M48Z512BV 3.3 V, 4 Mbit (512 K x 8 bit) ZEROPOWER® SRAM Features ■ Integrated, ultra-low power SRAM, power-fail control circuit, and battery ■ Conventional SRAM operation; unlimited WRITE cycles ■ 10 years of data retention in the absence of power ■ Automatic power-fail chip deselect and WRITE protection ■ 3.0 to 3.6 V operation – 2.9 V power-fail deselect Description ■ Pin and function compatible with JEDEC standard 512 K x 8 SRAMs ■ PMDIP32 is an ECOPACK® package ■ For 5 V applications, refer to the M48Z512A The M48Z512BV ZEROPOWER® RAM is a nonvolatile, 4,194,304-bit static RAM organized as 524,288 words by 8 bits. The devices combine an internal lithium battery, a CMOS SRAM and a control circuit in a plastic, 32-pin DIP module. 32 August 2008 1 PMDIP32 (PM) module Rev 1 1/20 www.st.com 1 Contents M48Z512BV Contents 1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Data retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 VCC noise and negative going transients . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2/20 M48Z512BV List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 READ mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 WRITE mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power down/up AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PMDIP32 – 32-pin plastic DIP module, package mechanical data. . . . . . . . . . . . . . . . . . . 17 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3/20 List of figures M48Z512BV List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. 4/20 Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DIP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip enable or output enable controlled, READ mode AC waveforms. . . . . . . . . . . . . . . . . 8 Address controlled, READ mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 WRITE enable controlled, WRITE AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chip enable controlled, WRITE AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Supply voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PMDIP32 – 32-pin plastic DIP module, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 17 M48Z512BV 1 Device overview Device overview Figure 1. Logic diagram VCC 19 8 A0-A18 W DQ0-DQ7 M48Z512BV E G VSS AI02043 Table 1. Signal names A0-A18 DQ0-DQ7 Address inputs Data inputs/outputs E Chip enable input G Output enable input W WRITE enable input VCC Supply voltage VSS Ground 5/20 Device overview Figure 2. M48Z512BV DIP connections A18 A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS 1 2 3 4 5 6 7 8 M48Z512BV 9 10 11 12 13 14 15 16 VCC A15 A17 W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4 DQ3 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 AI02044 Figure 3. Block diagram VCC A0-A18 POWER E VOLTAGE SENSE AND SWITCHING CIRCUITRY 512K x 8 SRAM ARRAY DQ0-DQ7 E W G INTERNAL BATTERY VSS 6/20 AI02045 M48Z512BV 2 Operating modes Operating modes The M48Z512BV also has its own power-fail detect circuit. The control circuitry constantly monitors the single VCC supply for an out of tolerance condition. When VCC is out of tolerance, the circuit WRITE protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low VCC. As VCC falls below the switchover voltage (VSO), the control circuitry connects the battery which maintains data until valid power returns. The ZEROPOWER® RAM replaces industry standard SRAMs. It provides the nonvolatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed. Table 2. Operating modes(1) Mode VCC Deselect WRITE 3.0 to 3.6 V READ READ Deselect VSO to VPFD Deselect ≤ (min)(2) VSO(2) E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active VIL VIL VIH DOUT Active VIL VIH VIH High Z Active X X X High Z CMOS standby X X X High Z Battery backup mode 1. See Table 10 on page 16 for details. 2. X = VIH or VIL; VSO = battery backup switchover voltage. 2.1 READ mode The M48Z512BV is in the READ mode whenever W (WRITE enable) is high and E (chip enable) is low. The device architecture allows ripple-through access of data from eight of 4,194,304 locations in the static storage array. Thus, the unique address specified by the 19 address inputs defines which one of the 524,288 bytes of data is to be accessed. Valid data will be available at the data I/O pins within address access time (tAVQV) after the last address input signal is stable, providing that the E (chip enable) and G (output enable) access times are also satisfied. If the E and G access times are not met, valid data will be available after the later of chip enable access time (tELQV) or output enable access time (tGLQV). The state of the eight three-state data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the address inputs are changed while E and G remain low, output data will remain valid for output data hold time (tAXQX) but will go indeterminate until the next address access. 7/20 Operating modes Figure 4. M48Z512BV Chip enable or output enable controlled, READ mode AC waveforms tAVAV A0-A18 VALID tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ7 DATA OUT AI01221 1. WRITE enable (W) = high. Figure 5. Address controlled, READ mode AC waveforms A0-A18 tAVAV tAVQV DQ0-DQ7 tAXQX DATA VALID AI01220 1. Chip enable (E) and output enable (G) = low, WRITE enable (W) = high. 8/20 M48Z512BV Operating modes Table 3. READ mode AC characteristics Parameter(1) Symbol Min Max Unit tAVAV READ cycle time tAVQV Address valid to output valid 85 ns tELQV Chip enable low to output valid 85 ns tGLQV Output enable low to output valid 45 ns (2) 85 ns Chip enable low to output transition 5 ns tGLQX(2) Output enable low to output transition 5 ns tEHQZ(2) Chip enable high to output Hi-Z 35 ns tGHQZ(2) Output enable high to output Hi-Z 25 ns tELQX tAXQX Address transition to output transition 5 ns 1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 3.0 to 3.6 V (except where noted). 2. CL = 5 pF. 2.2 WRITE mode The M48Z512BV is in the WRITE mode whenever W and E are active. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tEHAX from E or tWHAX from W prior to the initiation of another READ or WRITE cycle. Data-in must be valid tDVEH or tDVWH prior to the end of WRITE and remain valid for tEHDX or tWHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G, a low on W will disable the outputs tWLQZ after W falls. 9/20 Operating modes Figure 6. M48Z512BV WRITE enable controlled, WRITE AC waveforms tAVAV A0-A18 VALID tAVWH tAVEL tWHAX E tWLWH tAVWL W tWHQX tWLQZ tWHDX DATA INPUT DQ0-DQ7 tDVWH AI01222 1. Output enable (G) = high. Figure 7. Chip enable controlled, WRITE AC waveforms tAVAV VALID A0-A18 tAVEH tAVEL tELEH tEHAX E tAVWL W tEHDX DQ0-DQ7 DATA INPUT tDVEH AI01223 1. Output enable (G) = high. 10/20 M48Z512BV Operating modes Table 4. WRITE mode AC characteristics Parameter(1) Symbol Min Max Unit tAVAV WRITE cycle time 85 ns tAVWL Address valid to WRITE enable low 0 ns tAVEL Address valid to chip enable low 0 ns tWLWH WRITE enable pulse width 65 ns tELEH Chip enable low to chip enable high 75 ns tWHAX WRITE enable high to address transition 5 ns tEHAX Chip enable high to address transition 15 ns tDVWH Input valid to WRITE enable high 35 ns tDVEH Input valid to chip enable high 35 ns tWHDX WRITE enable high to input transition 0 ns tEHDX Chip enable high to input transition 10 ns tWLQZ(2)(3) WRITE enable low to output Hi-Z 30 ns tAVWH Address valid to WRITE enable high 75 ns tAVEH Address valid to chip enable high 75 ns WRITE enable high to output transition 5 ns tWHQX(2)(3) 1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 3.0 to 3.6 V (except where noted). 2. CL = 5 pF. 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. 2.3 Data retention mode With valid VCC applied, the M48Z512BV operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, WRITE protecting itself tWP after VCC falls below VPFD. All outputs become high impedance, and all inputs are treated as “don't care.” If power fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within the time tWP, WRITE protection takes place. When VCC drops below VSO, the control circuit switches power to the internal energy source which preserves data. The internal coin cell will maintain data in the M48Z512BV after the initial application of VCC for an accumulated period of at least 10 years when VCC is less than VSO. As system power returns and VCC rises above VSO, the battery is disconnected, and the power supply is switched to external VCC. WRITE protection continues for tER after VCC reaches VPFD to allow for processor stabilization. After tER, normal RAM operation can resume. For more information on battery storage life refer to the application note AN1012. 11/20 Operating modes 2.4 M48Z512BV VCC noise and negative going transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1 µF (see Figure 8) is recommended in order to provide the needed filtering. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, ST recommends connecting a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). (Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface-mount). Figure 8. Supply voltage protection VCC VCC 0.1μF DEVICE VSS AI02169 12/20 M48Z512BV 3 Maximum ratings Maximum ratings Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Absolute maximum ratings Symbol Parameter Value Unit TA Ambient operating temperature 0 to 70 °C TSTG Storage temperature (VCC off) –40 to 85 °C TBIAS Temperature under bias 0 to 70 °C 260 °C TSLD (1) Lead solder temperature for 10 seconds VIO Input or output voltages –0.3 to 4.6 V VCC Supply voltage –0.3 to 4.6 V IO Output current 20 mA PD Power dissipation 1 W 1. For DIP package: soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). No preheating above 150°C, or direct exposure to IR reflow (or IR preheat) allowed, to avoid damaging the Lithium battery. Caution: Negative undershoots below –0.3 V are not allowed on any pin while in the battery backup mode. 13/20 DC and AC parameters 4 M48Z512BV DC and AC parameters This section summarizes the operating and measurement conditions, as well as the dc and ac characteristics of the device. The parameters in the following dc and ac characteristic tables are derived from tests performed under the measurement conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 6. Operating and AC measurement conditions(1) Parameter Value Unit 3.0 to 3.6 V 0 to 70 °C Load capacitance (CL) 50 pF Input rise and fall times ≤5 ns 0 to 3 V 1.5 V Supply voltage (VCC) Ambient operating temperature (TA) Input pulse voltages Input and output timing ref. voltages 1. Output Hi-Z is defined as the point where data is no longer driven. Figure 9. AC measurement load circuit DEVICE UNDER TEST CL = 50 pF CL includes JIG capacitance Table 7. CIO(3) AI03903 Capacitance Parameter(1)(2) Symbol CIN 1.75 V Min Max Unit Input capacitance 10 pF Input/output capacitance 10 pF 1. Effective capacitance measured with power supply at 3.3 V; sampled only, not 100% tested. 2. Outputs deselected. 3. At 25°C. 14/20 M48Z512BV DC and AC parameters Table 8. Sym ILI(2) ILO (2) DC characteristics Parameter Input leakage current Output leakage current Test condition(1) Min Max Unit 0V ≤ VIN ≤ VCC ±1 µA 0V ≤ VOUT ≤ VCC ±1 µA E = VIL outputs open 50 mA E = VIH 4 mA E ≥ VCC – 0.2V 3 mA ICC Supply current ICC1 Supply current (standby) TTL ICC2 Supply current (standby) CMOS VIL Input low voltage –0.3 0.6 V VIH Input high voltage 2.2 VCC + 0.3 V VOL Output low voltage IOL = 2.1mA 0.4 V VOH Output high voltage IOH = –1mA 2.2 V 1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 3.0 to 3.6 V (except where noted). 2. Outputs deselected. 15/20 DC and AC parameters Table 9. M48Z512BV Power down/up AC characteristics Parameter(1) Symbol Min Typ Max Unit tF VCC fall time, VPFD to VSS 150 µs tR VCC rise time, VSS to VPFD 150 µs tWP WRITE protect time tER E recovery time 25 µs 70 140 ms 1. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 3.0 to 3.6 V (except where noted). Table 10. Power down/up trip points DC characteristics Parameter(1)(2) Symbol VPFD Power-fail deselect voltage VSO Battery backup switchover voltage tDR (3) Min Typ Max Unit 2.8 2.9 3.0 V 2.4 Expected data retention time V 10 Years 1. All voltages referenced to VSS. 2. Valid for ambient operating temperature: TA = 0 to 70°C; VCC = 3.0 to 3.6 V (except where noted). 3. At 25°C, VCC = 0 V. Figure 10. Power down/up mode AC waveforms tR tF VCC VPFD VSO VSS tDR tWP INPUTS RECOGNIZED (Including E) OUTPUTS VALID tER DON’T CARE HIGH-Z RECOGNIZED VALID AI02385 16/20 M48Z512BV 5 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. ECOPACK® packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 11. PMDIP32 – 32-pin plastic DIP module, package outline A A1 B S L C eA e1 e3 D N E 1 PMDIP 1. Drawing is not to scale. Table 11. PMDIP32 – 32-pin plastic DIP module, package mechanical data mm inches Symb Typ Min Max A 9.27 9.52 A1 0.38 B 0.43 0.59 0.017 0.023 C 0.20 0.33 0.008 0.013 D 42.42 43.18 1.670 1.700 E 18.03 18.80 0.710 0.740 e1 2.29 2.79 0.090 0.110 e3 Typ Min Max 0.365 0.375 0.015 38.10 1.50 eA 14.99 16.00 0.590 0.630 L 3.05 3.81 0.120 0.150 S 1.91 2.79 0.075 0.110 N 32 32 17/20 Part numbering 6 M48Z512BV Part numbering Table 12. Ordering information scheme Example: M48Z 512BV –85 PM 1 Device type M48Z Supply voltage and WRITE protect voltage 512BV: VCC = 3.0 to 3.6 V; VPFD = 2.8 to 3.0 V Speed –85 = 85 ns Package PM = PMDIP32 Temperature range 1 = 0 to 70°C Shipping method blank = ECOPACK® package, tubes For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you. 18/20 M48Z512BV 7 Revision history Revision history Table 13. Document revision history Date Revision 15-Aug-2008 1 Changes Initial release 19/20 M48Z512BV Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20