TS3V904 3V RAIL TO RAIL CMOS QUAD OPERATIONAL AMPLIFIER (WITH STANDBY POSITION) . . . . . .. . . DEDICATED TO 3.3V OR BATTERY SUPPLY (specified at 3V and 5V) RAIL TO RAIL INPUT AND OUTPUT VOLTAGE RANGES 2 SEPARATE STANDBY : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS SINGLE (OR DUAL) SUPPLY OPERATION FROM 2.7V TO 16V EXTREMELY LOW INPUT BIAS CURRENT : 1pA TYP LOW INPUT OFFSET VOLTAGE : 5mV max. SPECIFIED FOR 600Ω AND 150Ω LOADS LOW SUPPLY CURRENT : 200µA/Ampli N DIP16 (Plastic Package) D SO16 (Plastic Micropackage) ORDER CODES SPICE MACROMODEL INCLUDED IN THIS SPECIFICATION DESCRIPTION The TS3V904 is a RAIL TO RAIL quad CMOS operational amplifier designed to operate with a single 3V supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches : VCC+ -50mV with RL = 10kΩ • VCC- +50mV • VCC +350mV VCC+ -350mV with RL = 600Ω This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200µA/amp. (VCC = 3V) Source and sink output current capability istypically 40mA (at VCC = 3V), fixed by an internal limitation circuit. The TS3V904 offers two separate STANDBY pins • STANDBY 1 acting on the n°2 and n°3 operators • STANDBY 2 acting on the n°1 and n°4 operators They reduce the consumption of the corresponding operators and put the outputs in a high impedance state. These two STANDBY pins should never stay not connected. SGS-THOMSON is offering a quad op-amp with the same features : TS3V902. October 1997 Part Number Package Temperature Range o -40, +125 C TS3V904I/AI N D • • PIN CONNECTIONS (top view) 16 Output 4 - 15 Inverting Input 4 + 14 Non-inverting input 4 13 VCC - 5 12 Non-inverting input 3 Inve rting Input 2 6 11 Inve rting input 3 Output 2 7 10 Output 3 S tandby 1 8 9 Output 1 1 Inverting Input 1 2 - Non-inve rting input 1 3 + V CC + 4 Non-inve rting Input 2 S tandby 2 1/11 TS3V904 SCHEMATIC DIAGRAM (1/4 TS3V904) VCC S ta ndby S ta ndby Inte rna l Vref Non-inverting Input Inve rting Input Output S ta ndby S ta ndby VCC STANDBY POSITION VCC HIGH IMPE DANCE OUTP UT IN STANDBY MODE 1/4 TS 3V904 VCC 8/9 S TBY OFF S TBY ON Vsby VCC VCC ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Parameter Supply Voltage - (note 1) Differential Input Voltage - (note 2) Vi Iin Input Voltage - (note 3) Cunnent on Inputs Io Current on Outputs Operating Free Air Temperature Range Toper Notes : TS3V904I/AI Value 18 ±18 Unit V V -0.3 to 18 ±50 V mA ± 130 -40 to +125 mA o C 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. OPERATING CONDITIONS Symbol VCC Vicm 2/11 Parameter Supply Voltage Common Mode Input Voltage Range Value 2.7 to 16 + VCC -0.2 to VCC +0.2 Unit V V TS3V904 ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, pin 8 and pin 9 connected to VCC+, Tamb = 25oC (unless otherwise specified) Symbol Parameter Vio Input Offset Voltage (Vic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. DVio Iio Iib ICC CMR SVR Avd VOH GBP 100 200 pA 1 150 300 300 400 pA Low Level Output Voltage (Vid = -1V) RL = 10kΩ RL = 600Ω RL = 100Ω 2.9 2.3 2.96 2.6 2 RL = 10kΩ RL = 600Ω 2.8 2.1 Output Short Circuit Current (Vid = ±1V) RL = 10kΩ RL = 600Ω RL = 100Ω RL = 10kΩ RL = 600Ω Source (Vo = VCC−) + Sink (Vo = VCC ) µA dB 70 70 10 Large Signal Voltage Gain (RL = 10kΩ, VO = 1.2V to 1.8V) Tmin. ≤ Tamb ≤ Tmax. High Level Output Voltage (Vid = 1V) 200 40 40 3 2 en VO1/VO2 µV/oC 1 ∅m SR- Unit mV Input Offset Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Supply Current (per amplifier, AVCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Common Mode Rejection Ratio Vic = 0 to 3V, Vo = 1.5V + Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2) Gain Bandwidth Product (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) Positive Slew Rate (AVCL = 1, RL = 10kΩ, C L = 100pF, Vi =1.3V to 1.7V) Negative Slew Rate (AVCL = 1, RL = 10kΩ, C L = 100pF, Vi =1.3V to 1.7V) Phase Margin SR+ Max. 10 5 12 7 5 Tmin. ≤ Tamb ≤ Tmax. Io Typ. Input Offset Voltage Drift Tmin. ≤ Tamb ≤ Tmax. VOL Min. TS3V904 TS3V904A TS3V904 TS3V904A 50 300 900 dB V/mV V 100 400 mV 150 600 40 40 mA MHz 0.8 0.5 V/µs V/µs 0.4 30 Degrees Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz) 30 nV √ Hz Channel Separation (f = 1kHz) 120 dB Note 1 : Maximum values including unavoidable inaccuracies of the industrial test. STANDBY MODE VCC+ = 3V, VCC- = 0V, Tamb = 25oC (unless otherwise specified) Symbol Vin SBY/ON Vin SBY/OFF ICC SBY Parameter Pin 8/9 Threshold Voltage for STANDBY ON Pin 8/9 Threshold Voltage for STANDBY OFF Total Consumption Standby 1 ON - Standby 2 OFF Standby 1 OFF - Standby 2 ON Standby 1 and 2 ON TS3V904I/AI Min. Typ. Max. 1.2 1.5 400 400 0.5 Unit V V µA 3/11 TS3V904 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2 ,pin 8 and pin 9 connected to VCC+, Tamb = 25oC (unless otherwise specified) Symbol Parameter Vio Input Offset Voltage (Vic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. DVio Iio Iib ICC CMR SVR Avd VOH GBP Max. 10 5 12 7 Unit mV µV/oC 5 Input Offset Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Supply Current (per amplifier, AVCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Common Mode Rejection Ratio Vic = 1.5 to 3.5V, Vo = 2.5V + Supply Voltage Rejection Ratio (VCC = 3 to 5V, VO = VCC /2) 1 100 200 pA 1 150 300 350 450 pA High Level Output Voltage (Vid = 1V) Low Level Output Voltage (Vid = -1V Output Short Circuit Current (Vid = ±1V) 230 75 80 30 RL = 10kΩ RL = 600Ω RL = 100Ω 4.9 4.25 4.95 4.65 3.7 RL = 10kΩ RL = 600Ω 4.8 4.1 50 350 1400 RL = 10kΩ RL = 600Ω RL = 100Ω RL = 10kΩ RL = 600Ω Source (Vo = VCC−) + Sink (Vo = VCC ) Gain Bandwidth Product (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) µA dB 50 50 10 7 Large Signal Voltage Gain (RL = 10kΩ, VO = 1.5V to 3.5V) Tmin. ≤ Tamb ≤ Tmax. Tmin. ≤ Tamb ≤ Tmax. Io Typ. Input Offset Voltage Drift Tmin. ≤ Tamb ≤ Tmax. VOL Min. TS3V904 TS3V904A TS3V904 TS3V904A dB V/mV V 100 500 mV 150 750 45 45 60 60 mA MHz 0.9 SR+ Positive Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi =1V to 4V) 0.8 V/µs SR- Negative Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi =1V to 4V) Phase Margin 0.5 V/µs Degrees ∅m Note 1 : Maximum values including unavoidable inaccuracies of the industrial test. 4/11 30 TS3V904 TYPICAL CHARACTERISTICS (standby OFF = standby 1 and 2 OFF) (standby ON = standby 1 and 2 ON) Figure 1a : Supply Current (each amplifier) versus Supply Voltage Figure 1b : Supply Current (each amplifier) versus Supply Voltage (in STANDBY mode) 50 SUPPLY CURRENT, I CC ( µ A) SUPPLY CURRENT, ICC ( mA) 60 0 Tamb = 25 C A VCL = 1 V o = VCC / 2 S tandby OFF 50 0 400 300 200 Tamb = 25 C A VCL = 1 S tandby ON 40 30 20 10 10 0 0 4 8 12 0 16 4 SUP PLY VOLTAGE, VCC (V) OUTPUT VOLTAGE, VOH (V) INPUT BIAS CURRENT, I ib (pA) 5 VCC = 10V Vi = 5V No loa d S ta ndby O FF 10 T a mb = 25 C V id = 100mV S ta ndby OFF 4 2 VCC = +3V 1 0 50 75 100 1 25 -70 OUTPUT VOLTAGE, V OL (V) VCC = +16V 12 -42 -28 -14 0 Figure 4a : Low Level Output Voltage versus Low Level Output Current 5 T a mb = 25 C V id = 100mV S ta ndby OFF -56 OUTPUT CURRENT, IOH (mA) Figure 3b : High Level Output Voltage versus High Level Output Current OUTPUT VOLTAGE, VOH (V) VCC = +5V 3 TEMPERATURE, T a mb ( C) 16 16 Figure 3a : High Level Output Voltage versus High Level Output Current 1 00 20 12 SUP PLY VOLTAGE, V CC (V) Figure 2 : Input Bias Current versus Temperature 1 25 8 VCC = +10V 8 4 4 3 T amb = 25 C V id = 100mV S ta ndby OFF VCC = +3V 2 VCC = +5V 1 0 -70 -56 -42 -28 -14 OUTP UT CURRENT, IOH (mA) 0 0 14 28 42 56 70 OUTP UT CURRENT, I OL (mA) 5/11 TS3V904 Figure 4b : Low Level Output Voltage versus Low Level Output Current GAIN 40 6 V 4 V CC CC = 16V = 10V 0 30 P HASE 20 90 Tamb = 25 C VCC = 10V R L = 10k Ω C L = 100pF AVCL = 100 S tandby OFF 10 2 45 P ha s e Margin 0 135 Ga in Bandwidth P roduct 180 PHASE (Degrees) 8 50 T a mb = 25 C V id = 100mV S ta ndby OFF GAIN (dB) OUTPUT VOLTAGE, VOL (V) 10 Figure 5a : Open Loop Frequency Response and Phase Shift -10 0 14 28 42 56 70 10 2 10 OUTPUT CURRENT, I OL (mA) 50 GAIN 0 30 Ta mb = 25 C VCC = 10V R L = 60 0Ω C L = 10 0pF A VCL = 100 S ta nd by O FF 20 10 0 10 10 45 P HASE 2 10 3 P ha s e Margin 90 135 Ga in Ba ndwidth P roduct 4 180 5 10 10 10 FREQUENCY, f (Hz) 6 10 PHASE (Degrees) GAIN (dB) 40 7 PHASE MARGIN, φ m (Degrees) GAIN BANDW. PROD., GBP (kHz) Ta mb = 25 C R L = 600Ω C L = 100pF Sta ndby OFF 1000 6 00 200 4 8 12 SUPP LY VOLTAGE, VCC (V) 6/11 6 10 7 1800 Ta mb = 25 C R L = 10k Ω C L = 100pF Sta ndby OFF 1400 1000 600 200 0 4 8 12 16 Figure 7a : Phase Margin versus Supply Voltage 1800 0 5 S UPP LY VOLTAGE, VCC (V) Figure 6b : Gain bandwidth Product versus Supply Voltage 1400 4 10 10 10 FREQUENCY, f (Hz) Figure 6a : Gain Bandwidth Product versus Supply Voltage GAIN BANDW. PROD., GBP (kHz) Figure 5b : Open Loop Frequency Response and Phase Shift 3 16 60 Tamb = 2 5 C R L = 1 0kΩ C L = 1 00p F Sta ndby OFF 50 40 30 20 0 4 8 12 S UPP LY VOLTAGE, VCC (V) 16 TS3V904 Figure 8 : Input Voltage Noise versus Frequency 60 EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz) PHASE MARGIN,φ m (Degrees) Figure 7b : Phase Margin versus Supply Voltage Ta mb = 25 C R L = 600Ω C L = 100 pF Sta ndby OFF 50 40 30 20 0 4 8 12 150 VCC = 10V Tamb = 25 C R S = 100Ω 100 Sta ndby OFF 50 0 16 1000 100 FREQUENCY (Hz) 10 SUP PLY VOLTAGE, VCC (V) 10000 STANDBY APPLICATION The TS3V904 offers two separate STANDBY pins : .. . . .. STANDBY 1 (pin 8) acting on the n°2 and n°3 operators. STANDBY 2 (pin 9) acting on the n°1 and n°4 operators. When one of these standby is activated (STANDBY ON) : The supply current of the corresponding operators is considerably reduced. The total consumption of the circuit is then divided by 2 (one STANDBY ON) or decreased down to 0.5µA (VCC = 3V, two STANDBY ON). (ref. figure 1b). All the outputs of the corresponding operators are in high impedance state. No output current can then be sourced or sinked. The standby pins 8 and 9 should never stay unconnected. The ”standby OFF” state, is reached when the pins 8 or 9 voltage is higher than Vin SBY/OFF. The ”standby ON” state, is assured by the pins 8 or 9 voltage lower than Vin SBY/OFF. (see electrical characteristics) ORDERING INFORMATION T 3 S V 9 0 4 A N I 3V FAMILY RAIL TO RAIL TEMPERATURE RANGE OFFS ET VOLTAG E S ELE CTION OP AMPs I ”Nothing” A 14 DUAL - 200µA/amp - 0.8MHz 04 DUAL - 200µA/amp - 0.8MHz + S TANDBY position with High Impe dance Outputs 10mV max. 5mV max. -40 C to +125 C P ACKAGES N D DT DIP S0 S 0 Ta pe &Re e l 7/11 TS3V904 MACROMODEL . . . DEDICATED TO 3.3V OR BATTERY SUPPLY (specified at 3V and 5V) RAIL TO RAIL INPUT AND OUTPUT VOLTAGE RANGES 2 SEPARATE STANDBY : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIV E POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TS3V904 1 3 2 4 5 6 (analog) ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F * INPUT STAGE CIP 2 5 1.500000E-12 CIN 1 5 1.500000E-12 EIP 10 0 2 0 1 EIN 16 0 1 0 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.655100E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 FPOL 13 0 VSTB 1 CPS 11 15 3.82E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.5000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 -0.5000000E+00 FCP 4 5 VOFP 8.6E+00 FCN 5 4 VOFN 8.6E+00 ISTB0 5 4 900NA * AMPLIFYING STAGE FIP 0 19 VOFP 5.500000E+02 FIN 0 19 VOFN 5.500000E+02 RG1 19 120 5.087344E+05 GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11 RG2 121 19 5.087344E+05 GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 12.33E+02 HZTN 5 30 VOFN 12.33E+02 8/11 . . .. . SINGLE (OR DUAL) SUPPLY OPERATION FROM 2.7V TO 16V EXTREMELY LOW INPUT BIAS CURRENT : 1pA TYP LOW INPUT OFFSET VOLTAGE : 5mV max. SPECIFIED FOR 600Ω AND 150Ω LOADS LOW SUPPLY CURRENT : 200µA/Ampli DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3135 VIPM 28 4 150 HONM 21 27 VOUT 3135 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 103 65 COUT 103 5 1.000000E-12 GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11 * OUTPUT SWING DOP 19 68 MDTH 400E-12 VOP 4 25 1.924 HSCP 68 25 VSCP1 1E8 DON 69 19 MDTH 400E-12 VON 24 5 2.4419107 HSCN 24 69 VSCN1 1.5E8 VSCTHP 60 61 0.1375 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.75 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 * STAND BY RMI1 4 111 1E+12 RMI2 5 111 1E+12 RSTBIN 6 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 40U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 .ENDS TS3V904 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, standby off, Tamb = 25oC (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 10kΩ 30 V/mV ICC No load, per operator 230 µA -0.2 to 5.2 V Vicm VOH RL = 10kΩ 4.95 V VOL RL = 10kΩ 50 mV Isink VO = 10V 60 mA Isource VO = 0V 60 mA GBP RL = 10kΩ, CL = 100pF 0.8 MHz SR RL = 10kΩ, CL = 100pF 0.8 V/µs ∅m RL = 10kΩ, CL = 100pF 30 Degrees VSTBY = 0V 500 nA ICC STBY 9/11 TS3V904 PM-DIP16.EPS PACKAGE MECHANICAL DATA 16 PINS - PLASTIC DIP a1 B b b1 D E e e3 F i L Z 10/11 Min. 0.51 0.77 Millimeters Typ. Max. 1.65 0.5 0.25 Min. 0.020 0.030 Inches Typ. Max. 0.065 0.020 0.010 20 8.5 2.54 17.78 0.787 0.335 0.100 0.700 7.1 5.1 3.3 0.280 0.201 0.130 1.27 0.050 DIP16.TBL Dimensions TS3V904 PM-SO16.EPS PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 b b1 C c1 D E e e3 F G L M S Min. Millimeters Typ. 0.1 0.35 0.19 Max. 1.75 0.2 1.6 0.46 0.25 Min. Inches Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 o 45 (typ.) 9.8 5.8 10 6.2 0.386 0.228 1.27 8.89 3.8 4.6 0.5 0.394 0.244 0.050 0.350 4.0 5.3 1.27 0.62 0.150 0.181 0.020 0.157 0.209 0.050 0.024 SO16.TBL Dimensions o 8 (max.) Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publ ication are subject to change without notice. This publ ication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. ORDER CODE : 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 11/11