STMICROELECTRONICS STV9410D

STV9410
CRT AND LCD SEMI-GRAPHIC DISPLAY PROCESSOR
.
..
.
.
.
.
.
.
.
.
.
CMOS SINGLE CHIP CRT AND LCD DISPLAY PROCESSOR
BUILT IN 6 KBYTE RAM
25 ROWS OR MORE OF 40 CHARACTERS
CRT MODE :
- ANALOG Y LUMINANCE OUTPUT OF 4BIT DAC
- R,G,B DIGITAL COLOR OUTPUTS
- FAST BLANKING OUTPUT FOR VIDEO
SWITCH COMMAND
- SYNCHRONIZATION INPUT AND OUTPUT
- MASTER AND SLAVE SYNCHRONIZATION
MODES
LCD MODE :
- 8 GREY LEVELS
- 4 BIT DATA WITH CLOCK OUTPUT
- 3 OUTPUTS FOR LCD DRIVERS SYNCHRONIZATION
- CONTRAST ANALOG COMMAND WITH
DAC OUTPUT
128 ALPHANUMERIC CODES AND 128
SEMI-GRAPHIC CODES IN INTERNAL ROM
PARALLEL ATTRIBUTES THANKS TO 2
BYTE CODES
128 ALPHANUMERIC AND 96 SEMIGRAPHIC USER DEFINABLE CODES
DOWN-LOADABLE IN RAM
3-WIRE ASYNCHRONOUS SERIAL MCU INTERFACE
SQUARE WAVE OR LOGICAL PROGRAMMABLE OUTPUT
FULLY PROGRAMMABLE WITH 7 16-BIT
CONTROL REGISTERS
24-PIN SO OR 20-PIN DIP PACKAGES
DESCRIPTION
STV9410 controller is a VLSI CMOS Display Processor. Time base generator, display control & refresh logic, interface for transparent MCU memory
access, ROM character sets, memory to store display data & page codes and control registers are
gathered on a single chip component packed in a
short 20 DIP or SO plastic package.
April 1996
Using its 3-wire serial interface, working in both
read and write mode to program 7 control registers
and to access internal RAM, STV9410 is a highly
flexible processor.
The STV9410 provides the user an easy to use and
cost effective solution to display alphanumeric and
semigraphic Informationon CRT and LCD screens.
DIP20
(Plastic Package)
ORDER CODE : STV9410P
SO24
(Plastic Micropackage)
ORDER CODE : STV9410D
1/25
STV9410
PIN CONNECTIONS
SO24
CRT
LCD
XTO
1
20
VDD
VDD
XTI
2
19
SYNC IN
CKD
CKO
3
18
VSYNC
FRAME
POR
4
17
C SYNC
LOAD
NCS
5
16
-
DF
SDA
6
15
I
D0
SCK
7
14
B
D1
VREF
8
13
G
D3
VSSA
9
12
R
D2
VSS
10
11
Y
VEE
CRT
LCD
RESERVED
1
24
-
RESERVED
XTO
2
23
VDD
V DD
XTI
3
22
SYNC IN
CKD
CKO
4
21
VSYNC
FRAME
POR
5
20
C SYNC
LOAD
NCS
6
19
-
DF
SDA
7
18
I
D0
D1
SCK
8
17
B
V REF
9
16
G
D3
V SSA
10
15
R
D2
V SS
11
14
Y
V EE
RESERVED
12
13
-
RESERVED
9410-01.EPS - 9410-02.EPS
DIP20
PIN DESCRIPTION
Symbol
Pin no
DIP20
SO24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
I/O
Description
XTO
XTI
CKO
POR
NCS
SDA
SCK
VREF
VSSA
VSS
Y
R
G
B
I
C SYNC
VSYNC
SYNC IN
VDD
-
2/25
O
I
O
O
I
I/O
I
I
S
S
O
O
O
O
O
O
O
O
I/O
S
-
Reserved
Crystal oscillator output
Crystal oscillator or clock input
Clock output
Programmable output port
Serial interface selection
Serial data input/output
Serial interface clock input
Reset input and ref supply of Y DAC
Ref ground of Y DAC
Ground
Reserved
Reserved
Luminance output
Red output
Green output
Blue output
Fast blanking output
Reserved
Composite synchro output
Vertical synchro output
Synchro input
+5v power supply
Reserved
9410-01.TBL
CRT MODE
STV9410
PIN DESCRIPTION (continued)
o
Pin n
Symbol
DIP20
SO24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
I/O
Description
LCD MODE
O
I
O
O
I
I/O
I
I
S
S
O
O
O
O
O
O
O
O
I/O
S
-
Reserved
Crystal oscillator output
Crystal oscillator or clock input
Clock output
Programmable output port
Serial interface selection
Serial data input/output
Serial interface clock input
Reset input and ref supply of contrast adjustment
Ref ground of contrast adjustment
Ground
Reserved
Reserved
Constrast adjustment
D2 Data output
D3 Data output
D1 Data output
D0 Data output
LCD polarity output
Load output (line)
Frame output
Data Clock
+5v power supply
Reserved
9410-02.TBL
XTO
XTI
CKO
POR
NCS
SDA
SCK
VREF
VSSA
VSS
VEE
D2
D3
D1
D0
DF
LOAD
FRAME
CKD
VDD
-
BLOCK DIAGRAM
XTI
XTO
CKO
VDD
PO R
VREF
S TV9410
CLOCK
GENE RATOR
CONTROL
P ROCES SING
DISPLAY
LOGIC
TIME BASE
DAC
LCD
MODE
R, G, B
C S YNC
VSYNC
I
Y
D2, D3 , D1
LOAD
FRAME
D0
VEE
DF
CKD (SYNC IN)
MCU
INTERFACE
NCS
SDA
SCK
6K BYTE
RAM
VS S
9410-03.EPS
S YNC
IN
CRT
MODE
VS SA
3/25
STV9410
ABSOLUTE MAXIMUM RATINGS
Parameter
Value
Unit
V
VDD*
Supply Voltage
-0.3, +7.0
VIN*
Input Voltage
-0.3, +7.0
Toper
Operating Temperature
Tstg
Storage Temperature
Ptot
Power Dissipation
V
0, +70
o
-40, +125
o
C
C
300
mW
9410-03.TBL
Symbol
* with respect to VSS
ELECTRICAL CHARACTERISTICS
(VDD = 5V, VSS = 0V, Ta = 0 to + 70oC, fxtal = 8 to 10MHz, unless otherwise specified)
Symbol
Min
Typ
Max
Unit
VDD
Supply voltage
Parameter
4.75
5.0
5.25
V
IDD
Supply current *
-
-
50
mA
0
-
0.8
V
INPUTS
NCS, SDA, SCK, SYNC IN, XTI
VIL
Input low voltage
VIH
Input high voltage (except XTI)
IIL
Input leakage current (except XTI) (0 < VIN < VDD)
CIN
Input capacitance (except XTI)
2
-
VDD
V
-10
-
+10
µA
-
10
-
pF
1.5
-
VDD
V
VREF
Vrh
Voltage reference of DAC
Vrst
Reset level on VREF
RIN
VREF to VSSA internal resistance
VSSA
Reference level of DAC
0
-
0.4
V
0.4
-
1.0
kΩ
0
-
VDD
V
0
-
0.4
V
0.8 VDD
-
VDD
V
OUTPUTS
SDA, CSYNC, VSYNC, R, G, B, I, SYNC IN, DF, XTO, CKO, POR
VOL
Output low voltage (IOL = 1.6mA)
VOH
Output high voltage (IOH = - 0.1mA )
Y
LI
Integral linearity
-
-
0.25
V
LD
Differential linearity
-
-
0.1
V
ZOUT
Output impedance
-
-
0.5
kΩ
Propagation time at VOUT 90% of V FINAL,
C L=20pF, IOUT=0, VREF=5V, VSSA=0V
-
-
80
ns
Tp
* no load on outputs
4/25
9410-04.TBL
Output voltage (VREF=5V, VSSA=0, IOUT=0)
STV9410
TIMINGS
(VDD = 5V ±5%, VSS = 0V, Ta = 0 to + 70oC, fxtal = 8 to 10MHz,
VIL = 0.8V, VIH = 2V, VOL = 0.4V, VOH = 2.4V, CL = 50pF, unless otherwise specified)
Symbol
Parameter
Min
Typ
Max
Unit
SERIAL INTERFACE NCS, SCK, SDA (Figure 1)
Tcsl
NCS low to SCK falling edge
0
ns
Tsch
SCK pulse width high
80
ns
Tscl
SCK pulse width low
80
fSCK
Serial Clock Frequency
ns
4
Tsds
Set up time of SDA on SCK rising edge
20
Tsdh
Hold time of SDA after SCK rising edge
20
Tsdv
Access time in read mode
Tsdx
Hold data in read mode
Tsdz
Serial interface disable time
Tread
Delay before Valid Data
MHz
ns
ns
50
ns
0
ns
50
ns
2
µs
OSCILLATOR INPUT (XTI) (Figure 1)
Twh
Clock high level
30
ns
T wl
Clock low level
30
ns
Fclk
Clock frequency
8
Reset Low level pulse
2
10
MHz
RESET (VREF)
Tres
µs
OUTPUT SIGNALS SDA, CSYNC, VSYNC, R, G, B, I, SYNC IN, DF, XTO, CKO, POR (Figure 2)
Tph,Tpl
Propagation time
Tskew
Skew between R, G, B, I signals
CL = 30 pF
CL = 100 pF
50
100
ns
ns
30
ns
o
(VDD = 5V ±5%, VSS = 0V, Ta = 0 to + 70 C, fxtal = 8 to 10MHz,
VOL = 0.2VDD, VOH = 0.8VDD, CL = 100pF, unless otherwise specified)
tCYC
CKD Shift Clock Period
tCH
tCL
4 x Pxtal
ns
CKD Clock High
150
ns
CKD Clock Low
150
ns
tWLD
Load Pulse Width
150
ns
ns
tSU
Data Set-up Time
150
tDH
Data Hold Time
150
tDF
DF Delay from Load
tSUF
Frame Set-up before Load
ns
100
150
ns
ns
5/25
9410-05.TBL
LCD INTERFACE D0, D1, D2, D3, CKD, LOAD, DF, FRAME (Figure 3)
STV9410
Figure 1 : Microcontroller Interface Timings
NCS
t csl
t read
t sch
SCK
SDA
t scl
t sdh
A8
A9 A6
t sdx
t sdv
A7
D0
WRITE
D1
D6
READ
t sdz
D7
9410-04.EPS
t sds
Figure 2 : Output Signals Delay versus Clock
t wh
t wl
XTI
t pl
t ph
OUTPUT
9410-05.EPS
t skew
OUTPUT
Figure 3 : LCD Interface Timings
t CH
t CL
t CLD
CKD
t CYC
t WLD
LOAD
t SU
t DH
D0, D1
D2, D3
t DF
DF
FRAME
6/25
9410-06.EPS
t SUF
STV9410
2. FUNCTIONAL DESCRIPTION
STV9410 display processor operation is controlled
by a host microcomputer via a 3-wire serial bus. It
is fully programmable through seven internal
read/write registers and performs all the display
functions either for CRT screen or LCD passive
matrix by generating pixels from data stored in its
internal memory. In addition, the host microcomputer can have straightforward accesses to the
on-chip 6 Kbytes RAM, even during the display
operation.
The following functions are integrated in the
STV9410 :
- Crystal oscillator,
- Programmable timing generator,
- Microcomputer 3-wire serial interface,
- ROM character generatorincluding 128 alphanumeric and 128 semigraphic character sets,
- 6 Kbytes on chip RAM to store character codes,
user definable character sets, and any host microcomputer data,
and in CRT mode :
- Y output driven by a 4-bit DAC,
- Programmable master or slave synchro modes,
- R, G, B, I outputs,
in LCD mode :
- LCD interface for passive multiplexed matrix,
- 7 grey levels plus black.
2.1 SERIAL INTERFACE
This 3-wire serial interface can be used with any
microcomputer. Data transfer is supported by hardware peripherals like SPI or UART and can be
emulated with standard I/O port using software
routine ( see application note ).
NCS input enablestransfer on high to low transition
and transfer stays enabled as long as NCS input
remains at logical low level. NCS input disables
transfer as soon as low to high transition occurs,
whatever transfer state is, and transfer remains
disabled as long as NCS input remains at logical
high level.
SCK input receives serial clock; it must be high at
the beginning of the transfer; data is sampled on
rising edge of SCK.
SDA input (in write mode) receives data which must
be stable at least tsds before and at least tsdh after
SCK rising edge. In read mode, SDA receives
address and read command (R/W bit) and then it
switches from input state to output state to send
data (see Data transfer and Application Note).
Data Transfer in Write Mode
The host MCU writes data into STV9410 registers
or memory. The MCU sends first MSB address with
R/W bit clear, it sends secondly LSB address followed by data byte(s). STV9410, then, internally
increments received address, ready to store a second data byte if needed, and so on, as long as NCS
remains low (see Figure 4). LSB are sent first.
Data Transfer in Read Mode
The host MCU reads data from STV9410 registers
or memory. The MCU sends first MSB address with
R/W bit set, it sends secondly LSB address, then
SDA pin switches from input state to output state
and provides data byte(s) at SCK MCU clock rate.
Notice that a minimum delay is needed before
sending the first SCK rising edge to sample the first
data bit (at least 2µs). After each data byte
STV9410 internally increments address and it
sends next data at SCK frequency. SDA remains in
output state as long as NCS remains low (see
Figure 5).
Address auto-incrementation allows host MCU to
use 8, 16, 32-bit data words to optimize transfer
rate. LSB are sent first. SCK max speed is 4MHz.
7/25
STV9410
Figure 4 : Serial Interface Write Mode
NCS
SCK
SDA
A8
A9
A10 A11 A12 A13
W
A0
A1
A2
A3
@ MSB
A4
A5
A6
A7
D0
D1
@ LSB
D2
D3
D4
D5
D4
D5
Data byte 1
NCS
SCK
D6
D7
D0
D1
D2
D3
data byte n - 1
D4
D5
D6
D7
9410-07.EPS
SDA D5
data byte n
Figure 5 : Serial Interface Read Mode
NCS
2µs min.
SCK
SDA
A8
A9
A10 A11 A12 A13
R
A0
A1
A2
@ MSB
A3
A4
A5
A6
A7
D0
@ LSB
D1
D2
D3
Data byte 1
INPUT
OUTPUT
SDA Pin
NCS
SCK
D5
D6
D7
data byte n - 1
D0
D1
D2
D3
8/25
D5
D6
D7
data byte n
OUTPUT
SDA Pin
D4
INPUT
9410-08.EPS
SDA
STV9410
2.2. ADDRESSING SPACE
STV9410 registers, RAM and ROM are mapped in
a 12 kbytes addressing space. The mapping is the
following :
HSYN
2FF5
SU7 SU6 SU5 SU4 SU3 SU2 SU1 SU0
2FF4
SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0
SU (7:0) : Synchro rising edge position
SD (7:0) : Synchro falling edge position
0000 h
Display memory
DRCS
Descriptor tables
User memory
6144 RAM
bytes
17FF h
1800 h
POR
Empty
Area
1FFF h
2000 h
VOE
-
-
-
-
-
TE
PV
2FF6
N7
N6
N5
N4
N3
N2
N1
N0
P8
P7
P6
VOE
TE
PV
N (7:0)
1280 slices
ROM G0
24FF h
2500 h
2FF7
1280 slices
ROM G1
2CFF h
2D00 h
2FF9
-
P12 P11 P10
P9
2FF8
-
G12 G11 G10
-
DISP
Internal
Registers
2FFB IMG GMG RMG BMG
2FFF h
2FFA
2.2.1 Register Set
VERT
LCD ILC
2FF0
F7
:
:
:
:
:
:
:
F6
C/H V/P VSE HSE
F5
A12 A11 A10
P (12:6) : Address of first descriptor of page to display
G (12:10) : User definable graphic character set address
A (12:10) : User definable alphanumeric character set
address
Empty
Area
2FEF h
2FF0 h
LCD
ILC
C/H
V/P
VSE
HSE
F (8:0)
Video output enable
Timer enable
Port value
Square wave period
ADDR
Empty
Area
27FF h
2800 h
2FF1
:
:
:
:
F4
F3
F2
-
F8
F1
F0
LCD/CRT mode
Interlaced/non-interlaced
Composite/horizontal synchro
Vertical synchro/real time port
Vertical synchro enable
Horizontal synchro enable
Number of scan line per frame
-
-
-
-
-
2FF2
-
-
L5
L4
L3
-
HIC
BR3 BR2 BR1 BR0
IMG, GMG, : Margin value of I, G, R, B outputs
RMG, BMG
HIC
: High contrast, forces black and white on
outputs
FLE
: flashing enable
CCE
: Conceal enable
IN1, IN0
: Fast blanking mode
BR (3:0)
: Luminosity adjustment on Y output
2FFD
CEN CBL CUL
2FFC
MG2 MG1 MG0
L2
IN2
-
CURS
HORI
2FF3
FLE CCE IN1
-
L1
CEN
CBL
CUL
C (12:1)
C8
:
:
:
:
C7
Cursor
Cursor
Cursor
Cursor
C6
C5
C12 C11 C10
C9
C4
C1
C3
C2
enable
blinking
underlining
address
L0
MG (2:0) : Margin duration
L (5:0) : Line duration
9/25
STV9410
2.2.2 Descriptor
UNIFORM
0
LSB
RTP
FFB
I
C (2:0)
SL (7:0)
RTP FFB
-
I
C2
C1
C0
SL7 SL6 SL5 SL4 SL3 SL2 SL1 SL0
:
:
:
:
:
Real time port
Field flyback
Fast blanking
Strip color (G, R, B)
Number of scan line of the strip
0000h
Descriptor (Table 1)
64b
(for page 0)
0040h
Descriptor (Table 2)
64b
(for page 0)
0080h
Page 0 Row 1
CHARACTER
MSB
1
LSB
C8
RTP
DE
ZY
C (12:1)
:
:
:
:
80b
Code 0 to 39
RTP DE
C7
C6
ZY
C12 C11 C10
C9
C5
C4
C1
C3
C2
Real time port
Display enable
Vertical zoom
Address of first character to display
00A8h
Page 0 Row 2
80b
Code 0 to 39
~
~
07D8h
~
~
80b
Code 0 to 39
0800h
Descriptor (Table 1)
64b
(for page 1)
Descriptor (Table 2)
CHARACTER NUMBER
64b
(for page 1)
Page 1 Row 1
LSB
(EVEN)
0
IV
DW
DH
FL
FC2 FC1 FC0
CHARACTER NUMBER : lower than 80h in ROM
from 80h to FFh in RAM
IV
: Inverted video
DW
: Double width
DH
: Double height
FL
: Flashing
FC (2:0) : Foreground color (G, R, B)
Page 1 Row 2
1
BC2 BC1 BC0
FL
~
~
~
~
Page 1 Row 24
1000h
Alphanum Character 0
10b
Alphanum Character 1
10b
~
~
10b
Page 0 Row 0
4b
Free
1400h
10b
LSB
(EVEN)
1
EOL
IF, IB
UL
CC
BC (2:0)
HG
FC (2:0)
10/25
:
:
:
:
:
:
:
10b
Graphic Character 1
1
EOL
IF
IB
UL
~
~
CC
~
~
~
~
Graphic Character 93
BC2 BC1 BC0 HG FC2 FC1 FC0
End of line
Fast blanking foreground/background
Underline
Conceal
Background color (G, R, B)
Hold graphic
Foreground color (G, R, B)
1 Kbyte
80b
Code 0 to 39
Graphic Character 0
1
~
~
~
~
Alphanum Character 93
FC2 FC1 FC0
CONTROL
1
~
~
80b
Code 0 to 39
CHARACTER NUMBER : lower than 80h in ROM
from 80h to DFh in RAM
BC (2:0) : Background color (G, R, B)
FL
: Flashing
FC (2:0) : Foreground color (G, R, B)
MSB
(ODD)
2 Kbyte
80b
Code 0 to 39
CHARACTER NUMBER
LSB
(EVEN)
80b
Code 0 to 39
GRAPHIC
MSB
(ODD)
~
~
Page 0 Row 24
2.2.3 Code Format
ALPHANUM
MSB
(ODD)
2 Kbyte
Page 1 Row 0
10b
1 Kbyte
80b
Code 0 to 39
Free
17FFh
4b
9410-09.EPS
MSB
2.2.4 Example of RAM Maping
STV9410
2.3.1 Time Base Registers
2.3 CLOCK AND TIMING GENERATOR
The whole timing is derived from XTI input frequency which can be an external generator or a
crystal signal thanks to XTO/XTI oscillator.This
clock is also pixel frequency which can be chosen
between 8MHz to 10MHz (pxlck). This clock is
available on CKO pin. It should be use for the MCU,
saving a crystal in the application.
Vertical Time Base and Configuration
Register (VERT)
Internal address : 2FF1-2FF0 h
RESET value :01-36 h
(@ = RESET default configuration)
2FF1 h LCD ILC
@
0
0
C/H V/P VSE HSE
0
0
0
0
0
F8
1
2FF0 h
@
F5
1
F1
1
F0
0
The active area of a video line is 320 pixels periods
long (40 characters of 8 pixels wide). Number of
lines per frame, margin width, line duration, leading
and trailing edges of horizontal synchronizationare
fully programmable in CRT mode using VERT,
HORI, HSYN registers.
LCD
A RESET, can be applied to STV9410 by pulling
low VREF pin ( ≤ 0.4V).
V/P
On RESET, default values are forced into configuration registers and video outputs are at low level.
ILC
C/H
VSE
HSE
F (8:0)
All unused bit of registers are always read as ”0”.
F7
0
F6
0
F4
1
F3
0
F2
1
: 1 LCD mode
0 CRT mode @
: 1 Interlaced scanning
0 non-interlaced scanning @
: 1 CSYNC is composite synchro
0 CSYNC is horizontal synchro @
: 1 VSYNC is vertical synchro
0 VSYNC is RTP bit of current descriptor @
: 1 enable vertical synchro with SYNC IN
0 disable @
: 1 enable horizontal synchro with SYNC IN
0 disable @
: scan line number per frame (@ 312)
2FF1
LCD ILC
X
X
C/H
X
2FF0
V/P VSE HSE
X
X
X
Nb of S can
LS B
Lines
HEXA
-
F8
F7
F6
F5
F4
F3
F2
F1
F0
F(0:8) + 2
-
0
0
0
0
0
0
0
0
0
Not allowed
-
0
0
0
0
0
0
0
0
1
3
01
0
0
0
0
0
1
1
1
0
16
0E
0
0
0
1
1
1
1
1
0
64
3E
0
0
1
1
0
0
0
1
0
100
62
0
0
1
1
1
0
1
1
0
120
76
0
1
1
1
0
1
1
1
0
240
EE
0
1
1
1
1
1
0
0
0
250
F8
0
262
04
05
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
263
1
0
0
1
1
0
1
0
0
310
34
1
0
0
1
1
0
1
1
0
312
36
1
0
0
1
1
0
1
1
1
313
37
1
0
0
1
1
1
1
1
0
320
3E
1
1
1
0
1
1
1
1
0
480
DE
1
1
1
1
1
1
1
1
0
512
FE
1
1
1
1
1
1
1
1
1
513
FF
9410-10.EPS
Figure 6 : Vert Register Scan Lines Programmation
F[8:0] = Scan Line Number - 2
11/25
STV9410
Margin and Horizontal Time Base
Register (HORI)
Internal address : 2FF3-2FF2 h
RESET value :03-3F h
(@ = RESET default configuration)
2FF3
@
0
0
0
0
0
2FF2
@
0
0
L5
1
L4
1
L3
1
Horizontal Synchronization Register (HSYN)
Internal address : 2FF5-2FF4 h
RESET value :E6-DC h
(@ = RESET default configuration)
MG2 MG1 MG0
0
1
1
L2
1
L1
1
L0
1
2FF5
@
SU7 SU6 SU5 SU4 SU3 SU2 SU1 SU0
1
1
1
0
0
1
1
0
2FF4
@
SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0
1
1
0
1
0
1
0
0
MG(2:0) : Left and right margin duration (@ = 4µs)
 MarginDuration 
MG = 
−1
8 pxlck


SU(7:0) : SYNC rising edge position (@ = 57.75µs)
 Rise Edge Position
SU = 
−1
2 pxlck


L(5:0)
SD(7:0) : SYNC falling edge position (@= 53.25µs)
 FallingEdge Position 
SD = 
−1
2 pxlck


: Line duration (@= 64µs)
 Line Duration 
L= 
−1
 8 pxlck 
Figure 7 : HSYN Register Synchro Pulse Programmation
Qz = 8MHz
Active area
Register
Value
Duration
Duration
(µs)
(nber of char.)
64µs
64
1µs
1
1µs
1
FIXED
40µs
40
RESULT
21µs
21
HORI
(L = 3F)
FIXED
HORI
(MG = 0)
HSYN
(SU = B7)
46µs
46
HSYN
(SD = BF)
48µs
48
HSYN PULSE
Positive Pulse
HSYN
(SU = BF)
48µs
48
HSYN
(SD = B7)
46µs
46
HSYN PULSE
12/25
Negative Pulse
9410-11.EPS
REG
STV9410
Figure 8 : Horizontal Synchronization Timing
DESIGNATION
TIMING DIAGRAM
COMMENTS
Crystal = 8MHz
pxlck = 125ns
0 = origin
PIXEL CLOCK
START
0 Start
Margin
Active Area (320 pixels)
Margin
End of line
0
Y OUTPUT
DAC output
START
8pxlck Fixed
”HORT” MSB REG
= (MG +1) x 8 x pxlck
”HORT” LSB REG
= (L +1) x 8 x pxlck
”HSYN” LSB REG
= (SD + 1) x 2 x pxlck
= (SU + 1) x 2 x pxlck
9410-12.EPS
”HSYN” MSB REG
HSYN PULSE
Video Validation and Port Register (PORT)
Internal address : 2FF7-2FF6 h
RESET value :00-00 h
(@ = RESET default configuration)
mode (CRT or LCD), be fulfiled :
- SU ≠ SD
SU + 1
SD + 1
< L and
<L
4
2FF7
@
VOE
0
0
0
0
0
0
TE
0
PV
0
2FF6
@
N7
0
N6
0
N5
0
N4
0
N3
0
N2
0
N1
0
N0
0
VOE
TE
PV
N(7:0)
: Video Output Enable
1 enable synchro & video outputs
0 disable synchro & video outputs @
(@ Output Y, CSYNC, VSYNC, R, G, B, I, POR,
and DF are grounded, Input SYNC IN is high
impedance)
: Timer Enable
1 POR provides a square wave signal with a
period of 16 x N(7:0) x pxlck
0 POR output is PV bit @
: Port Value
POR output value if TE=0 (@=0)
: Square wave period on POR if TE=1 (@=0)
BEWARE
The programmation of VERT, HORI, HSYN registers must be consistent. To get a proper work of the
controller, the following conditions must, in any
4
- 2(MG + 1) + 40 ≤ L
Line period is :
- PL = [L(5:0) + 1] x 8 pxlck
- In LCD, MG(2:0) can be 0, then minimum Line
Period is PL (min.) = 43 x 8 pxlck
Frame period is :
- PF = [F(8:0) + 2] x PL
- In LCD, using a 240 lines matrix, F(8:0) = 238,
then minimum frame is :
PF (min.) = 240 x 43 x 8 pxclk
Pixel period is :
- Pxclk =
PFrame
[ F(8:0) + 2 ] [ L(5:0) + 1 ] x 8
- I n LCD, u sing a 240 line s matrix, an d
MG(2:0) = 0, Pxclk =
PFrame
240 x 43 x 8
Interlaced mode conditions :
SU + 1
SD + 1
and
<L
4
4
SU + 1
SD + 1
and
> (MG + 1) + 42
4
4
13/25
STV9410
2.3.2. CRT Mode
In CRT mode, the Vsync signal appears at the first
two lines of the first strip of the descriptor list. It is
recommended to provide an uniform blanked (with
FFB bit) strip as first descriptor. The scan line
number of this strip have to be equal or higher than
scan line number of the vertical blanking Interval.
Master Mode
This mode is selected by writing VSE and HSE bit
of VERT register with logical value ”0”.
Non-interlaced mode is selected by writing ILC bit
of VERT register with logical value ”0”.
Horizontal or composite synchronization signal is
output on CSYNC pin, Vertical synchronization signal is output on VSYNC pin.
Signal waveforms are described in Figure 9.
Interlaced mode is selected by writing ILC bit of
VERT register with logical value ”1”.
Even frame is identical to non-interlaced frame.
VSYNC PULSE is low during second half of last line
of previous Odd frame and during the two first lines
of current Even frame.
Odd frame is one scan line more than Even frame.
VSYNC PULSE is low during the two first lines and
up to first half of the third line of current Odd frame.
Half line corresponds to 17th character position.
Signals waveforms are described in Figure 10.
Slave Mode
This mode is activated by writing VSE and/or HSE
bit of VERT register with logical value ”1”. Then
SYNC IN input signal is sampled according to
procedure described below.
Vertical Synchronization
SYNC IN signal may be either a vertical synchronization or a composite synchronization. It is sampled on first pixel of each scan line active area. As
soon as SYNC IN signal low level is detected,
vertical time base counter F(8:0) of VERT register
is reset without any modification of other time base
registers.
Horizontal Synchronization
SYNC IN is sampled one pxlck before and one
pxlck after internal horizontal pulse transition. If
falling edge is not found, one pixel period is added
to internal line duration. Using a line frequency
locked clock applied on XTI, internal scan line
becomes phase locked after few scan line periods
at programmed value (see Figure 11).
2.3.3 LCD Mode
LCD mode only works as a master mode with 320
pixels per line. Internal algorithm allows 8 grey
levels on passive LCD matrix. Number of scan line
is programmable. In order to get maximum refresh
frequency of display, margin and line duration must
be reduced to miminum. Interlaced mode and external synchronization are not allowed. The 1st line
of the first descriptor in the description list correspond to the first line of the LCD display. Y output
provides a programmable voltage usable to adjust
contrast of LCD display. To reduce supply current
consumption, when Y output is unused, VSSA must
not be connectedto ground, and VREF pin works as
a reset pin. Notice that SYNC IN Pin provides
(CKD) data clock signal.
2.4 POR OUTPUT
POR is a standard I/O pin programmable at logical
level ”1” or ”0”. It can also provide a programmable
square wave signal of period
P = 16 x N(7:0) x pxlck (0 ≤ N ≤ 255).
It can drive a capacitive buzzer (see application
diagram at page 22).
RESET value of PORT is ”0”.
Figure 9 : ODD and EVEN Synchronization Pulses in Non-interlaced Mode
DESIGNATION
TIMING DIAGRAM
COMMENTS
Horizontal Synchro
H SYNC PULSE
Composite Synchro
C SYNC PULSE
Vertical Synchro
”VERT” LSB REG
LINE NUMBER
* Internal logic adds one more line
14/25
FN - 1
FN
N
N+1
FN
+ 1*
N +2
F0
F1
F2
F3
1
2
3
4
Programmed value
of F (8 : 0) is N
Frame number
of lines is N + 2
9410-13.EPS
VSYNC PULSE
STV9410
Figure 10 : Interlaced Mode Synchronization Pulses
DESIGNATION
H SYNC PULSE
COMMENTS
Horizontal
Synchro
C SYNC PULSE
Composite
Synchro
”VERT” LSB REG
TIMING DIAGRAM
FN - 1
FN
FN + 1
F0
F1
F2
F3
Programmed value
of F (8 : 0) is N
N
N+1
N +2
1
2
3
4
EVEN frame number
of lines is N + 2
LINE NUMBER
Previous Picture
Current Picture
EVEN Frame
ODD Frame
V SYNC PULSE
Vertical Synchro
ODD Frame
H SYNC PULSE
Horizontal
Synchro
C SYNC PULSE
FN
FN + 1
FN + 2
F0
F1
F2
F3
Programmed value
of F (8 : 0) is N
N+ 1
N+ 2
N +3
1
2
3
4
ODD frame number
of lines is N + 3
”VERT” LSB REG
LINE NUMBER
Current Picture
Picture number
of lines is 2N + 5
EVEN Frame
ODD Frame
Vertical Synchro
EVEN Frame
V SYNC PULSE
Start
Margin
Active Area
Margin
End of line
ZONE
1 2 3 4
15 16 17 18
38 39 40
Characters
Position
H SYNC PULSE
Horizontal
Synchro
LINE 3
ODD FRAME
Composite
Synchro
LINE N + 3
ODD FRAME
9410-14.EPS
CHAR NUMBER
Composite
Synchro
15/25
STV9410
Figure 11 : Synchronization on SYNC IN External Signal
VERTICAL SYNCHRONIZATION
DESIGNATION
COMMENTS
TIMING DIAGRAM
Sampling
Clock
PIXEL CLOCK
Margin
Margin
Active Area
Y OUTPUT
H Pulse
H Pulse
Sampling on
first pixel of
active area
SYNC IN
VERTICAL
PULSE
F (8 : 0 )
Fx
F0
S
S = 0 clear
F (8 : 0) only
HORIZONTAL SYNCHRONIZATION
COMMENTS
TIMING DIAGRAM
Sampling
Clock
PIXEL CLOCK
INTERNAL H SYNC
DURATION = L (5 : 0)
Sampling window
for H Synchro
EXTERNAL H SYNC
UNLOCKED
EXTERNAL H SYNC
LOCKED
3. INTERNAL REGISTER DESCRIPTION
STV9410 is programmable with 7 registers of 16
bit each. These registers can also be programmed
in byte mode. Not significant bit must be cleared in
order to be compatible with next generation products.
3.1 TIME BASE REGISTERS
Registers VERT, HORI, HSYN and PORT are described in chapter 2.3
3.2 ADDRESS REGISTER ( ADDR )
Internal address : 2FF9-2FF8 h
16/25
L = L+ 1
Line Duration
Increase + 1
L= L
Good
Line Duration
9410-15.EPS
DESIGNATION
RESET value :00-00 h
(@ = RESET default configuration)
2FF9 h
@
0
P12 P11 P10
0
0
0
P9
0
2FF8 h
@
0
G12 G11 G10
0
0
0
0
P8
0
P7
0
P6
0
A12 A11 A10
0
0
0
P(12:6) : Page first descriptor address, P(5:0)=0 @
G(12:10) : Graphic character set MSB address,
G(9:0)=0 @
A(12:10) : Alphanumeric character set MSB address,
A(9:0)=0 @
NB : as addresses are in RAM area, address bit 13
is reset to ”0”
STV9410
Figure 12 : ADDR Register and Descriptor List Address
2FF9
ADDR REGISTER
-
P12 P11 P10
P9
2FF8
P8
P7
P6
-
G12 G11 G10
-
A12 A11 A10
Used for RAM character sets
0
PROG VALUE
1
0
0
0
2
REAL ADDRESS
1
PROG VALUE
0
0
PROG VALUE
0
0
0
1
0
1
1
1
0
0
0
1
0
2
0
0
0
1
0
0
0
0
0
0
0
(0800h)
0
0
0
(15C0h)
0
0
0
(0A40h)
-
0
0
0
-
9
0
-
-
7
1
0
-
0
5
REAL ADDRESS
0
9410-16.EPS
REAL ADDRESS
64 bytes blocks
3.3 DISPLAY REGISTER (DISP)
BR(3:0) : This value is combined with pixel value to drive
Y DAC in CRT mode :
Y= 4xG + 2xR + B + BR(2:0) + 3x(R or G or B)
(logical or)
R, G, B, I, Y, = 0 during line flyback.
Internal address : 2FFB-2FFAh
RESET value :00-00 h
(@ = RESET default configuration)
2FFB IMG GMG RMG BMG
@
0
0
0
0
2FFA FLE CCE
@
0
0
IMG,
GMG,
RMG,
BMG
HIC
IN1
0
0
0
0
HIC
0
IN0 BR3 BR2 BR1 BR0
0
0
0
0
0
: M a rg in v a lu e o f I, G , R, B o u tp ut s and
background color and insertion default attribute
of next alphanumeric character. In case of
graphic characters only I is default attribute.
: Forces alphanumeric characters background
black (R, G, B = 0), and foreground white (R, G,
B = 1) for maximum contrast, 0 = disable @
FLE
: Flashing enable, 0 = disable @
CCE
: Conceal enable, 0 = disable @
IN1,IN0 : Insertion attribute mode selection. Mode
selects value of I output during active area of
scan line in CRT mode; I output value (during
margin) is programmed with DISP register;
during uniform strip I output value is set
according to strip descriptor.
During active time slot :
0 0 : I output gets value of current code I
attribute (margin attribute or control
character attribute ) @
0 1 : I is set (”1”)
1 0 : I output gets value of current code I
attribute if I=0 R,G,B are reset to ”0”
0 1 : Reserved mode
Black level is output with R, G, B = ”0”.
White level is output with R, G, B = ”1”.
During frame flyback, R, G, B, I, Y provides signal
according to uniform strip descriptor FFB bit state
(see chapter 4.2.1)
During LCD mode BR(3:0) drives continuously Y
DAC. Notice that only bit 0 to 2 of BR are used in
CRT mode.
3.4. CURSOR REGISTER (CURS)
Internal address : 2FFD-2FFC h
RESET value : 00-00 h
(@= RESET default configuration)
2FFD
@
2FFC
@
CEN CBL CUL
0
0
0
C8
0
C7
0
C6
0
0
C5
0
C12 C11 C10
0
0
0
C9
0
C4
0
C1
0
C3
0
C2
0
CEN
CBL
: Cursor enable, 0 = disable @
: 0 cursor blinking off, character blinking
attribute unchanged @
1 cursor blinking on, blinking is mixed with
character blinking attribute. Blinking frequency
is around 1Hz and duty cycle 50%
CUL
: 0 character underline attribut is complemented
on cursor position @
1 character color is complemented on cursor
position
C(12:1) : Cursor address (not a screen position)
17/25
STV9410
- vertical synchro
- border lines
Parameters :
- number of scan lines
- color
- Character strip
Characters and attributes are defined by a succession of codes stored in memory; thanks to the
character code, a memory address is calculated
and used to get the character pattern.
Parameters :
- address of the first code
- size, display enable
4. DISPLAY CONTROL
4.1 SCREEN DESCRIPTION
A screen is composed of successive scan lines
gathered in one or several strips. Each strip is
defined by a descriptor stored in memory. A list of
descriptors allows screen composition, different
screens can be defined in memory (see application
note and Figures 13, 14.).
Two kinds of strip are available :
- Uniform color strip
Applications :
- vertical front and back porch
DESCRIPTOR LIST
1460
0A02 F8AA 20AB 48AB
A8AA D0BA 1402
1906
1903
1907
CONTENTS
U0*
U1
R0*
R1
R2
R18
R19
U2
U3
U4
U5
SCAN LINES
20
10
10
10
10
10
10
20
25
25
25
SUM
20
30
40
50
60
220
230
250
275
300
325
VERT REGISTER
242 Scan Lines (00F0h)
COMMENTS
U2 Strip is cut (red uniform strip)
VERT REGISTER
312 Scan Lines (0136h)
COMMENTS
U2 (red), U3 (yellow), U4 (cyan) and part of U5 (white) uniform strip are displayed
* U0 is uniform strip number 0, R0 is character strip number 0
9410-17.EPS
Figure 13 : Programmation of Number of Scan Lines - Vertical Register VERT (2FF0/2FF1)
and Descriptor List
Figure 14 : Relation between Screen Location/Descriptor Pointer/RAM Page Codes
Address
of the list
ADDR
REGISTER
* Identical to row 2
OTHER
UNIF 0
TOP UNIFORM STRIP
25th ROW CODES
ROW 0
1st CHARACTER ROW
OTHER
ROW 1
2nd CHARACTER ROW
1st ROW CODES
ROW 2
3rd CHARACTER ROW
ROW 22
23th CHARACTER ROW
2nd ROW CODES
18/25
OTHER
ROW 2
24th CHARACTER ROW *
23th ROW CODES
ROW 24
25th CHARACTER ROW
OTHER
UNIF 1
BOTTOM UNIFORM STRIP
RAM
PAGE CODES LOCATION
RAM
DESCRIPTOR LIST
SCREEN
9410-18.EPS
3rd ROW CODES
STV9410
4.2. STRIP DESCRIPTOR
FFB
: Field Flyback
0 R, G, B, I and Y outputs are defined by
corresponding bit of DISP for margin and
C(2:0) and I for active area
1 R, G, B, I and Y outputs are cleared during
Field Flyback, whatever other parameters are.
I
: 0 Fast Blanking Disable
1 Fast Blanking Enable
C(2:0) : G, R, B, value during the active area of the strip
(320 pixels)
SL(7:0) : Number of scan lines of the strip, minimal
value is 1.
Each strip is defined by 2 bytes.
During the vertical retrace, an internal descriptor
address counter is initialised with the value P(12:0)
of ADDR register; on the trailing edge of vertical
synchro, the first strip descriptor is loaded into the
display controller; if it is an uniform strip, selected
color is displayed during the corresponding number
of scan lines; if it is a character strip, left margin
followed by text, followed by right margin are displayed during 10 scan lines ; the next descriptor is
then read, and the same process is repeated until
the last scan line. This information being given by
the vertical timing generator.
4.2.2. Character Strip
1
RTP
DE
ZY
C12
C11
C10
C9
C8
C7
C6
C5
C4
C3
C2
C1
RTP
: Real Time Port
RTP bit value is output on VSYNC when V/P bit
of VERT register ”0”, along the complete
duration of the strip line, during the whole strip.
DE
: Display Enable
0 display off, the strip is displayed with margin
attributes IMG, GMG, RMG, BMG bit of DISP
register,
1 display on, the strip works as selected.
ZY
: Vertical Zoom
0 normal display mode
1 all scan line are doubled, providing a vertical
zoom effect
C(12:1) : Address of the first code to display
4.2.1 Uniform Strip
0
RTP
FFB
-
I
C2
C1
C0
SL7
SL6
SL5
SL4
SL3
SL2
SL1
SL0
RTP
: Real Time Port
RTP bit value is output on VSYNC when V/P bit
of VERT register is ”0”, along the complete
duration of the strip scan line. Not used in LCD
mode.
Figure 15 : Character Strip Descriptor - First Character Address Selection
MSB
1
RTP
DE
ZY
C12 C11 C10
1
EFFECTIVE ADDRESS
C9
C8
C7
C6
5
C5
C4
C3
C2
C1
C0
0
0
F
BINARY ADDRESS
-
-
-
-
1
0
1
0
1
1
1
1
1
0
0
0
BINARY DESCRIP.
1
0
1
0
1
0
1
0
1
1
1
1
1
0
0
0
A
PROG VALUE
F
0
EFFECTIVE ADDRESS
BINARY ADDRESS
-
-
BINARY DESCRIP.
1
1
PROG VALUE
A
E
8
9
-
-
0
1
1
0
0
1
4
7
0
0
1
0
0
0
1
0
B
2
1
1
1
0
1
1
1
0
0
1
0
1
0
9
9410-19.EPS
DESCRIPTOR
LSB
19/25
STV9410
5. CHARACTER CODE FORMAT
ODD
1
Each character is defined with a two bytes code;
the first is at an even address, the second is at the
following odd address. Some attributes are parallel, other keep the last explicit value.
STV9410 uses 3 different types of codes.
EVEN
1
5.1 ALPHANUMERIC CHARACTERS
(256 patterns)
The background color is not defined by the code; it
takes the same value as the previous character or
it has the value of the margin color at the beginning
of each row.
The character pattern lies in ROM if CHARACTER
NUMBER is lower than 80h, (ALPHANUMERIC
CHARACTER SET is shown in TABLE 3),else it is
User Defined Character in RAM (DRCS).
ODD
EVEN
CHARACTER NUMBER
0
IV
DW
DH
FL
FC2 FC1 FC0
CHARACTER : ROM or RAM character set code
NUMBER
IV
: Inverted video if set.
DW
: Double character width if set, code must
be repeated for the right part of the
character.
DH
: Double character height if set, code
must be repeated for the bottom part of
the character. The first DH attribute
encountered in a vertical column is
always interpreted as a top part.
FL
: Flashing, inverted phase if IV is set.
FC(2:0)
: Foreground color (Green, Red, Blue).
5.2. GRAPHIC CHARACTERS (224 patterns)
IV, DW, DH, UL take the value ”0”
CHARACTER NUMBER must be lower than E0h.
The character pattern lies in ROM if CHARACTER
NUMBER is lower than 80h, (STANDARD MOSAIC
character set is shown in Table 4), else it is an User
Defined Character in RAM (DRCS).
ODD
EVEN
CHARACTER NUMBER
1
CHARACTER
NUMBER
BC(2:0)
FL
FC(2:0)
BC2 BC1 BC0
FL
FC2 FC1 FC0
: ROM or RAM character set code
: Background color (Green, Red, Blue).
: Flashing.
: Foreground color (Green, Red, Blue).
5.3. CONTROL CHARACTERS (32 codes)
These characters are displayed as foreground
color spaces if HG bit is clear. They can change
some attributes applying to themselves and to the
following string.
20/25
1
1
EOL
IF
IB
UL
CC
BC2 BC1 BC0 HG FC2 FC1 FC0
EOL
: End Of Line
0 normal control code
1 space are displayed until the end of the row,
allowing memory space saving
IF,IB
: Insert foreground, Insert background attribute.
0 fast blanking disable
1 fast blanking enable
UL
: Underlined
0 disable
1 enable
CC
: Conceal Character
0 disable
1 enable, character is diplayed as a space.
BC(2:0) : Default background color of next character(s)
HG
: Hold Graphics
0 disable, the control character is displayed as
a uniform space character with foreground
color fixed by FC(2:0)
1 enable, the control character pattern takes
the last mosaic value encountered in the row,
if any, or is a space.
FC(2:0) : G, R, B foreground value of the control
character
At the beginning of each row, those attributes take
default values :
- EOL, UL, CC, HG = 0
- IF = 1
- IB = IMG (Margin insert attribute)
- BC(2:0) = GMG, RMG, BMG (Margin color).
Notice that following characters code is reserved
for futur use.
ODD
1
1
1
1
X
X
X
1
EVEN
1
X
X
X
X
X
X
X
6. CHARACTER GENERATORS
Each pixel is defined with one bit, 1 refers to
foreground color, and 0 to background color.
PX7
PX6
PX5
PX4
PX3
PX2
PX1
PX0
PX7 is the leftmost pixel.
Character slice address :
Each character generator contains a succession of
patterns arranged as a number of horizontal slices :
- Slice addr = (Set addr) + Char Number x 10 +
(slice number)
- Char Number is the number of the character in
the set; using DRCS in RAM, the calling code of
the character is the number of the character in
the set plus 80h.
- Set addr is defined in ADDR register, in RAM for
DRCS (see section 3.2), and is2000h for ALPHANUMERIC ROM, and 2800h for STANDARD
MOSAIC ROM.
STV9410
Table 3 : Go AlphanumericCharacter Set 40 Character/Row STV9410
C3
C2
C1
C0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
9410-20.EPS
C6
C5
C4
21/25
STV9410
Table 4 : G1 Semigraphic Character Set
22/25
C3
C2
C1
C0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
SEPARATEDSEMI-GRAPHIC
0
0
0
0
0
0
1
1
0
1
0
1
MOSAIC SEMI-GRAPHIC
1
1
1
0
0
1
0
0
1
1
1
1
9410-21.EPS
C6
C5
C4
STV9410
TYPICAL APPLICATIONS
CRT APPLICATION DIAGRAM
C S YNC
S CANNING
VSYNC
SYNC IN
VREF
VDD
XTI
R, G, B
47pF
Y
XTO
CRT
S TV9410
47pF
POR
I
NCS
BUZZER
SCK
VSS A
SDA
VS S
9410-22.EPS
CK0
MCU
LCD APPLICATION DIAGRAM
VRE F
VDD
XTI
VEE
LOAD
FRAME
D0 ... D3
CKD
DF
47pF
XTO
47pF
P OR
S TV9410
SCK
BUZZER
SDA
VS SA
NCS
VSS
320 x 2 50
LCD
MATRIX
9410-23.EPS
CK0
MCU
23/25
STV9410
PM-DIP20.EPS
PACKAGE MECHANICAL DATA
20 PINS - PLASTIC DIP
a1
B
b
b1
D
E
e
e3
F
I
L
Z
24/25
Min.
0.254
1.39
Millimeters
Typ.
Max.
1.65
0.45
0.25
Min.
0.010
0.055
Inches
Typ.
Max.
0.065
0.018
0.010
25.4
8.5
2.54
22.86
1.000
0.335
0.100
0.900
7.1
3.93
3.3
0.280
0.155
0.130
1.34
0.053
DIP20.TBL
Dimensions
STV9410
PACKAGE MECHANICAL DATA
24 PINS - PLASTIC MICROPACKAGE
0.10mm
B
e
A
A2
h x 45?
A1
K
A1
L
.004
C
H
Seating Plane
D
13
1
12
PM-SO24.EPS
E
24
SO24
A
A1
A2
B
C
D
E
e
H
h
K
L
Min.
2.35
0.1
Millimeters
Typ.
0.33
0.23
15.20
7.40
Max.
2.65
0.30
2.55
0.51
0.32
15.60
7.60
Min.
0.093
0.004
0.013
0.009
0.598
0.291
1.27
10.0
0.25
0.40
Inches
Typ.
Max.
0.104
0.012
0.100
0.020
0.013
0614
0.299
0.050
10.65
0.394
0.75
0.010
0o (Min.), 8o (Max.)
1.27
0.016
0.419
0.030
SO24.TBL
Dimensions
0.050
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1996 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
25/25