figure 9. SO44 – 44-Lead, Plastic, Hatless, Small Package Outline
A2
A
C
B
e
CP
D
N
E
H
A1
α
L
1
SOH-C
Note: Drawing is not to scale.
Table 11. SO44 – 44-lead, Plastic, Hatless, Small Package Mechanical Data
mm
inches
Symb
Min
Typ
A
Min
Typ
3.05
Max
0.120
A1
0.05
0.36
0.002
0.014
A2
2.34
2.69
0.092
0.106
B
0.36
0.46
0.014
0.018
C
0.15
0.32
0.006
0.012
D
17.71
18.49
0.697
0.728
E
8.23
8.89
0.324
0.350
–
–
–
–
H
11.51
12.70
0.453
0.500
L
0.41
1.27
0.016
0.050
a
0°
8°
0°
8°
N
44
e
CP
12/14
Max
0.81
0.032
44
0.10
0.004
M616Z08
REVISION HISTORY
Table 12. Document Revision History
Date
Rev. #
Revision Details
September 2001
1.0
First Issue
11/1901
2.0
Correction of Operating Modes text (Table 9); document status changed to “Data Sheet;”
add text for Noise Immunity (page 10)
02/12/02
2.1
Add TO Pin (Figure 2, 3, Table 1); change WRITE Mode AC Characteristics (Table 7)
02/21/02
2.2
Changes for TO Pin (Table 5) and change characteristics (Table 6, 7)
05/13/02
2.3
Add reflow time and temperature footnote (Table 2)
07/22/02
2.4
Add “Hatless” to package description (Figure 1, 9 and Table 10, 11)
13/14
M616Z08
Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Automotive, Low, Power, Low,
Power, Low, Power, Low, Power, Low, Power, Low, Power, Low, Power, Low, Power, Low, Power, Low,
Power, Low, Power, Low, Power, Low, Power, Low, Power, Low, Power, SRAM, SRAM, SRAM, SRAM,
SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, SRAM, LPSRAM,
LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM, LPSRAM,
LPSRAM, LPSRAM, LPSRAM, LPSRAM, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, Auto, High, Temperature, Temp, Range, High, Temperature, Temp, Range, High, Temperature, Temp, Range, High, Temperature, Temp, Range, High,
Temperature, Temp, Range, High, Temperature, Temp, Range, High, Temperature, Temp, Range, High,
Temperature, Temp, Range, High, Temperature, Temp, Range, High, Temperature, Temp, Range
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
www.st.com
14/14