SM4T6V8,A/220,A SM4T6V8C,CA/220C,CA TRANSIL .. .. . . FEATURES PEAK PULSE POWER= 400 W @ 1ms. BREAKDOWN VOLTAGE RANGE : From 6V8 to 220 V. UNI AND BIDIRECTIONAL TYPES. LOW CLAMPING FACTOR. FAST RESPONSE TIME: Tclamping : 1ps (0 V to VBR). JEDEC REGISTRED. SOD 6 (Plastic) DESCRIPTION . . .. . MECHANICAL CHARACTERISTICS Transil diodes provide high overvoltage protection by clamping action. Their instantaneous reponse to transients makes them praticularly suited to protect voltage sensitive devices such as MOS Technology and low voltage supplied IC’s. Body marked with : Logo, Date Code, Type Code and Cathode Band (for unidirectional types only). Full compatibility with both gluing and paste soldering technologies. Excellent on board stability. Tinned copper leads. High temperature resistant resin. ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit Pp Peak pulse power dissipation See note 1 and derating curve Fig 1. Tamb = 25°C 400 W P Power dissipation on infinite heatsink See note 1 and derating curve Fig 1. Tlead = 50°C 5 W IFSM Non repetitive surge peak forward current. For unidirectional types. Tamb = 25°C t =10 ms 50 A Tstg Tj Storage and junction temperature range - 65 to + 175 150 °C °C TL Maximum lead temperature for soldering during 10 s. 260 °C November 1992 1/7 SM4Txx THERMAL RESISTANCES Symbol Parameter Value Unit Rth (j-l) Junction-leads on infinite heatsink 20 °C/W Rth (j-a) Junction to ambiant. on printed circuit. With standard footprint dimensions. 100 °C/W ELECTRICAL CHARACTERISTICS Symbol Parameter I IF VRM Stand-off voltage. VBR Breakdown voltage. VCL Clamping voltage. IRM Leakage current @ VRM. IPP Surge current. αT Voltage temperature coefficient. VF Forward Voltage drop VF < 3.5V @ IF = 25 A. VCL VBR V RM I PP max VBR @ IR min nom max µA * Bi directional * SM4T6V8 SM4T6V8A SM4T7V5 SM4T7V5A SM4T10 SM4T10A SM4T12 SM4T12A SM4T15 SM4T15A SM4T18 SM4T18A SM4T22 SM4T22A SM4T24 SM4T24A SM4T27 SM4T27A SM4T30 SM4T30A SM4T33 SM4T33A SM4T36 SM4T36A SM4T39 SM4T39 QD QE QF QG QN QP QS QT QW QX RD RE RH RK RL RM RN RP RQ RR RS RT RU RV RW RX SM4T6V8C SM4T6V8CA SM4T7V5C SM4T7V5CA SM4T10C SM4T10CA SM4T12C SM4T12CA SM4T15C SM4T15CA SM4T18C SM4T18CA SM4T22C SM4T22CA SM4T24C SM4T24CA SM4T27C SM4T27CA SM4T30C SM4T30C4 SM4T33C SM4T33CA SM4T36C SM4T36CA SM4T39C SM4T39 VD VE VF VG VN VP VS VT VW VX UD UE UH UK UL UM UN UP UQ UR US UT UU UV UW UX 2/7 142 1000 1000 500 500 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 VCL @ I PP VCL @ IPP max note2 Uni directional V I RM IRM @ VRM TYPES VF max 10/1000µs 8/20µs V V V V mA V A V A 5.8 5.8 6.4 6.4 8.55 8.55 10.2 10.2 12.8 12.8 15.3 15.3 18.8 18.8 20.5 20.5 23.1 23.1 25.6 25.6 28.2 28.2 30.8 30.8 33.3 33.3 6.45 6.45 7.13 7.13 9.5 9.5 11.4 11.4 14.3 14.3 17.1 17.1 20.9 20.9 22.8 22.8 25.7 25.7 28.5 28.5 31.4 31.4 34.2 34.2 37.1 37.1 6.8 6.8 7.5 7.5 10 10 12 12 15 15 18 18 22 22 24 24 27 27 30 30 33 33 36 36 39 39 7.48 7.14 8.25 7.88 11 10.5 13.2 12.6 16.5 15.8 19.8 18.9 24.2 23.1 26.4 25.2 29.7 28.4 33 31.5 36.3 34.7 39.6 37.8 42.9 41.0 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10.5 10.5 11.3 11.3 14.5 14.5 16.7 16.7 21.2 21.2 25.2 25.2 30.6 30.6 33.2 33.2 37.5 37.5 41.5 41.5 45.7 45.7 49.9 49.9 53.9 53.9 38 38 35.4 35.4 27.6 27.6 24 24 19 19 16 16 13 13 12 12 10.7 10.7 9.6 9.6 8.8 8.8 8 8 7.4 7.4 13.4 13.4 14.5 14.5 18.6 18.6 21.7 21.7 27.2 27.2 32.5 32.5 39.3 39.3 42.8 42.8 48.3 48.3 53.5 53.5 59.0 59.0 64.3 64.3 69.7 69.7 174 174 160 160 124 124 106 106 85 85 71 71 59 59 54 54 48 48 43 43 39 39 36 36 33 33 αT C max typ note3 note4 10-4/°C (PF) 5.7 5.7 6.1 6.1 7.3 7.3 7.8 7.8 8.4 8.4 8.8 8.8 9.2 9.2 9.4 9.4 9.6 9.6 9.7 9.7 9.8 9.8 9.9 9.9 10.0 10.0 3500 3500 3100 3100 2000 2000 1550 1550 1200 1200 975 975 800 800 725 725 625 625 575 575 510 510 480 480 450 450 SM4Txx TYPES IRM @ VRM VBR max @ IR min nom max max note2 µA Uni directional * Bi directional * SM4T68 SM4T68A SM4T100 SM4T100A SM4T150 SM4T150A SM4T200 SM4T200A SM4T220 SM4T220A SN SP SW SX TH TK TS TT TU TV SM4T68C SM4T68CA SM4T100C SM4T100CA SM4T150C SM4T150CA SM4T200C SM4T200CA SM4T220C SM4T220CA WN WP WW WX XH XK XS XT XU XV 5 5 5 5 5 5 5 5 5 5 VCL @ IPP VCL @ IPP max 10/1000µs 8/20µs V V V V mA V A V A 58.1 58.1 85.5 85.5 128 128 171 171 188 188 64.6 64.6 95.0 95.0 143 143 190 190 209 209 68 68 100 100 150 150 200 200 220 220 74.8 71.4 110 105 165 158 220 210 242 231 1 1 1 1 1 1 1 1 1 1 92 92 137 137 207 207 274 274 328 328 4.3 4.3 2.9 2.9 2.0 2.0 1.5 1.5 1.4 1.4 121 121 178 178 265 265 353 353 388 388 19 19 13 13 9 9 6.5 6.5 6 6 αT C max typ note3 note4 10-4/°C (PF) 10.4 10.4 10.6 10.6 10.8 10.8 10.8 10.8 10.8 10.8 270 270 200 200 145 145 120 120 110 110 All parameters tested at 25 °C, except where indicated. * = Marking Figure 1: Power dissipation derating versus ambient temperature % I PP 100 100 % 10 s Peak Power (on printed circuit). 80 % PULSE WAVEFORM 10/1000 s 60 % 50 Average Power (on infinite heatsink). 40 % 0 t 1000 s Note 1 : For surges greater than the maximum values, the diode will present a short-circuit Anode - Cathode. Note 2 : Pulse test: TP < 50 ms. Note 3 : ∆VBR = αT * (Ta - 25) * VBR(25°C). Note 4 : VR = 0 V, F = 1 MHz. For bidirectional types, capacitance value is divided by 2. 20 % Tamb (˚c) 0% 0 20 40 60 80 100 120 140 160 180 200 3/7 143 SM4Txx Figure 2 : Peak pulse power versus exponential pulse duration. Pp (W) 100000 Tj initial = 25˚C 10000 1000 100 tp (mS ) EXPO. 10 0.001 0.01 0.1 1 10 100 Figure 3 : Clamping voltage versus peak pulse current. exponential waveform t = 20 µs ________ t = 1 ms ——————t =10 ms ............... VCL (V) 1000 % Ipp Tj initial = 25˚C 100 SM4T 220A 50 SM4T 150A 0 tr 100 t t t r < 10 s SM4T 68A SM4T 39A SM4T 22A SM4T 10A 10 SM4T 6V8A Ipp (A) 1 0.1 1 10 100 1000 Note : The curves of the figure 3 are specified for a junction temperature of 25 °C before surge. The given results may be extrapolated for other junction temperatures by using the following formula : ∆V (BR) = αT (V(BR)) * [Ta -25] * V (BR). For intermediate voltages, extrapolate the given results. 4/7 SM4Txx Figure 4a : Capacitance versus reverse applied voltage for unidirectional types (typical values). Figure 4b : Capacitance versus reverse applied voltage for bidirectional types (typical values) C (pF) C (pF) 10000 1000 10000 SM 4 T 6 V8 A SM 4 T 15A SM 4 T 3 0A SM 4 T 6 8A Tj = 25˚C f = 1 MHz Tj = 25˚C f = 1 MHz SM4T6V8CA 1000 SM4T 15C A SM4T 30CA 100 SM 4T 220A 10 1 100 SM4T 68CA SM4T 220CA V R (V) 10 100 Figure 5 : Peak forward voltage drop versus peak forward current (typical values for unidirectional types). V R (V) 10 1 10 100 Figure 6 : Transient thermal impedance junction-ambient versus pulse duration. For a mounting on PC Board with standard footprint dimensions. ZTH j-a ( ˚C/W ) 100 10 1 0.01 0.1 1 10 100 1000 5/7 SM4Txx ORDER CODE SM 4 T 100 C A TOLERANCE : A= +/- 5% = +/- 10% SURFACE MOUNT 400 WATT BIDIRECTIONAL BREAKDOWN VOLTAGE MARKING : Logo, Date Code, Type Code, Cathode Band (for unidirectional types only). PACKAGE MECHANICAL DATA SOD 6 (Plastic). Ref E B C F A Millimeters Inches min max min max A 2.48 2.61 0.096 0.103 a1 0.10 0.20 0.004 0.008 B 1.96 2.11 0.077 0.083 C 3.65 3.93 0.143 0.155 D 5.39 5.59 0.212 0.220 E 4.15 4.30 0.163 0.170 F 1.00 1.27 0.039 0.050 Weight = 0.12 g. a1 D FOOTPRINT DIMENSIONS (Millimeter). SOD 6 Plastic. b a c Packaging : standard packaging is in film. 6/7 b Ref Millimeters a 2.75 b 1.52 c 2.30 SM4Txx Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. © 1994 SGS-THOMSON Microelectronics - All Rights Reserved Purchase of I2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I2C Patent. Rights to use these components in an I2C system, is grantede provided that the system conforms to the I2C Standard Specification as defined by Philips. SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A 7/7