TS274C,I,M HIGH SPEED CMOS QUAD OPERATIONAL AMPLIFIERS . . .. . OUTPUT VOLTAGE CAN SWING GROUND EXCELLENT PHASE MARGIN ON CAPACITIVE LOADS GAIN BANDWIDTH PRODUCT : 3.5MHz STABLE AND LOW OFFSET VOLTAGE THREE INPUT OFFSET VOLTAGE SELECTIONS TO N DIP14 (Plastic Package) D SO14 (Plastic Micropackage) ORDER CODES Package Temperature Range Part Number o o N D 0 C, +70 C ● ● TS274I/AI/BI -40oC, +125oC ● ● TS274M/AM/BM -55 C, +125 C ● ● TS274C/AC/BC o o Example : TS274ACN DESCRIPTION The TS274 series are low cost, low power quad operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the SGS-THOMSON silicon gate CMOS process allowing an excellent consumption-speed ratio. These series are ideally suited for low consumption applications. PIN CONNECTIONS (top view) Output 1 1 Three power consumptions are available allowing to have always the best consumption-speed ratio : ● ICC= 10µA/amp. : TS27L4 (very low power) ● ICC= 150µA/amp. : TS27M4 (low power) ● ICC= 1mA/amp. : TS274 (high speed) 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature (see figure 2). October 1997 1/8 TS274C,I,M BLOCK DIAGRAM VCC Current source xI Input differential Second stage Output stage Output VCC E E MAXIMUM RATINGS Symbol VCC+ Parameter Value Unit Supply Voltage - (note 1) 18 V Vid Differential Input Voltage - (note 2) ±18 V Vi Input Voltage - (note 3) -0.3 to 18 V IO Output Current for VCC+ ≥ 15V ±30 mA Iin Input Current ±5 mA Toper o Operating Free-Air Temperature Range C TS274C/AC/BC TS274I/AI/BI TS274M/AM/BM Tstg Storage Temperature Range 0 to +70 -40 to +125 -55 to +125 -65 to +150 o C Notes : 1. All voltage values, except differential voltage, are with respect to network ground terminal. 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage. OPERATING CONDITIONS Symbol VCC + Vicm 2/8 Parameter Supply Voltage Common Mode Input Voltage Range Value 3 to 16 + 0 to VCC - 1.5 Unit V V T 20 T 19 T 17 T 24 T21 T 18 R2 T 25 VCC T 22 T 23 T 26 T 29 T 28 T 27 Input T3 T1 T5 VCC T4 T2 C1 Input R1 T7 T6 T9 T8 T 13 T11 T 10 T 14 T 12 T16 Output T 15 TS274C,I,M SCHEMATIC DIAGRAM (for 1/4 TS274) 3/8 TS274C,I,M ELECTRICAL CHARACTERISTICS VCC+ = +10V, VCC- = 0V, Tamb = 25oC (unless otherwise specified) Symbol Parameter TS274C/AC/BC Min. Vio DV io Iio Iib VOH VOL Avd GBP CMR SVR ICC Input Offset Voltage VO = 1.4V, Vic = 0V TS274C/I/M TS274AC/AI/AM TS274BC/BI/BM Tmin. ≤ Tamb ≤ Tmax. TS274C/I/M TS274AC/AI/AM TS274BC/BI/BM Typ. Max. 1.1 0.9 0.25 10 5 2 12 6.5 3 Min. Typ. Max. 1.1 0.9 0.25 10 5 2 12 6.5 3.5 mV Input Offset Voltage Drift 2 2 Input Offset Current - (note 1) Vic = 5V, Vo = 5V Tmin. ≤ Tamb ≤ Tmax. 1 1 Input Bias Current - (note 1) Vic = 5V, Vo = 5V Tmin. ≤ Tamb ≤ Tmax. 1 High Level Output Voltage Vid = 100mV, RL = 10kΩ Tmin. ≤ Tamb ≤ Tmax. 100 200 pA 1 150 300 V 8.2 8.1 8.4 8.2 8 8.4 mV 50 50 V/mV 10 7 15 10 6 15 MHz Gain Bandwidth Product Av = 40dB, RL = 10kΩ, CL = 100pF fin = 100kHz Common Mode Rejection Ratio Vo = 1.4V, Vic = 1V to 7.4V 65 80 65 80 Supply Voltage Rejection Ratio VCC+ = 5V to 10V ,Vo = 1.4V 60 70 60 70 Supply Current (per amplifier) Av = 1, no load, Vo = 5V Tmin. ≤ Tamb ≤ Tmax. o µV/ C pA High Level Output Voltage Vid = -100mV Large Signal Voltage Gain Vo = 1V to 6V, RL = 10kΩ, Vic = 5V Tmin. ≤ Tamb ≤ Tmax. Unit 3.5 3.5 dB dB 1000 1500 1600 1000 1500 1700 µA mA Output Short Circuit Current Vid = 100mV, Vo = 0V 60 60 Output Sink Current Vid = -100mV, Vo = VCC 45 45 Slew-Rate at Unity Gain R L = 10kΩ, CL= 100pF, Vi = 3 to 7V 5.5 5.5 ∅m Phase Margin at Unity Gain Av = 40dB, RL = 10kΩ, CL= 100pF 40 40 Kov Overshoot Factor 30 30 % en Equivalent Input Noise Voltage f = 1kHz, RS = 100Ω 30 30 nV √ Hz Channel Separation 120 120 dB Io Isink SR VO1/VO2 mA V/µs Degrees Note : 1. Maximum values including unavoidable inaccuracies of the industrial test. 4/8 TS274I/AI/BI TS274M/AM/BM TS274C,I,M TYPICAL CHARACTERISTICS Figure 2 : Input Bias Current versus Free Air Temperature INPUT BIASCURRENT, I IB (pA) Figure 1 : Supply Current (each amplifier) versus Supply Voltage SUPPLY CURRENT,I CC (mA) 2.0 1.5 Tamb = 25°C AV = 1 VO = VCC / 2 1.0 0.5 0 4 8 12 SUPPLY VOLTAGE, V CC (V) VCC = 5V VCC = 3V 1 -8 -6 -4 -2 OUTPUT CURRENT, I OH (mA) 0 V CC = 5V Tamb = 25°C V ic = 0.5V V id = -100mV 1 2 OUTPUT CURRENT, I OL (mA) 16 100 125 Tamb = 25°C V id = 100mV VCC = 16V 12 VCC = 10V 8 4 0 -50 OUTPUT VOLTAGE,V OL (V) OUTPUT VOLTAGE,V OL (V) V CC = 3V 0.4 0.2 75 -40 -30 -20 -10 OUTPUT CURRENT, I OH (mA) 0 Figure 4b : High Level Output Voltage versus High Level Output Current 1.0 0.6 50 20 0 Figure 4a : High Level Output Voltage versus High Level Output Current 0.8 25 OUTPUT VOLTAGE, V OH (V) OUTPUT VOLTAGE, V OH (V) T amb = 25°C V id = 100mV -10 1 Figure 3b : High Level Output Voltage versus HIgh Level Output Current 2 0 10 TEMPERATURE, T amb (°C) 5 3 VCC = 10V Vic = 5V 16 Figure 3a : High Level Output Voltage versus High Level Output Current 4 100 3 3 V CC = 10V 2 1 0 VCC = 16V T amb = 25°C V i = 0.5V Vid = -100mV 4 8 12 16 OUTPUT CURRENT, I OL (mA) 20 5/8 TS274C,I,M TYPICAL CHARACTERISTICS (continued) 50 0 GAIN 30 45 PHASE 20 Tamb = 25°C VCC+ = 10V R L = 10k Ω C L = 100pF A VCL = 100 10 0 -10 2 10 10 3 PHASE(Degrees) GAIN (dB) 40 Phase Margin 90 135 Gain Bandwidth Product 6 104 10 5 10 FREQUENCY, f (Hz) 180 10 7 44 40 T amb = 25°C R L = 10kΩ C L = 100pF AV = 1 28 0 4 8 12 SUPPLY VOLTAGE, VCC (V) 16 SLEW RATES, SR (V/ µs) 7 6 SR 3 2 6/8 SR 5 4 3 T amb = 25°C R L = 10k Ω C L = 100pF AV = 1 2 1 0 4 8 12 16 70 Tamb = 25°C RL = 10kΩ AV = 1 VCC = 10V 60 50 40 30 0 20 40 60 80 CAPACITANCE, C L (pF) 100 Figure 10 : Input Voltage Noise versus Frequency EQUIVALENTINPUT NOISE VOLTAGE (nV/VHz) Figure 9 : Slew Rates versus Supply Voltage T amb = 25°C RL = 10k Ω C L = 100pF 4 Figure 8 : Phase Margin versus Capacitive Load PHASE MARGIN, φ m (Degrees) PHASE MARGIN, φ m (Degrees) 48 32 5 SUPPLY VOLTAGE, VCC (V) Figure 7 : Phase Margin versus Supply Voltage 36 Figure 6 : Gain Bandwidth Product versus Supply Voltage GAIN BANDW.PROD., GBP (MHz) Figure 5 : Open Loop Frequency Response and Phase Shift 300 VCC = 10V Tamb = 25°C R S = 100Ω 200 100 0 4 6 8 10 12 14 SUPPLY VOLTAGE, VCC (V) 16 1 100 10 FREQUENCY (Hz) 1000 TS274C,I,M PM-DIP14.EPS PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP a1 B b b1 D E e e3 F i L Z Min. 0.51 1.39 Millimeters Typ. Max. 1.65 Min. 0.020 0.055 0.5 0.25 Inches Typ. 0.065 0.020 0.010 20 0.787 8.5 2.54 15.24 0.335 0.100 0.600 7.1 5.1 0.280 0.201 3.3 1.27 Max. DIP14.TBL Dimensions 0.130 2.54 0.050 0.100 7/8 TS274C,I,M PM-SO14.EPS PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 b b1 C c1 D E e e3 F G L M S Min. Millimeters Typ. 0.1 0.35 0.19 Max. 1.75 0.2 1.6 0.46 0.25 Min. Inches Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 o 45 (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.334 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 o 8 (max.) SO14.TBL Dimensions 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOM SON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 8/8 ORDER CODE : Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.