STMICROELECTRONICS SM4T30C4

SM4T6V8,A/220,A
SM4T6V8C,CA/220C,CA
TRANSIL
..
..
.
.
FEATURES
PEAK PULSE POWER= 400 W @ 1ms.
BREAKDOWN VOLTAGE RANGE :
From 6V8 to 220 V.
UNI AND BIDIRECTIONAL TYPES.
LOW CLAMPING FACTOR.
FAST RESPONSE TIME:
Tclamping : 1ps (0 V to VBR).
JEDEC REGISTRED.
SOD 6
(Plastic)
DESCRIPTION
.
.
..
.
MECHANICAL CHARACTERISTICS
Transil diodes provide high overvoltage
protection
by
clamping
action.
Their
instantaneous reponse to transients makes them
praticularly suited to protect voltage sensitive
devices such as MOS Technology and low
voltage supplied IC’s.
Body marked with : Logo, Date Code, Type
Code and Cathode Band (for unidirectional
types only).
Full compatibility with both gluing and paste
soldering technologies.
Excellent on board stability.
Tinned copper leads.
High temperature resistant resin.
ABSOLUTE RATINGS (limiting values)
Symbol
Parameter
Value
Unit
Pp
Peak pulse power dissipation
See note 1 and derating curve Fig 1.
Tamb = 25°C
400
W
P
Power dissipation on infinite heatsink
See note 1 and derating curve Fig 1.
Tlead = 50°C
5
W
IFSM
Non repetitive surge peak forward current.
For unidirectional types.
Tamb = 25°C
t =10 ms
50
A
Tstg
Tj
Storage and junction temperature range
- 65 to + 175
150
°C
°C
TL
Maximum lead temperature for soldering
during 10 s.
260
°C
November 1992
1/7
SM4Txx
THERMAL RESISTANCES
Symbol
Parameter
Value
Unit
Rth (j-l)
Junction-leads on infinite heatsink
20
°C/W
Rth (j-a)
Junction to ambiant. on printed circuit.
With standard footprint dimensions.
100
°C/W
ELECTRICAL CHARACTERISTICS
Symbol
Parameter
I
IF
VRM
Stand-off voltage.
VBR
Breakdown voltage.
VCL
Clamping voltage.
IRM
Leakage current @ VRM.
IPP
Surge current.
αT
Voltage temperature coefficient.
VF
Forward Voltage drop
VF < 3.5V @ IF = 25 A.
VCL
VBR
V RM
I PP
max
VBR
@
IR
min nom max
µA
*
Bi
directional
*
SM4T6V8
SM4T6V8A
SM4T7V5
SM4T7V5A
SM4T10
SM4T10A
SM4T12
SM4T12A
SM4T15
SM4T15A
SM4T18
SM4T18A
SM4T22
SM4T22A
SM4T24
SM4T24A
SM4T27
SM4T27A
SM4T30
SM4T30A
SM4T33
SM4T33A
SM4T36
SM4T36A
SM4T39
SM4T39
QD
QE
QF
QG
QN
QP
QS
QT
QW
QX
RD
RE
RH
RK
RL
RM
RN
RP
RQ
RR
RS
RT
RU
RV
RW
RX
SM4T6V8C
SM4T6V8CA
SM4T7V5C
SM4T7V5CA
SM4T10C
SM4T10CA
SM4T12C
SM4T12CA
SM4T15C
SM4T15CA
SM4T18C
SM4T18CA
SM4T22C
SM4T22CA
SM4T24C
SM4T24CA
SM4T27C
SM4T27CA
SM4T30C
SM4T30C4
SM4T33C
SM4T33CA
SM4T36C
SM4T36CA
SM4T39C
SM4T39
VD
VE
VF
VG
VN
VP
VS
VT
VW
VX
UD
UE
UH
UK
UL
UM
UN
UP
UQ
UR
US
UT
UU
UV
UW
UX
2/7
142
1000
1000
500
500
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
VCL @ I PP VCL @ IPP
max
note2
Uni
directional
V
I RM
IRM @ VRM
TYPES
VF
max
10/1000µs
8/20µs
V
V
V
V
mA
V
A
V
A
5.8
5.8
6.4
6.4
8.55
8.55
10.2
10.2
12.8
12.8
15.3
15.3
18.8
18.8
20.5
20.5
23.1
23.1
25.6
25.6
28.2
28.2
30.8
30.8
33.3
33.3
6.45
6.45
7.13
7.13
9.5
9.5
11.4
11.4
14.3
14.3
17.1
17.1
20.9
20.9
22.8
22.8
25.7
25.7
28.5
28.5
31.4
31.4
34.2
34.2
37.1
37.1
6.8
6.8
7.5
7.5
10
10
12
12
15
15
18
18
22
22
24
24
27
27
30
30
33
33
36
36
39
39
7.48
7.14
8.25
7.88
11
10.5
13.2
12.6
16.5
15.8
19.8
18.9
24.2
23.1
26.4
25.2
29.7
28.4
33
31.5
36.3
34.7
39.6
37.8
42.9
41.0
10
10
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10.5
10.5
11.3
11.3
14.5
14.5
16.7
16.7
21.2
21.2
25.2
25.2
30.6
30.6
33.2
33.2
37.5
37.5
41.5
41.5
45.7
45.7
49.9
49.9
53.9
53.9
38
38
35.4
35.4
27.6
27.6
24
24
19
19
16
16
13
13
12
12
10.7
10.7
9.6
9.6
8.8
8.8
8
8
7.4
7.4
13.4
13.4
14.5
14.5
18.6
18.6
21.7
21.7
27.2
27.2
32.5
32.5
39.3
39.3
42.8
42.8
48.3
48.3
53.5
53.5
59.0
59.0
64.3
64.3
69.7
69.7
174
174
160
160
124
124
106
106
85
85
71
71
59
59
54
54
48
48
43
43
39
39
36
36
33
33
αT
C
max
typ
note3 note4
10-4/°C (PF)
5.7
5.7
6.1
6.1
7.3
7.3
7.8
7.8
8.4
8.4
8.8
8.8
9.2
9.2
9.4
9.4
9.6
9.6
9.7
9.7
9.8
9.8
9.9
9.9
10.0
10.0
3500
3500
3100
3100
2000
2000
1550
1550
1200
1200
975
975
800
800
725
725
625
625
575
575
510
510
480
480
450
450
SM4Txx
TYPES
IRM @ VRM
VBR
max
@
IR
min nom max
max
note2
µA
Uni
directional
*
Bi
directional
*
SM4T68
SM4T68A
SM4T100
SM4T100A
SM4T150
SM4T150A
SM4T200
SM4T200A
SM4T220
SM4T220A
SN
SP
SW
SX
TH
TK
TS
TT
TU
TV
SM4T68C
SM4T68CA
SM4T100C
SM4T100CA
SM4T150C
SM4T150CA
SM4T200C
SM4T200CA
SM4T220C
SM4T220CA
WN
WP
WW
WX
XH
XK
XS
XT
XU
XV
5
5
5
5
5
5
5
5
5
5
VCL @ IPP VCL @ IPP
max
10/1000µs
8/20µs
V
V
V
V
mA
V
A
V
A
58.1
58.1
85.5
85.5
128
128
171
171
188
188
64.6
64.6
95.0
95.0
143
143
190
190
209
209
68
68
100
100
150
150
200
200
220
220
74.8
71.4
110
105
165
158
220
210
242
231
1
1
1
1
1
1
1
1
1
1
92
92
137
137
207
207
274
274
328
328
4.3
4.3
2.9
2.9
2.0
2.0
1.5
1.5
1.4
1.4
121
121
178
178
265
265
353
353
388
388
19
19
13
13
9
9
6.5
6.5
6
6
αT
C
max
typ
note3 note4
10-4/°C (PF)
10.4
10.4
10.6
10.6
10.8
10.8
10.8
10.8
10.8
10.8
270
270
200
200
145
145
120
120
110
110
All parameters tested at 25 °C, except where indicated.
* = Marking
Figure 1: Power dissipation derating versus
ambient temperature
% I PP
100
100 %
10 s
Peak Power
(on printed circuit).
80 %
PULSE WAVEFORM 10/1000 s
60 %
50
Average Power
(on infinite heatsink).
40 %
0
t
1000 s
Note 1 :
For surges greater than the maximum values,
the diode will present a short-circuit Anode - Cathode.
Note 2 :
Pulse test: TP < 50 ms.
Note 3 :
∆VBR = αT * (Ta - 25) * VBR(25°C).
Note 4 :
VR = 0 V, F = 1 MHz. For bidirectional types,
capacitance value is divided by 2.
20 %
Tamb (˚c)
0%
0
20
40
60
80 100 120 140 160 180 200
3/7
143
SM4Txx
Figure 2 : Peak pulse power versus exponential pulse duration.
Pp (W)
100000
Tj initial = 25˚C
10000
1000
100
tp (mS ) EXPO.
10
0.001
0.01
0.1
1
10
100
Figure 3 : Clamping voltage versus peak pulse current.
exponential waveform t = 20 µs ________
t = 1 ms ——————t =10 ms ...............
VCL (V)
1000
% Ipp
Tj initial = 25˚C
100
SM4T 220A
50
SM4T 150A
0
tr
100
t
t
t r < 10
s
SM4T 68A
SM4T 39A
SM4T 22A
SM4T 10A
10
SM4T 6V8A
Ipp (A)
1
0.1
1
10
100
1000
Note : The curves of the figure 3 are specified for a junction temperature of 25 °C before surge.
The given results may be extrapolated for other junction temperatures by using the following formula :
∆V (BR) = αT (V(BR)) * [Ta -25] * V (BR).
For intermediate voltages, extrapolate the given results.
4/7
SM4Txx
Figure 4a : Capacitance versus reverse applied
voltage for unidirectional types (typical values).
Figure 4b : Capacitance versus reverse applied
voltage for bidirectional types (typical values)
C (pF)
C (pF)
10000
1000
10000
SM 4 T 6
V8 A
SM 4 T
15A
SM 4 T
3 0A
SM 4 T
6 8A
Tj = 25˚C
f = 1 MHz
Tj = 25˚C
f = 1 MHz
SM4T6V8CA
1000 SM4T 15C
A
SM4T 30CA
100 SM 4T 220A
10
1
100
SM4T 68CA
SM4T 220CA
V R (V)
10
100
Figure 5 : Peak forward voltage drop versus
peak forward current (typical values for
unidirectional types).
V R (V)
10
1
10
100
Figure 6 : Transient thermal impedance
junction-ambient versus pulse duration. For a
mounting on PC Board with standard footprint
dimensions.
ZTH j-a ( ˚C/W )
100
10
1
0.01
0.1
1
10
100
1000
5/7
SM4Txx
ORDER CODE
SM 4 T 100
C A
TOLERANCE :
A= +/- 5%
= +/- 10%
SURFACE MOUNT
400 WATT
BIDIRECTIONAL
BREAKDOWN VOLTAGE
MARKING : Logo, Date Code, Type Code, Cathode Band (for unidirectional types only).
PACKAGE MECHANICAL DATA
SOD 6 (Plastic).
Ref
E
B
C
F
A
Millimeters
Inches
min
max
min
max
A
2.48
2.61
0.096
0.103
a1
0.10
0.20
0.004
0.008
B
1.96
2.11
0.077
0.083
C
3.65
3.93
0.143
0.155
D
5.39
5.59
0.212
0.220
E
4.15
4.30
0.163
0.170
F
1.00
1.27
0.039
0.050
Weight = 0.12 g.
a1
D
FOOTPRINT DIMENSIONS (Millimeter).
SOD 6 Plastic.
b
a
c
Packaging : standard packaging is in film.
6/7
b
Ref
Millimeters
a
2.75
b
1.52
c
2.30
SM4Txx
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips
I2C Patent. Rights to use these components in an I2C system, is grantede provided that the system conforms to
the I2C Standard Specification as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
7/7