Freescale Semiconductor Data Sheet: Advance Information Document Number: K61P256M120SF3 Rev. 3, 2/2012 K61P256M120SF3 K61 Sub-Family Data Sheet Supports the following: MK61FX512VMJ12, MK61FN1M0VMJ12 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 120 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 1024 KB program flash memory on nonFlexMemory devices – Up to 512 KB program flash memory on FlexMemory devices – Up to 512 KB FlexNVM on FlexMemory devices – 16 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface – DDR controller interface – NAND flash controller interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – 10 low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 32-channel DMA controller, supporting up to 128 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Tamper detect and secure storage – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Four 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – Two 12-bit DACs – Four analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Two 8-channel motor control/general purpose/PWM timers – Two 2-channel quadrature decoder/general purpose timers – IEEE 1588 timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock This document contains information on a new product. Specifications and information herein are subject to change without notice. © 2012 Freescale Semiconductor, Inc. Preliminary • Communication interfaces – Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability – USB high-/full-/low-speed On-the-Go controller with ULPI interface – USB full-/low-speed On-the-Go controller with on-chip transceiver – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital host controller (SDHC) – Two I2S modules K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 2 Preliminary Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................5 5.4.2 Thermal attributes...............................................26 1.1 Determining valid orderable parts......................................5 6 Peripheral operating requirements and behaviors....................26 2 Part identification......................................................................5 6.1 Core modules....................................................................26 2.1 Description.........................................................................5 6.1.1 Debug trace timing specifications.......................27 2.2 Format...............................................................................5 6.1.2 JTAG electricals..................................................27 2.3 Fields.................................................................................5 6.2 System modules................................................................30 2.4 Example............................................................................6 6.3 Clock modules...................................................................30 3 Terminology and guidelines......................................................6 6.3.1 MCG specifications.............................................30 3.1 Definition: Operating requirement......................................6 6.3.2 Oscillator electrical specifications.......................32 3.2 Definition: Operating behavior...........................................6 6.3.3 32kHz Oscillator Electrical Characteristics.........34 3.3 Definition: Attribute............................................................7 6.4 Memories and memory interfaces.....................................35 3.4 Definition: Rating...............................................................7 6.4.1 Flash (FTFE) electrical specifications.................35 3.5 Result of exceeding a rating..............................................8 6.4.2 EzPort Switching Specifications.........................38 3.6 Relationship between ratings and operating 6.4.3 NFC specifications..............................................39 requirements......................................................................8 6.4.4 DDR controller specifications..............................42 3.7 Guidelines for ratings and operating requirements............8 6.4.5 Flexbus Switching Specifications........................45 3.8 Definition: Typical value.....................................................9 6.5 Security and integrity modules..........................................48 3.9 Typical value conditions....................................................10 4 Ratings......................................................................................10 6.5.1 DryIce Tamper Electrical Specifications.............48 6.6 Analog...............................................................................49 4.1 Thermal handling ratings...................................................10 6.6.1 ADC electrical specifications..............................50 4.2 Moisture handling ratings..................................................11 6.6.2 CMP and 6-bit DAC electrical specifications......58 4.3 ESD handling ratings.........................................................11 6.6.3 12-bit DAC electrical characteristics...................60 4.4 Voltage and current operating ratings...............................11 6.6.4 Voltage reference electrical specifications..........63 5 General.....................................................................................12 6.7 Timers................................................................................64 5.1 AC electrical characteristics..............................................12 6.8 Communication interfaces.................................................64 5.2 Nonswitching electrical specifications...............................13 6.8.1 Ethernet switching specifications........................64 5.2.1 Voltage and current operating requirements......13 6.8.2 USB electrical specifications...............................66 5.2.2 LVD and POR operating requirements...............15 6.8.3 USB DCD electrical specifications......................66 5.2.3 Voltage and current operating behaviors............16 6.8.4 USB VREG electrical specifications...................67 5.2.4 Power mode transition operating behaviors.......18 6.8.5 ULPI timing specifications...................................67 5.2.5 Power consumption operating behaviors............19 6.8.6 CAN switching specifications..............................68 5.2.6 EMC radiated emissions operating behaviors....22 6.8.7 DSPI switching specifications (limited voltage 5.2.7 Designing with radiated emissions in mind.........23 5.2.8 Capacitance attributes........................................23 range).................................................................69 6.8.8 5.3 Switching specifications.....................................................23 DSPI switching specifications (full voltage range).................................................................70 5.3.1 Device clock specifications.................................23 6.8.9 I2C switching specifications................................72 5.3.2 General switching specifications.........................24 6.8.10 UART switching specifications............................72 5.4 Thermal specifications.......................................................25 6.8.11 SDHC specifications...........................................72 6.8.12 I2S/SAI Switching Specifications........................73 5.4.1 Thermal operating requirements.........................25 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 3 6.9 Human-machine interfaces (HMI)......................................75 6.9.1 8 Pinout........................................................................................77 TSI electrical specifications................................75 8.1 K61 Signal Multiplexing and Pin Assignments..................77 7 Dimensions...............................................................................76 8.2 K61 Pinouts.......................................................................87 7.1 Obtaining package dimensions.........................................77 9 Revision History........................................................................88 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 4 Preliminary Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK61 and MK61. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K61 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 5 Terminology and guidelines Field Description Values FFF Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • 12 = 120 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK61FN1M0VMJ12 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 6 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 7 Terminology and guidelines 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply voltage Max. –0.3 Unit 1.2 V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements tin ra pe r go n ha ng dli g tin ) in. (m ra O e gr tin ra pe em ir qu n. mi t( en ) O O e gr tin ra pe em ir qu x ma t( en .) r go tin ra pe ng dli n ha g tin .) ax (m ra O Fatal range Limited operating range Normal operating range Limited operating range Fatal range - Probable permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation - Probable permanent failure Handling range - No permanent failure ∞ –∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 8 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 9 Ratings 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.05 1.00 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 10 Preliminary Freescale Semiconductor, Inc. Ratings 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit Digital supply voltage1 –0.3 3.8 V VDD_INT Core supply voltage –0.3 3.8 V VDD_DDR DDR I/O supply voltage –0.3 3.8 V Digital supply current — 300 mA IDD_INT Core supply current — 185 mA IDD_DDR DDR supply current — 220 mA Digital input voltage (except RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1) 2 –0.3 5.5 V Tamper input voltage –0.3 VBAT + 0.3 V DDR input voltage –0.3 VDD_DDR + 0.3 V Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage –0.3 VDD + 0.3 V VDD IDD VDIO VDTamper VDDDR VAIO Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 11 General Symbol Description Min. Max. Unit Instantaneous maximum current single pin limit (applies to all digital pins except Tamper and DDR pins) –25 25 mA ID_DDR Instananeous maximum current single pin limit (applies to DDR pins) TBD TBD mA ID_Tamper Instananeous maximum current single pin limit (applies to Tamper pins) TBD TBD mA ID VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 1. It applies for all port pins except Tamper pins. 2. It covers digital pins except Tamper pins and DDR pins. 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 12 Preliminary Freescale Semiconductor, Inc. General 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Min. Max. Unit max(VDD_DD R,1.71) 3.6 V 1.71 VDD V • DDR1 2.3 2.7 V • DDR2/LPDDR 1.7 1.9 V 0.49 × VDD_DDR 0.51 × VDD_DDR V 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V — 0.3 × VDD V VREF_DDR + 0.15 — V — V VREF_DDR + 0.125 — V VDD Description Supply voltage VDD_INT Core supply voltage VDD_DDR DDR voltage — memory I/O buffers VREF_DDR VDDA VBAT VIH Input reference voltage (DDR1/DDR2) Analog supply voltage RTC battery supply voltage Input high voltage (digital pins except Tamper pins and DDR pins) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage (digital pins except Tamper pins and DDR pins) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIH_DDR Input high voltage (DDR pins) • DDR1 • DDR2 • LPDDR Notes 0.7 × VDD_DDR Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 13 General Table 1. Voltage and current operating requirements (continued) Symbol Description VIL_DDR Input low voltage (DDR pins) • DDR1 • DDR2 • LPDDR Min. Max. Unit — VREF_DDR – 0.15 V VREF_DDR – 0.125 V — — Notes V 0.3 × VDD_DDR VIH_Tamper Tamper input high voltage • 2.7 V ≤ VBAT ≤ 3.6 V • 1.7 V ≤ VBAT ≤ 2.7 V VIL_Tamper Tamper input low voltage • 2.7 V ≤ VBAT ≤ 3.6 V 0.7 × VBAT — V 0.75 × VBAT — V — 0.35 × VBAT V — 0.3 × VBAT V 0.06 × VDD — V 0.06 × VBAT — V -5 — mA TBD TBD mA -0.2 — mA — 2.0 mA • 1.7 V ≤ VBAT ≤ 2.7 V VHYS Input hysteresis (digital pins except Tamper pins and DDR pins) VHYS_Tamper Input hysteresis (Tamper pins) IICDIO Digital pin (except Tamper pins and DDR pins) negative DC injection current — single pin 1 • VIN < VSS-0.3V IICDIO_DDR DDR pin negative DC injection current -- single pin • TBD IICDIO_Tamper Tamper pin negative DC injection current — single pin • VIN < VSS-0.3V • VIN > VBAT IICAIO IICcont -5 — • VIN > VDD+0.3V (Positive current injection) — +5 -25 — — +25 1.2 — V VPOR_VBAT — V Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Positive current injection VRFVBAT mA • VIN < VSS-0.3V (Negative current injection) • Negative current injection VRAM 3 Analog2, EXTAL0/XTAL0, and EXTAL1/XTAL1 pin DC injection current — single pin VDD (VDD_INT) voltage required to retain RAM VBAT voltage required to retain the VBAT register file mA 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 14 Preliminary Freescale Semiconductor, Inc. General the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN (=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances. 5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period 900 1000 1100 μs factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 15 General 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V Output high current total for all ports — 100 mA IOHT_io60 Output high current total for fast digital ports — 100 mA VOH_DDR Output high voltage for DDR pins VDD_DDR 0.36 — V — V VDD_DDR 0.28 — V VDD_DDR 0.28 — V — V — TBD mA VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V — TBD mA VOH Description Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT • DDR1 (IOH = -16.2 mA) • DDR2 half strength (IOH = TBD mA) • DDR2 full strength (IOH = -13.4 mA) • LPDDR half strength (IOH = -0.1 mA) • LPDDR full strength (IOH = -0.1 mA) 0.9 x VDD_DDR 0.9 x VDD_DDR IOHT_DDR Output high current total for DDR pins • DDR1 • DDR2 • LPDDR VOH_Tamper Output high voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA IOH_Tamper Output high current total for Tamper pins Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 16 Preliminary Freescale Semiconductor, Inc. General Table 4. Voltage and current operating behaviors (continued) Symbol Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V Output low current total for all ports — TBD mA IOLT_io60 Output low current total for fast digital ports — TBD mA VOL_DDR Output low voltage for DDR pins VOL Description Notes Output low voltage — high drive strength Output low voltage — low drive strength IOLT — 0.37 V • DDR1 (IOL = 16.2 mA) — 0.28 V • DDR2 half strength (IOL = TBD mA) — 0.28 V • DDR2 full strength (IOL = 13.4 mA) — — 0.1 x VDD_DDR V • LPDDR half strength (IOL = 0.1 mA) • LPDDR full strength (IOL = 0.1 mA) IOLT_DDR V 0.1 x VDD_DDR Output low current total for DDR pins — TBD mA — 0.5 V — 0.5 V — 0.5 V — 0.5 V Output low current total for Tamper pins — TBD mA IIN Input leakage current (per pin) for full temperature range — 1 μA 1 IIN Input leakage current (per pin) at 25°C — 0.025 μA 1 IIN_DDR Input leakage current (per DDR pin) for full temperature range — 1 μA IIN_DDR Input leakage current (per DDR pin) at 25°C — 0.025 μA IIN_Tamper Input leakage current (per Tamper pin) for full temperature range — TBD μA IIN_Tamper Input leakage current (per Tamper pin) at 25°C — 0.025 μA • DDR1 • DDR2 • LPDDR VOL_Tamper Output low voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA IOL_Tamper Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 17 General Table 4. Voltage and current operating behaviors (continued) Symbol Min. Max. Unit Hi-Z (off-state) leakage current (per pin) — 1 μA Hi-Z (off-state) leakage current (per DDR pin) — 1 μA Hi-Z (off-state) leakage current (per Tamper pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ 2 RPD Internal pulldown resistors 20 50 kΩ 3 RPU_Tamper Internal pullup resistors (per Tamper pin) 20 50 kΩ RPD_Tamper Internal pulldown resistors (per Tamper pin) 20 50 kΩ 60 90 Ω 120 180 Ω IOZ IOZ_DDR IOZ_Tamper RODT Description On-die termination (ODT) resistance for DDR2 • Rtt1(eff) - 75 Ω • Rtt2(eff) - 150 Ω Notes 1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = FEI 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN Min. Max. Unit Notes — 300 μs 1 — 126 μs — 82 μs — 82 μs — 5.0 μs Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 18 Preliminary Freescale Semiconductor, Inc. General Table 5. Power mode transition operating behaviors (continued) Symbol Description • VLPS → RUN • STOP → RUN Min. Max. Unit — TBD μs — TBD μs Notes 1. Normal boot (FTFE_FOPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Min. Typ. Max. Unit Notes Analog supply current — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash — 65 TBD mA — 65 TBD mA — 95 TBD mA — 95 TBD mA 2 • @ 1.8V • @ 3.0V IDD_RUN Run mode current — all peripheral clocks enabled, code executing from flash 3 • @ 1.8V • @ 3.0V IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 37 TBD mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 21 TBD mA 4 IDD_STOP Stop mode current at 3.0 V — TBD TBD mA — TBD TBD mA — TBD TBD mA • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 2.3 TBD mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 3.1 TBD mA 6 IDD_VLPW Very-low-power wait mode current at 3.0 V — 1.8 TBD mA 7 IDD_VLPS Very-low-power stop mode current at 3.0 V — 200 TBD μA — TBD TBD μA — TBD TBD μA • @ –40 to 25°C • @ 70°C • @ 105°C Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 19 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit IDD_LLS Low leakage stop mode current at 3.0 V — 200 TBD μA — TBD TBD μA — TBD TBD μA — 6.5 TBD μA — 37.4 TBD μA — 148.3 TBD μA — 3.4 TBD μA — 13.4 TBD μA — 58.5 TBD μA — 2.9 TBD μA — 9.8 TBD μA — 44.7 TBD μA — 0.91 1.1 μA • @ –40 to 25°C — 1.5 1.85 μA • @ 70°C — 4.3 4.3 μA • @ –40 to 25°C • @ 70°C Notes 8 • @ 105°C IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V • @ –40 to 25°C • @ 70°C #newreference/ llsramn • @ 105°C IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V • @ –40 to 25°C • @ 70°C • @ 105°C IDD_VBAT Average current when CPU is not accessing RTC registers at 3.0 V 9 • @ 105°C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 120 MHz core and system clock, 60 MHz bus, 50 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode. 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 6. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 7. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 8. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA. 9. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 20 Preliminary Freescale Semiconductor, Inc. General • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode is greater than 100 MHz frequencies. • USB regulator disabled • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFL Figure 2. Run mode supply current vs. core frequency K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 21 General Figure 3. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA Symbol Description Frequency band (MHz) Typ. Unit VRE1 Radiated emissions voltage, band 1 0.15–50 TBD dBμV VRE2 Radiated emissions voltage, band 2 50–150 TBD dBμV VRE3 Radiated emissions voltage, band 3 150–500 TBD dBμV VRE4 Radiated emissions voltage, band 4 500–1000 TBD dBμV IEC level 0.15–1000 K — VRE_IEC Notes 1, 2 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 22 Preliminary Freescale Semiconductor, Inc. General 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF Input capacitance: fast digital pins — 9 pF CIN_D_io60 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 120 MHz fSYS_USBFS System and core clock when Full Speed USB in operation 20 — MHz fSYS_USBHS System and core clock when High Speed USB in operation 60 — MHz fENET System and core clock when ethernet in operation Notes Normal run mode fSYS • 10 Mbps • 100 Mbps fBUS FB_CLK fFLASH MHz 5 — 50 — Bus clock — 60 MHz FlexBus clock — 50 MHz Flash clock — 25 MHz Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 23 General Table 9. Device clock specifications (continued) Symbol fDDR fLPTMR Description Min. Max. Unit DDR clock — 150 MHz LPTMR clock — 25 MHz Notes VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 1 MHz fLPTMR LPTMR clock — 4 MHz FB_CLK 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, and I2C signals. Table 10. General switching specifications Symbol tio50 Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 2 External reset pulse width (digital glitch filter disabled) 100 — ns 2 Mode select (EZP_CS) hold time after reset deassertion 2 — Bus clock cycles Port rise and fall time (high drive strength) — TBD ns 3 — TBD ns 4 — TBD ns 3 — TBD ns 4 — TBD ns 3 — TBD ns 4 • Slew disabled • Slew enabled tio50 Port rise and fall time (low drive strength) • Slew disabled • Slew enabled tio60 Port rise and fall time (high drive strength) • Slew disabled • Slew enabled Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 24 Preliminary Freescale Semiconductor, Inc. General Table 10. General switching specifications (continued) Symbol tio60 Description Min. Max. Unit Notes — TBD ns 3 — TBD ns 4 — TBD ns 5 — TBD ns 6 — TBD ns 7 — TBD ns 8 — TBD ns 9 • DDR1 — TBD ns 10 • DDR2 — TBD ns 11 Port fall time — TBD ns 9 • DDR1 — TBD ns 10 • DDR2 — TBD ns 11 Port rise and fall time (low drive strength) • Slew disabled • Slew enabled ttamper Port rise and fall time (high drive strength) • Slew disabled • Slew enabled ttamper Port rise and fall time (low drive strength) • Slew disabled • Slew enabled tddr Port rise time • LPDDR tddr • LPDDR 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. 25pF load 4. 15pF load 5. 75pF load 6. 15pF load 7. 75pF load 8. 15pF load 9. DDR —rise and fall times at 50 Ω transmission line impedance terminated to 0.5 × VDD_DDR + 5 pF load. 10. Rising slew rate measured between 0.5 × VDD_DDR and 0.5 × VDD_DDR + 250 mV for all modes. 11. Falling slew rate measured between 0.5 × VDD_DDR and 0.5 × VDD_DDR – 250 mV for all modes. 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 25 Peripheral operating requirements and behaviors 5.4.2 Thermal attributes Board type Symbol Description Unit Notes Single-layer (1s) RθJA Thermal 43 resistance, junction to ambient (natural convection) °C/W 1, 2 Four-layer (2s2p) RθJA Thermal 28 resistance, junction to ambient (natural convection) °C/W 1,2, 3 Single-layer (1s) RθJMA Thermal 36 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 25 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 — RθJB Thermal 17 resistance, junction to board °C/W 4 — RθJC Thermal 8 resistance, junction to case °C/W 5 — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) °C/W 6 1. 2. 3. 4. 5. 6. 256 MAPBGA Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 26 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns Figure 4. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 5. Trace data specifications 6.1.2 JTAG electricals Table 13. JTAG voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 5.5 V TCLK frequency of operation MHz • JTAG — 10 • CJTAG — 5 Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 27 Peripheral operating requirements and behaviors Table 13. JTAG voltage range electricals (continued) Symbol Description Min. Max. Unit J2 TCLK cycle period 1/J1 — ns J3 TCLK clock pulse width • JTAG 100 — ns • CJTAG 200 — ns — ns 1 ns — ns — ns — ns — ns J4 TCLK rise and fall times — J5 TMS input data setup time to TCLK rise • JTAG • CJTAG 112 J6 TDI input data setup time to TCLK rise 8 J7 TMS input data hold time after TCLK rise • JTAG • CJTAG 53 3.4 3.4 J8 TDI input data hold time after TCLK rise 3.4 J9 TCLK low to TMS data valid • JTAG • CJTAG — J10 J11 48 ns 85 TCLK low to TDO data valid Output data hold/invalid time after clock edge1 — 48 ns — 3 ns 1. They are common for JTAG and CJTAG. J2 J3 J3 TCLK (input) J4 J4 Figure 6. Test clock input timing K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 28 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 7. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 8. Test Access Port timing K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 29 Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 9. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 14. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Internal reference (slow clock) current — TBD — µA Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — ± 10 — %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 4.5 — %fdco 1 4 MHz fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Iints fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — TBD — µA Iintf Notes Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 30 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — FLL accumulated jitter of DCO output over a 1µs time window — TBD — ps FLL target frequency acquisition time — — 1 ms 8 — 16 MHz Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fVCO = 48 MHz • fVCO = 98 MHz Jacc_fll tfll_acquire ps 6 PLL0,1 fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency fvcoclk PLL output frequency fvcoclk_90 Ipll — 90 PLL quadrature output frequency PLL operating current (fast) — 180 — 90 — TBD 360 180 180 — MHz MHz MHz µA 7 Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 31 Peripheral operating requirements and behaviors Table 14. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit — TBD — µA Ipll PLL operating current (fast) tpll_lock Lock detector detection time — — 100 × 10-6 + 1075(1/ fpll_ref) s Jcyc_pll Jitter (cycle to cycle) — 50 TBD ps Jacc_pll Jitter (accumulated) — 500 TBD ps Notes 7 8 9 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. Accumulated jitter will depend on VCO frequency and VDIV. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Symbol VDD IDDOSC Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 32 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. Oscillator DC electrical specifications (continued) Symbol Description Min. IDDOSC Supply current — high gain mode (HGO=1) Typ. Max. Unit Notes 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 33 Peripheral operating requirements and behaviors 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Symbol Oscillator frequency specifications Table 16. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 60 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 1000 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 500 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1 2, 3 4, 5 1. Frequencies less than 8 MHz are not in the PLL range. 2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 3. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 4. Proper PC board layout procedures must be followed to achieve specifications. 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.3.3 32kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 Symbol VBAT RF 32kHz oscillator DC electrical specifications Table 17. 32kHz oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V — 100 — MΩ Internal feedback resistor Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 34 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 17. 32kHz oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart 32kHz oscillator frequency specifications Table 18. 32kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms Notes 1 1. Proper PC board layout procedures must be followed to achieve specifications. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFE) electrical specifications This section describes the electrical characteristics of the FTFE module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 19. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm4 Notes Program Phrase high-voltage time — 7.5 TBD μs thversscr Erase Flash Sector high-voltage time — 13 TBD ms 1 thversblk Erase Flash Block high-voltage time — 425 TBD ms 1 1. Maximum time based on expectations at cycling end-of-life. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 35 Peripheral operating requirements and behaviors 6.4.1.2 Symbol Flash timing specifications — commands Table 20. Flash command timing specifications Min. Typ. Max. Unit Read 1s Block execution time — 1.5 TBD ms trd1sec4k Read 1s Section execution time (4KB flash) — 50 TBD μs 1 tpgmchk Program Check execution time — 35 TBD μs 1 trdrsrc Read Resource execution time — 35 TBD μs 1 tpgm8 Program Phrase execution time — 65 TBD μs tersblk Erase Flash Block execution time — 450 TBD ms 2 tersscr Erase Flash Sector execution time — 15 TBD ms 2 Program Section execution time (4KB flash) — 20 TBD ms trd1all Read 1s All Blocks execution time — 1.5 TBD ms trdonce Read Once execution time — 17 TBD μs Program Once execution time — 65 TBD μs tersall Erase All Blocks execution time — 900 TBD ms 2 tvfykey Verify Backdoor Access Key execution time — 25 TBD μs 1 trd1blk tpgmsec4k tpgmonce Description Notes 1 Swap Control execution time tswapx01 • control code 0x01 — 185 TBD μs tswapx02 • control code 0x02 — 65 TBD μs tswapx04 • control code 0x04 — 65 TBD μs tswapx08 • control code 0x08 — 25 TBD μs — TBD TBD ms tpgmpart Program Partition for EEPROM execution time Set FlexRAM Function execution time: tsetram64k • 64 KB EEPROM backup — TBD TBD ms tsetram128k • 128 KB EEPROM backup — TBD TBD ms tsetram256k • 256 KB EEPROM backup — TBD TBD ms tsetram512k • 512 KB EEPROM backup — TBD TBD ms — 100 TBD μs teewr8bers Byte-write to erased FlexRAM location execution time 3 Byte-write to FlexRAM execution time: teewr8b64k • 64 KB EEPROM backup — TBD TBD ms teewr8b128k • 128 KB EEPROM backup — TBD TBD ms teewr8b256k • 256 KB EEPROM backup — TBD TBD ms teewr8b512k • 512 KB EEPROM backup — TBD TBD ms — 100 TBD μs teewr16bers 16-bit write to erased FlexRAM location execution time Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 36 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 20. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit Notes 16-bit write to FlexRAM execution time: teewr16b64k • 64 KB EEPROM backup — TBD TBD ms teewr16b128k • 128 KB EEPROM backup — TBD TBD ms teewr16b256k • 256 KB EEPROM backup — TBD TBD ms teewr16b512k • 512 KB EEPROM backup — TBD TBD ms — 200 TBD μs teewr32bers 32-bit write to erased FlexRAM location execution time teewr32b64k 32-bit-write to FlexRAM execution time: teewr32b128k • 64 KB EEPROM backup — TBD TBD ms teewr32b256k • 128 KB EEPROM backup — TBD TBD ms teewr32b512k • 256 KB EEPROM backup — TBD TBD ms • 512 KB EEPROM backup — TBD TBD ms 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash (FTFE) current and power specfications Table 21. Flash (FTFE) current and power specfications Symbol Description IDD_PGM Worst case programming current in program flash 6.4.1.4 Symbol Typ. Unit 10 mA Reliability specifications Table 22. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years 2 tnvmretp1k Data retention after up to 1 K cycles 10 100 — years 2 tnvmretp100 Data retention after up to 100 cycles 15 100 — years 2 10 K 35 K — cycles 3 nnvmcycp Cycling endurance Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 50 — years 2 tnvmretd1k Data retention after up to 1 K cycles 10 100 — years 2 tnvmretd100 Data retention after up to 100 cycles 15 100 — years 2 10 K 35 K — cycles 3 nnvmcycd Cycling endurance Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 37 Peripheral operating requirements and behaviors Table 22. NVM reliability specifications (continued) Symbol Description Min. Typ.1 Max. Unit Notes FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 50 — years 2 tnvmretee10 Data retention up to 10% of write endurance 10 100 — years 2 tnvmretee1 Data retention up to 1% of write endurance 15 100 — years 2 Write endurance 4 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 TBD TBD — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 TBD TBD — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 TBD TBD — writes nnvmwree4k • EEPROM backup to FlexRAM ratio = 4096 TBD TBD — writes nnvmwree32k • EEPROM backup to FlexRAM ratio = 32,768 TBD TBD — writes 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C profile. Engineering Bulletin EB618 does not apply to this technology. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM. 6.4.1.5 Write endurance to FlexRAM for EEPROM TBD 6.4.2 EzPort Switching Specifications Table 23. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 38 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 23. EzPort switching specifications (continued) Num Description Min. Max. Unit EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP8 EP7 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 10. EzPort Timing Diagram 6.4.3 NFC specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: • TH is the flash clock high time and • TL is flash clock low time, which are defined as: T NFC = T L + T H = T input clock SCALER The SCALER value is derived from the fractional divider specified in the SIM's CLKDIV4 register: SCALER = SIM_CLKDIV4[NFCFRAC] + 1 SIM_CLKDIV4[NFCDIV] + 1 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 39 Peripheral operating requirements and behaviors In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%, means TH = TL. In case the reciprocal of SCALER is not an integer: T L = (1 + SCALER / 2) x T H = (1 – SCALER / 2) x T NFC 2 T NFC 2 For example, if SCALER is 0.2, then TH = TL = TNFC/2. TNFC TH TL However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC. TNFC TH TL NOTE The reciprocal of SCALER must be a multiple of 0.5. For example, 1, 1.5, 2, 2.5, etc. Table 24. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 40 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 24. NFC specifications (continued) Num Description Min. Max. Unit tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 11. Command latch cycle timing NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 12. Address latch cycle timing tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 13. Write data latch cycle timing K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 41 Peripheral operating requirements and behaviors tCH tRC NFC_CEn tREH tRP NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 14. Read data latch cycle timing in non-fast mode tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 15. Read data latch cycle timing in fast mode 6.4.4 DDR controller specifications The following timing numbers must be followed to properly latch or drive data onto the DDR memory bus. All timing numbers are relative to the DQS byte lanes. Table 25. DDR controller — AC timing specifications Symbol Description Min. Max. Unit Frequency of operation Notes 2 • DDR1 83.3 150 MHz • DDR2 1251 150 MHz 50 150 MHz • LPDDR Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 42 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 25. DDR controller — AC timing specifications (continued) Symbol Description tDDRCK Clock period VOX-AC Min. Max. Unit • DDR1 6.6 12 ns • DDR2 6.6 8 ns • LPDDR 6.6 20 ns 0.5 x VDD_DDR – 0.2 V 0.5 x VDD_DDR + 0.2 V V 0.5 x VDD_DDR – 0.125 V 0.5 x VDD_DDR + 0.125 V V 0.4 x VDD_DDR 0.4 x VDD_DDR DDRCK AC differential cross point voltage • DDR1 • DDR2 • LPDDR 1. 2. 3. 4. 5. 6. 7. 8. Notes V tDDRCKH Pulse width high 0.45 0.55 tDDRCK 3 tDDRCKL Pulse width low 0.45 0.55 tDDRCK 3 4 tCMV Address, DDR_CKE, DDR_CAS, DDR_RAS, DDR_WE, DDR_CSn — output valid 0.5 x tDDRCK – 1 — ns tCMH Address, DDR_CKE, DDR_CAS, DDR_RAS, DDR_WE, DDR_CSn — output hold 0.5 x tDDRCK – 1 — ns tDQSS Write command to first DQS latching transition WL – 0.2 x tDDRCK WL + 0.2 x tDDRCK ns tQS Data and data mask output setup (DQ→DQS) relative to DQS (DDR write mode) 0.25 x tDDRCK –1 — ns 5, 6 tQH Data and data mask output hold (DQS→DQ) relative to DQS (DDR write mode) 0.25 x tDDRCK –1 — ns 7 tDQSQ DQS-DQ skew for DQS and associated DQ signals – (0.25 x tDDRCK – 1) 0.25 x tDDRCK –1 ns 8 This is minimum frequency of operation according to JEDEC DDR2 specification. DDR data rate = 2 x DDR clock frequency Pulse width high plus pulse width low cannot exceed min and max clock period. Command output valid should be 1/2 the memory bus clock (tDDRCK) plus some minor adjustments for process, temperature, and voltage variations. This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. DDR_DQ[15:8] is relative to DDR_DQS[1]; DDR_DQ[7:0] is relative to DDR_DQS[0]. The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge. This specification relates to the required hold time of DDR memories. DDR_DQ[15:8] is relative to DDR_DQS[1]; DDR_DQ[7:0] is relative to DDR_DQS[0] Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 43 Peripheral operating requirements and behaviors tDDRCKL tDDRCKH tDDRCK DDR_CLK DDR_CLK tCMV DDR_CSn, DDR_WE tCMH CMD DDR_CAS, DDR_RAS tDQSS DDR_An ROW COL tQS DDR_DMn tQH DDR_DQSn tQS DDR_DQn WD1 WD2 WD3 WD4 tQH Figure 16. DDR write timing K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 44 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors tDDRCK tDDRCKH tDDRCKL DDR_CLK DDR_CLK DDR_CSn, DDR_WE DDR_CAS, DDR_RAS DDR_An CMD tCMV ROW tCMH COL CL=2.5 DQS read postamble DQS read preamble DDR_DQS (CL=2.5) DDR_DQn (CL=2.5) RD1 CL=3 DDR_DQS (CL=3) RD2 RD3 DQS read preamble RD4 DQS read postamble tIH DDR_DQn (CL=3) RD1 RD2 RD3 RD4 tIS Figure 17. DDR read timing Figure 18. DDR read timing, DQ vs. DQS 6.4.5 Flexbus Switching Specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 45 Peripheral operating requirements and behaviors The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 26. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 27. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — FB_CLK MHz 1/FB_CLK — ns Frequency of operation Notes FB1 Clock period FB2 Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 46 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB4 FB2 FB_D[X] Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 19. FlexBus read timing diagram K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 47 Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ Figure 20. FlexBus write timing diagram 6.5 Security and integrity modules 6.5.1 DryIce Tamper Electrical Specifications Table 28. DryIce Tamper Electrical Specifications Symbol Description Min VBAT 3.3V supply voltage 1.71 Typ Max Unit 3.6 V Notes Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 48 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 28. DryIce Tamper Electrical Specifications (continued) Symbol Description ITAM Supply current Min Typ Max Unit • clock tamper enabled 0.9 TBD μA • clock and voltage tamper enabled 1.01 TBD μA • clock, voltage and temperature tamper enabled 1.35 TBD μA EXTAL32 input clock 32.768 kHz Notes 1 Low Voltage Detect • assertion 1.55 1.60 1.65 V • negation 1.7 1.75 1.8 V 3.65 3.7 3.75 V High Voltage Detect assertion Voltage Tamper Detect operational temperature • no false alarms -50 150 °C • with possible false alarms -60 160 °C Temperature Tamper Detect assertion 2 • low temperature detect -55 -45 °C • high temperature detect 110 130 °C 1.6 3.7 V < 1.5 > 3.8 V Temperature Tamper Detect operational voltage • no false alarms • with possible false alarms Clock Tamper Detect assertion 3 • low frequency 20 • high frequency 40 • delay after loss of clock kHz kHz 2 ms Clock Tamper Detect operational temperature • no false alarms -50 150 °C • with possible false alarms -60 160 1.6 3.7 V < 1.5 > 3.8 V Clock Tamper Detect operational voltage • no false alarms • with possible false alarms 1. EXTAL32 oscillator must be enabled before enabling DryIce tamper detect. 2. Temperature tamper detector assertion/negation is refreshed each 28 EXTAL32 clock cycles. 3. Clock tamper detector assertion/negation is refreshed each 28 EXTAL32 clock cycles. 6.6 Analog K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 49 Peripheral operating requirements and behaviors 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 29 and Table 30 are achievable on the differential pins ADCx_DP0, ADCx_DM0. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 31 and Table 32. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 29. 16-bit ADC operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDDVDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSSVSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL Reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance • 16 bit modes — 8 10 pF • 8/10/12 bit modes — 4 5 — 2 5 Symbol RADIN RAS fADCK fADCK Input resistance Analog source resistance 13/12 bit modes ADC conversion clock frequency ≤ 13 bit modes ADC conversion clock frequency 16 bit modes fADCK < 4MHz Notes kΩ 3 — — 5 kΩ 4 1.0 — 18.0 MHz 4 2.0 — 12.0 MHz Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 50 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 29. 16-bit ADC operating conditions (continued) Symbol Crate Description Conditions ADC conversion rate ≤ 13 bit modes Min. Typ.1 Max. Unit Notes 5 No ADC hardware averaging 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16 bit modes 5 No ADC hardware averaging 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/ CAS time constant should be kept to <1ns. 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Pad leakage due to input protection Z AS R AS Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT R ADIN ADC SAR ENGINE V ADIN C AS V AS R ADIN INPUT PIN INPUT PIN R ADIN R ADIN INPUT PIN C ADIN Figure 21. ADC input impedance equivalency diagram K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 51 Peripheral operating requirements and behaviors 6.6.1.2 16-bit ADC electrical characteristics Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description IDDA_ADC Supply current fADACK ADC asynchronous clock source Sample Time TUE DNL INL EFS Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC=1, ADHSC=0 1.2 2.4 3.9 MHz • ADLPC=1, ADHSC=1 3.0 4.0 7.3 MHz tADACK = 1/ fADACK • ADLPC=0, ADHSC=0 2.4 5.2 6.1 MHz • ADLPC=0, ADHSC=1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA See Reference Manual chapter for sample times Total unadjusted error • 12 bit modes — ±4 ±6.8 • <12 bit modes — ±1.4 ±2.1 Differential nonlinearity • 12 bit modes — ±0.7 -1.1 to +1.9 • <12 bit modes — ±0.2 • 12 bit modes — ±1.0 • <12 bit modes — ±0.5 -0.7 to +0.5 • 12 bit modes — -4 -5.4 • <12 bit modes — -1.4 -1.8 Integral nonlinearity Full-scale error -0.3 to 0.5 -2.7 to +1.9 5 EQ ENOB Quantization error • 16 bit modes — -1 to 0 — • ≤13 bit modes — — ±0.5 Effective number 16 bit differential mode of bits • Avg=32 LSB4 6 • Avg=4 12.8 14.5 — bits 11.9 13.8 — bits 12.2 13.9 — bits 11.4 13.1 — bits 16 bit single-ended mode • Avg=32 • Avg=4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16 bit differential mode 6.02 × ENOB + 1.76 7 • Avg=32 16 bit single-ended mode • Avg=32 dB — –94 — dB — -85 — dB Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 52 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol SFDR Description Conditions1 Spurious free dynamic range 16 bit differential mode Min. 16 bit single-ended mode EIL Max. Unit Notes 7 • Avg=32 • Avg=32 Typ.2 82 95 — dB 78 90 — dB Input leakage error IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) VTEMP25 Temp sensor slope –40°C to 105°C — 1.715 — mV/°C Temp sensor voltage 25°C — 719 — mV 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11) 6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz. 7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 53 Peripheral operating requirements and behaviors Figure 22. Typical ENOB vs. ADC_CLK for 16-bit differential mode Figure 23. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 54 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.1.3 16-bit ADC with PGA operating conditions Table 31. 16-bit ADC with PGA operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V VREFPGA PGA ref voltage Symbol VADIN VCM RPGAD VREF_OU VREF_OU VREF_OU T T T V Notes 2, 3 Input voltage VSSA — VDDA V Input Common Mode range VSSA — VDDA V Gain = 1, 2, 4, 8 — 128 — kΩ IN+ to IN-4 Gain = 16, 32 — 64 — Gain = 64 — 32 — Differential input impedance RAS Analog source resistance — 100 — Ω 5 TS ADC sampling time 1.25 — — µs 6 18.484 — 450 Ksps 7 37.037 — 250 Ksps 8 Crate ADC conversion rate ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 16 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREF_OUT) 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedance of the driven input is RPGAD/2 5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock. 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 55 Peripheral operating requirements and behaviors 6.6.1.4 16-bit ADC with PGA characteristics Table 32. 16-bit ADC with PGA characteristics Symbol Description Conditions IDDA_PGA Supply current Low power (ADC_PGA[PGALPb]=0) IDC_PGA Input DC current G BW Gain4 Input signal bandwidth Min. Typ.1 Max. Unit Notes — 420 644 μA 2 A 3 Gain =1, VREFPGA=1.2V, VCM=0.5V — 1.54 — μA Gain =64, VREFPGA=1.2V, VCM=0.1V — 0.57 — μA • PGAG=0 0.95 1 1.05 • PGAG=1 1.9 2 2.1 • PGAG=2 3.8 4 4.2 • PGAG=3 7.6 8 8.4 • PGAG=4 15.2 16 16.6 • PGAG=5 30.0 31.6 33.2 • PGAG=6 58.8 63.3 67.8 — — 4 kHz — — 40 kHz — -84 — dB VDDA= 3V ±100mV, fVDDA= 50Hz, 60Hz VCM= 500mVpp, fVCM= 50Hz, 100Hz • 16-bit modes • < 16-bit modes PSRR Power supply rejection ratio CMRR Common mode rejection ratio • Gain=1 — -84 — dB • Gain=64 — -85 — dB Input offset voltage • Chopping disabled (ADC_PGA[PGACHPb] =1) • Chopping enabled (ADC_PGA[PGACHPb] =0) — 2.4 TBD mV — 0.2 — mV Output offset = VOFS*(Gain+1) — — 10 µs 5 — TBD TBD ppm/°C 0 to 50°C — TBD TBD ppm/°C — TBD TBD ppm/°C 0 to 50°C, ADC Averaging=32 — TBD TBD %/V — TBD TBD %/V VDDA from 1.71 to 3.6V VOFS TGSW Gain switching settling time dG/dT Gain drift over temperature dVOFS/dT Offset drift over temperature dG/dVDDA Gain drift over supply voltage Gain=1 RAS < 100Ω • Gain=1 • Gain=64 Gain=1 • Gain=1 • Gain=64 Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 56 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 32. 16-bit ADC with PGA characteristics (continued) Symbol Description Conditions EIL Input leakage error All modes Min. Typ.1 Max. IIn × RAS Unit Notes mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) VPP,DIFF SNR THD SFDR ENOB SINAD Maximum differential input signal swing V 6 16-bit differential mode, Average=32 where VX = VREFPGA × 0.583 Signal-to-noise ratio • Gain=1 80 90 — dB • Gain=64 52 66 — dB Total harmonic distortion • Gain=1 85 100 — dB • Gain=64 49 95 — dB Spurious free dynamic range • Gain=1 85 105 — dB • Gain=64 53 88 — dB Effective number of bits • Gain=1, Average=4 11.6 13.4 — bits • Gain=1, Average=8 TBD 12.7 — bits • Gain=64, Average=4 7.2 9.6 — bits • Gain=64, Average=8 TBD 8.7 — bits • Gain=1, Average=32 12.8 14.5 — bits • Gain=2, Average=32 11.0 14.3 — bits • Gain=4, Average=32 7.9 13.8 — bits • Gain=8, Average=32 7.3 13.1 — bits • Gain=16, Average=32 6.8 12.5 — bits • Gain=32, Average=32 6.8 11.5 — bits • Gain=64, Average=32 7.5 10.6 — bits Signal-to-noise plus distortion ratio See ENOB 6.02 × ENOB + 1.76 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode, Average=32, fin=100Hz 16-bit differential mode,fin=100H z dB 1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated. 2. This current is a PGA module adder, in addition to and ADC conversion currents. 3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (VCM) and the PGA gain. 4. Gain = 2PGAG 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 57 Peripheral operating requirements and behaviors 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. 6.6.2 CMP and 6-bit DAC electrical specifications Table 33. Comparator and 6-bit DAC electrical specifications Symbol VDD Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns Analog comparator initialization delay2 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 58 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.08 0.07 0.06 HYSTCTR Setting CM P Hystereris (V) 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 24. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0) K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 59 Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP P Hystereris (V) 0.12 HYSTCTR Setting 0.1 00 01 0 08 0.08 10 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 Vin level (V) 1.9 2.2 2.5 2.8 3.1 Figure 25. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 34. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1 2 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 60 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 35. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 150 μA — — 700 μA Notes P IDDA_DAC Supply current — high-speed mode HP tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode — 0.7 1 μs 1 Vdacoutl DAC output voltage range low — highspeed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 VOFFSET Offset error — ±0.4 ±0.8 %FSR 5 EG Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA > = 2.4 V 60 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance load = 3 kΩ — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h PSRR 1. 2. 3. 4. 5. V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth 6 dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100 mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 61 Peripheral operating requirements and behaviors 6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C Figure 26. Typical INL error vs. digital code K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 62 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 27. Offset at half scale vs. temperature 6.6.4 Voltage reference electrical specifications Table 36. VREF full-range operating requirements Symbol Description Min. Max. Unit Supply voltage 1.71 3.6 V TA Temperature −40 105 °C CL Output load capacitance VDDA 100 nF Notes 1, 2 1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference. 2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of the device. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 63 Peripheral operating requirements and behaviors Table 37. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Notes Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C 1.1965 1.2 1.2027 V Vout Voltage reference output with— factory trim 1.1584 — 1.2376 V Vout Voltage reference output — user trim 1.198 — 1.202 V Vstep Voltage reference trim step — 0.5 — mV Vtdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 80 mV Ibg Bandgap only current — — 80 µA 1 Itr High-power buffer current — — TBD mA 1 mV 1, 2 ΔVLOAD Load regulation • current = + 1.0 mA — 2 — • current = - 1.0 mA — 5 — Tstup Buffer startup time — — 100 µs Vvdrift Voltage drift (Vmax -Vmin across the full voltage range) — 2 — mV 1 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register. 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load Table 38. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 39. VREF limited-range operating behaviors Symbol Vout Description Voltage reference output with factory trim Min. Max. Unit 1.173 1.225 V Notes 6.7 Timers See General switching specifications. 6.8 Communication interfaces K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 64 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.1 Ethernet switching specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 6.8.1.1 MII signal switching specifications The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices. Table 40. MII signal switching specifications Symbol — MII1 Description RXCLK frequency RXCLK pulse width high Min. Max. Unit — 25 MHz 35% 65% RXCLK period MII2 RXCLK pulse width low 35% 65% RXCLK period MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns TXCLK frequency — 25 MHz 35% 65% TXCLK — MII5 TXCLK pulse width high period MII6 TXCLK pulse width low 35% 65% TXCLK period MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 — ns MII8 TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns MII6 MII5 TXCLK (input) MII8 MII7 TXD[n:0] Valid data TXEN Valid data TXER Valid data Figure 28. MII transmit signal timing diagram K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 65 Peripheral operating requirements and behaviors MII2 MII1 MII3 MII4 RXCLK (input) RXD[n:0] Valid data RXDV Valid data RXER Valid data Figure 29. MII receive signal timing diagram 6.8.1.2 RMII signal switching specifications The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices. Table 41. RMII signal switching specifications Num — Description EXTAL frequency (RMII input clock RMII_CLK) Min. Max. Unit — 50 MHz RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK period RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK period RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 — ns RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns RMII8 RMII_CLK to TXD[1:0], TXEN valid — 15 ns 6.8.2 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 66 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.3 USB DCD electrical specifications Table 42. USB DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 — 0.7 V Threshold voltage for logic high 0.8 — 2.0 V VLGC IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK USB_DM sink current 50 100 150 μA RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 0.325 0.4 V 6.8.4 USB VREG electrical specifications Table 43. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 120 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 1.54 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA • Run mode • Standby mode VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 67 Peripheral operating requirements and behaviors 6.8.5 ULPI timing specifications The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in the following table. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin. Table 44. ULPI timing specifications Num Description Min. Typ. Max. Unit USB_CLKIN operating frequency — 60 — MHz USB_CLKIN duty cycle — 50 — % U1 USB_CLKIN clock period — 16.67 — ns U2 Input setup (control and data) 5 — — ns U3 Input hold (control and data) 1 — — ns U4 Output valid (control and data) — — 9.5 ns U5 Output hold (control and data) 1 — — ns U1 USB_CLKIN U2 U3 ULPI_DIR/ULPI_NXT (control input) ULPI_DATAn (input) U4 U5 ULPI_STP (control output) ULPI_DATAn (output) Figure 30. ULPI timing diagram K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 68 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.6 CAN switching specifications See General switching specifications. 6.8.7 DSPI switching specifications (limited voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 45. Master mode DSPI timing (limited voltage range) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 30 MHz 2 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 2 — ns 1 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 2 — ns 2 DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS7 (CPOL=0) DSPI_SIN DS8 Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 31. DSPI classic SPI timing — master mode K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 69 Peripheral operating requirements and behaviors Table 46. Slave mode DSPI timing (limited voltage range) Num Description Operating voltage Min. Max. Unit 2.7 3.6 V 15 MHz 4 x tBUS — ns (tSCK/2) − 2 (tSCK/2) + 2 ns Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 10 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK DS15 (CPOL=0) DSPI_SOUT DS12 First data DS13 DSPI_SIN DS16 DS11 Last data Data DS14 First data Data Last data Figure 32. DSPI classic SPI timing — slave mode 6.8.8 DSPI switching specifications (full voltage range) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 47. Master mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 15 MHz Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 70 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 47. Master mode DSPI timing (full voltage range) (continued) Num Description Min. Max. Unit 4 x tBUS — ns Notes DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) − 4 — ns 2 DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) − 4 — ns 3 DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 — ns DS7 DSPI_SIN to DSPI_SCK input setup 20.5 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK]. 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]. DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 33. DSPI classic SPI timing — master mode Table 48. Slave mode DSPI timing (full voltage range) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 7.5 MHz 8 x tBUS — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSPI_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 19 ns Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 71 Peripheral operating requirements and behaviors Table 48. Slave mode DSPI timing (full voltage range) (continued) Num DS16 Description DSPI_SS inactive to DSPI_SOUT not driven Min. Max. Unit — 19 ns DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DS12 DSPI_SOUT First data DS13 DS16 DS11 Data Last data DS14 DSPI_SIN First data Data Last data Figure 34. DSPI classic SPI timing — slave mode 6.8.9 I2C switching specifications See General switching specifications. 6.8.10 UART switching specifications See General switching specifications. 6.8.11 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 49. SDHC switching specifications Num Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V Card input clock Table continues on the next page... K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 72 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 49. SDHC switching specifications (continued) Num Symbol SD1 fpp Description Min. Max. Unit Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed) 0 25 MHz fpp Clock frequency (MMC full speed) 0 20 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 35. SDHC timing 6.8.12 I2S/SAI Switching Specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 73 Peripheral operating requirements and behaviors is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. Table 50. I2S/SAI master mode timing Num. Characteristic Min. Max. 3.6 Unit Operating voltage 1.71 V S1 I2S_MCLK cycle time1 40 S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK cycle time (output)1 80 — ns I2S_RX_BCLK cycle time (output)1 160 — S4 I2S_TX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 15 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 25 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S11 I2S_TX_FS input assertion to I2S_TXD output valid2 — 21 ns ns 1. This parameter is limited in VLPx modes. 2. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 36. I2S/SAI timing — master modes K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 74 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 51. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V I2S_RX_BCLK cycle time (input) 80 — ns I2S_TX_BCLK cycle time (input) 160 — S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 29 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 — 21 ns S11 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 I2S_TX_FS/ I2S_RX_FS (output) S16 S13 S14 I2S_TX_FS/ I2S_RX_FS (input) S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 37. I2S/SAI timing — slave modes 6.9 Human-machine interfaces (HMI) K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 75 Dimensions 6.9.1 TSI electrical specifications Table 52. TSI electrical specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V Target electrode capacitance range 1 20 500 pF 1 fREFmax Reference oscillator frequency — 8 TBD MHz 2 fELEmax Electrode oscillator frequency — 0.5 TBD MHz 2 Internal reference capacitor TBD 1 TBD pF Oscillator delta voltage TBD 600 TBD mV 2 — 1.133 1.5 μA 2, 3 — 36 50 — 1.133 1.5 μA 2, 4 — 36 50 CELE CREF VDELTA IREF IELE Reference oscillator current source base current • 1uA setting (REFCHRG=0) • 32uA setting (REFCHRG=31) Electrode oscillator current source base current • 1uA setting (EXTCHRG=0) • 32uA setting (EXTCHRG=31) Notes Pres5 Electrode capacitance measurement precision — 8.3333 38.4 pF/count 5 Pres20 Electrode capacitance measurement precision — 8.3333 38.4 pF/count 6 Pres100 Electrode capacitance measurement precision — 8.3333 38.4 pF/count 7 MaxSens Maximum sensitivity 0.003 12.5 — fF/count 8 Resolution — — 16 bits Response time @ 20 pF 8 15 25 μs Current added in run mode — 55 — μA Low power mode current adder — 1.3 TBD μA Res TCon20 ITSI_RUN ITSI_LP 9 10 1. 2. 3. 4. 5. 6. 7. 8. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. Fixed external capacitance of 20 pF. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref * Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based on the following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5 pF 9. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 15. 10. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window. 7 Dimensions K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 76 Preliminary Freescale Semiconductor, Inc. Pinout 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 256-pin MAPBGA 98ASA00346D 8 Pinout 8.1 K61 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 256 MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 E2 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA RTC_CLKO UT F2 PTE1/ LLWU_P0 ADC1_SE5a ADC1_SE5a PTE1/ LLWU_P0 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL SPI1_SIN F3 PTE2/ LLWU_P1 ADC1_SE6a ADC1_SE6a PTE2/ LLWU_P1 SPI1_SCK UART1_CTS SDHC0_DCL _b K G2 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_RTS SDHC0_CM _b D G7 VDD VDD VDD H7 VDDINT VDDINT VDDINT H8 VSS VSS VSS F1 PTF17 DISABLED PTF17 SPI2_SCK FTM0_CH4 UART0_RX G1 PTF18 DISABLED PTF18 SPI2_SOUT FTM1_CH0 UART0_TX G3 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 SPI1_PCS0 UART3_TX SDHC0_D3 G4 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0 H2 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_CTS I2S0_MCLK _b FTM3_CH1 H1 PTF19 DISABLED PTF19 SPI2_SIN FTM1_CH1 UART5_RX H5 PTF20 DISABLED PTF20 SPI2_PCS1 FTM2_CH0 UART5_TX EzPort SPI1_SOUT USB_SOF_ OUT K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 77 Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 H3 PTE7 DISABLED H4 PTE8 ADC2_SE16 ADC2_SE16 PTE8 J1 PTE9 ADC2_SE17 ADC2_SE17 PTE9 J2 PTE10 DISABLED K1 PTE11 K3 ALT2 PTE7 ALT3 ALT4 ALT5 ALT6 UART3_RTS I2S0_RXD0 _b FTM3_CH2 I2S0_RXD1 UART5_TX I2S0_RX_FS FTM3_CH3 I2S0_TXD1 UART5_RX I2S0_RX_BC LK FTM3_CH4 PTE10 UART5_CTS I2S0_TXD0 _b FTM3_CH5 ADC3_SE16 ADC3_SE16 PTE11 UART5_RTS I2S0_TX_FS _b FTM3_CH6 PTE12 ADC3_SE17 ADC3_SE17 PTE12 I2S0_TX_BC LK FTM3_CH7 G8 VDD VDD VDD H9 VSS VSS VSS J3 PTE16 ADC0_SE4a ADC0_SE4a PTE16 SPI0_PCS0 UART2_TX FTM_CLKIN 0 FTM0_FLT3 K2 PTE17 ADC0_SE5a ADC0_SE5a PTE17 SPI0_SCK UART2_RX FTM_CLKIN 1 LPTMR0_AL T3 L4 PTE18 ADC0_SE6a ADC0_SE6a PTE18 SPI0_SOUT UART2_CTS I2C0_SDA _b M3 PTE19 ADC0_SE7a ADC0_SE7a PTE19 SPI0_SIN UART2_RTS I2C0_SCL _b L2 VSS VSS VSS M1 USB0_DP USB0_DP USB0_DP M2 USB0_DM USB0_DM USB0_DM L1 VOUT33 VOUT33 VOUT33 L3 VREGIN VREGIN VREGIN N1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1 N2 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1 P1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1 P2 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1 R1 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA0_DP/ ADC0_DP0/ ADC1_DP3 R2 PGA0_DM/ PGA0_DM/ PGA0_DM/ ADC0_DM0/ ADC0_DM0/ ADC0_DM0/ ADC1_DM3 ADC1_DM3 ADC1_DM3 ALT7 EzPort CMP3_OUT K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 78 Preliminary Freescale Semiconductor, Inc. Pinout 256 MAP BGA Pin Name Default ALT0 T1 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 T2 PGA1_DM/ PGA1_DM/ PGA1_DM/ ADC1_DM0/ ADC1_DM0/ ADC1_DM0/ ADC0_DM3 ADC0_DM3 ADC0_DM3 N5 VDDA VDDA VDDA P4 VREFH VREFH VREFH M4 VREFL VREFL VREFL N4 VSSA VSSA VSSA P3 ADC1_SE16/ ADC1_SE16/ ADC1_SE16/ CMP2_IN2/ CMP2_IN2/ CMP2_IN2/ ADC0_SE22 ADC0_SE22 ADC0_SE22 N3 ADC0_SE16/ ADC0_SE16/ ADC0_SE16/ CMP1_IN2/ CMP1_IN2/ CMP1_IN2/ ADC0_SE21 ADC0_SE21 ADC0_SE21 T3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 R3 DAC0_OUT/ DAC0_OUT/ DAC0_OUT/ CMP1_IN3/ CMP1_IN3/ CMP1_IN3/ ADC0_SE23 ADC0_SE23 ADC0_SE23 R4 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23 M5 TAMPER0/ RTC_WAKE UP_B TAMPER0/ RTC_WAKE UP_B TAMPER0/ RTC_WAKE UP_B L5 TAMPER1 TAMPER1 TAMPER1 L6 TAMPER2 TAMPER2 TAMPER2 R5 TAMPER3 TAMPER3 TAMPER3 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 P6 TAMPER4 TAMPER4 TAMPER4 R6 TAMPER5 TAMPER5 TAMPER5 T6 XTAL32 XTAL32 XTAL32 T5 EXTAL32 EXTAL32 EXTAL32 P5 VBAT VBAT VBAT N6 TAMPER6 TAMPER6 TAMPER6 M6 TAMPER7 TAMPER7 TAMPER7 G9 VDD VDD VDD H10 VDDINT VDDINT VDDINT J8 VSS VSS VSS P7 PTE24 ADC0_SE17/ ADC0_SE17/ PTE24 EXTAL1 EXTAL1 CAN1_TX UART4_TX I2S1_TX_FS EWM_OUT_ I2S1_RXD1 b K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 79 Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 I2S1_TX_BC LK ALT5 ALT6 ALT7 R7 PTE25 ADC0_SE18/ ADC0_SE18/ PTE25 XTAL1 XTAL1 CAN1_RX UART4_RX M7 PTE26 ADC3_SE5b ADC3_SE5b PTE26 ENET_1588 _CLKIN UART4_CTS I2S1_TXD0 _b K7 PTE27 ADC3_SE4b ADC3_SE4b PTE27 L7 PTE28 ADC3_SE7a ADC3_SE7a PTE28 T7 PTA0 JTAG_TCLK/ TSI0_CH1 SWD_CLK/ EZP_CLK PTA0 UART0_CTS FTM0_CH5 _b/ UART0_COL _b JTAG_TCLK/ EZP_CLK SWD_CLK N8 PTA1 JTAG_TDI/ EZP_DI TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI T8 PTA2 JTAG_TDO/ TRACE_SW O/EZP_DO TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_SW O EZP_DO P8 PTA3 JTAG_TMS/ SWD_DIO TSI0_CH4 PTA3 UART0_RTS FTM0_CH0 _b JTAG_TMS/ SWD_DIO R8 PTA4/ LLWU_P3 NMI_b/ EZP_CS_b TSI0_CH5 PTA4/ LLWU_P3 T12 PTA5 DISABLED PTA5 G10 VDD VDD VDD J9 VSS VSS VSS P9 PTF21 ADC3_SE6b ADC3_SE6b PTF21 N9 PTF22 ADC3_SE7b ADC3_SE7b PTF22 R12 PTA6 EWM_IN I2S1_TXD1 RTC_CLKO UT USB_CLKIN EzPort UART4_RTS I2S1_MCLK _b FTM0_CH1 USB_CLKIN NMI_b FTM0_CH2 RMII0_RXE R/ MII0_RXER CMP2_OUT FTM2_CH1 UART5_RTS _b I2C0_SCL FTM1_CH0 UART5_CTS _b ADC3_SE6a ADC3_SE6a PTA6 ULPI_CLK FTM0_CH3 I2S1_RXD0 TRACE_CLK OUT P12 PTA7 ADC0_SE10 ADC0_SE10 PTA7 ULPI_DIR FTM0_CH4 I2S1_RX_BC LK TRACE_D3 N12 PTA8 ADC0_SE11 ADC0_SE11 PTA8 ULPI_NXT FTM1_CH0 I2S1_RX_FS FTM1_QD_P TRACE_D2 HA T13 PTA9 ADC3_SE5a ADC3_SE5a PTA9 ULPI_STP FTM1_CH1 MII0_RXD3 FTM1_QD_P TRACE_D1 HB P13 PTA10 ADC3_SE4a ADC3_SE4a PTA10 ULPI_DATA 0 FTM2_CH0 MII0_RXD2 FTM2_QD_P TRACE_D0 HA R13 PTA11 ADC3_SE15 ADC3_SE15 PTA11 ULPI_DATA 1 FTM2_CH1 MII0_RXCLK FTM2_QD_P HB M10 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 RMII0_RXD1 /MII0_RXD1 I2S0_TXD0 N10 PTA13/ LLWU_P4 CMP2_IN1 CMP2_IN1 PTA13/ LLWU_P4 CAN0_RX FTM1_CH1 RMII0_RXD0 /MII0_RXD0 I2S0_TX_FS FTM1_QD_P HB R11 PTA14 CMP3_IN0 CMP3_IN0 PTA14 SPI0_PCS0 UART0_TX RMII0_CRS_ DV/ MII0_RXDV I2S0_RX_BC I2S0_TXD1 LK EZP_CS_b I2S0_TX_BC JTAG_TRST LK _b FTM1_QD_P HA K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 80 Preliminary Freescale Semiconductor, Inc. Pinout 256 MAP BGA Pin Name Default ALT0 P11 PTA15 CMP3_IN1 CMP3_IN1 ALT1 ALT2 ALT3 ALT4 RMII0_TXEN /MII0_TXEN ALT5 ALT6 PTA15 SPI0_SCK UART0_RX PTA16 SPI0_SOUT UART0_CTS RMII0_TXD0 _b/ /MII0_TXD0 UART0_COL _b I2S0_RX_FS I2S0_RXD1 T14 VSS VSS VSS CMP3_IN2 CMP3_IN2 T11 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_RTS RMII0_TXD1 _b /MII0_TXD1 I2S0_MCLK P10 PTF23 ADC3_SE10 ADC3_SE10 PTF23 I2C0_SDA FTM1_CH1 TRACE_CLK OUT R10 PTF24 ADC3_SE11 ADC3_SE11 PTF24 CAN1_RX FTM1_QD_P HA TRACE_D3 R9 PTF25 ADC3_SE12 ADC3_SE12 PTF25 CAN1_TX FTM1_QD_P HB TRACE_D2 T9 PTF26 ADC3_SE13 ADC3_SE13 PTF26 FTM2_QD_P HA TRACE_D1 T10 PTF27 ADC3_SE14 ADC3_SE14 PTF27 FTM2_QD_P HB TRACE_D0 J7 VDD VDD VDD K8 VSS VSS VSS T15 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN 0 T16 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN 1 LPTMR0_AL T1 R16 RESET_b RESET_b RESET_b N13 PTA24 CMP3_IN4 CMP3_IN4 PTA24 ULPI_DATA 2 MII0_TXD2 FB_A29 R14 PTA25 CMP3_IN5 CMP3_IN5 PTA25 ULPI_DATA 3 MII0_TXCLK FB_A28 M13 PTA26 ADC2_SE15 ADC2_SE15 PTA26 ULPI_DATA 4 MII0_TXD3 FB_A27 R15 PTA27 ADC2_SE14 ADC2_SE14 PTA27 ULPI_DATA 5 MII0_CRS FB_A26 P14 PTA28 ADC2_SE13 ADC2_SE13 PTA28 ULPI_DATA 6 MII0_TXER FB_A25 N14 PTA29 ADC2_SE12 ADC2_SE12 PTA29 ULPI_DATA 7 MII0_COL FB_A24 P16 PTF0 ADC2_SE11 ADC2_SE11 PTF0 CAN0_TX FTM3_CH0 I2S1_RXD1 L13 PTF1 ADC2_SE10 ADC2_SE10 PTF1 CAN0_RX FTM3_CH1 I2S1_RX_BC LK M12 PTB0/ LLWU_P5 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 I2C0_SCL FTM1_CH0 PTB0/ LLWU_P5 RMII0_MDIO /MII0_MDIO EzPort I2S0_RXD0 N11 PTA16 ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0 ALT7 FTM1_QD_P HA K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 81 Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 M11 PTB1 ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6 ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6 PTB1 P15 PTB2 ALT2 ALT3 ALT4 ALT5 ALT6 I2C0_SDA FTM1_CH1 RMII0_MDC/ MII0_MDC FTM1_QD_P HB ADC0_SE12/ ADC0_SE12/ PTB2 TSI0_CH7 TSI0_CH7 I2C0_SCL UART0_RTS ENET0_158 _b 8_TMR0 FTM0_FLT3 M14 PTB3 ADC0_SE13/ ADC0_SE13/ PTB3 TSI0_CH8 TSI0_CH8 I2C0_SDA UART0_CTS ENET0_158 _b/ 8_TMR1 UART0_COL _b FTM0_FLT0 N15 PTB4 ADC1_SE10 ADC1_SE10 PTB4 ENET0_158 8_TMR2 FTM1_FLT0 M15 PTB5 ADC1_SE11 ADC1_SE11 PTB5 ENET0_158 8_TMR3 FTM2_FLT0 L14 PTB6 ADC1_SE12 ADC1_SE12 PTB6 FB_AD23 L15 PTB7 ADC1_SE13 ADC1_SE13 PTB7 FB_AD22 K14 PTB8 DISABLED PTB8 K15 PTB9 DISABLED PTB9 J13 PTB10 J14 UART3_RTS _b FB_AD21 SPI1_PCS1 UART3_CTS _b FB_AD20 ADC1_SE14 ADC1_SE14 PTB10 SPI1_PCS0 UART3_RX I2S1_TX_BC FB_AD19 LK FTM0_FLT1 PTB11 ADC1_SE15 ADC1_SE15 PTB11 SPI1_SCK UART3_TX I2S1_TX_FS FB_AD18 FTM0_FLT2 K9 VSS VSS VSS J10 VDD VDD VDD N16 PTF2 ADC2_SE6a ADC2_SE6a PTF2 I2C1_SCL FTM3_CH2 I2S1_RX_FS M16 PTF3 ADC2_SE7a ADC2_SE7a PTF3 I2C1_SDA FTM3_CH3 I2S1_RXD0 L16 PTF4 ADC2_SE4b ADC2_SE4b PTF4 FTM3_CH4 I2S1_TXD0 J15 TSI0_CH9 TSI0_CH9 PTB16 SPI1_SOUT UART0_RX I2S1_TXD0 FB_AD17 EWM_IN H13 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN UART0_TX I2S1_TXD1 FB_AD16 EWM_OUT_ b H14 PTB18 TSI0_CH11 TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_BC FB_AD15 LK FTM2_QD_P HA K16 PTF5 ADC2_SE5b ADC2_SE5b PTF5 FTM3_CH5 I2S1_TX_FS J16 ADC2_SE6b ADC2_SE6b PTF6 FTM3_CH6 I2S1_TX_BC LK PTB16 PTF6 H15 PTB19 TSI0_CH12 TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b G13 PTB20 ADC2_SE4a ADC2_SE4a PTB20 SPI2_PCS0 FB_AD31/ CMP0_OUT NFC_DATA1 5 G14 PTB21 ADC2_SE5a ADC2_SE5a PTB21 SPI2_SCK FB_AD30/ CMP1_OUT NFC_DATA1 4 ALT7 EzPort FTM2_QD_P HB K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 82 Preliminary Freescale Semiconductor, Inc. Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 G15 PTB22 DISABLED PTB22 SPI2_SOUT H16 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 FB_AD28/ CMP3_OUT NFC_DATA1 2 G16 PTC0 ADC0_SE14/ ADC0_SE14/ PTC0 TSI0_CH13 TSI0_CH13 SPI0_PCS4 PDB0_EXTR G FB_AD14/ I2S0_TXD1 NFC_DATA1 1 F13 PTC1/ LLWU_P6 ADC0_SE15/ ADC0_SE15/ PTC1/ TSI0_CH14 TSI0_CH14 LLWU_P6 SPI0_PCS3 UART1_RTS FTM0_CH0 _b FB_AD13/ I2S0_TXD0 NFC_DATA1 0 F14 PTC2 ADC0_SE4b/ ADC0_SE4b/ PTC2 CMP1_IN0/ CMP1_IN0/ TSI0_CH15 TSI0_CH15 SPI0_PCS2 UART1_CTS FTM0_CH1 _b FB_AD12/ I2S0_TX_FS NFC_DATA9 E13 PTC3/ LLWU_P7 CMP1_IN1 SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT F15 PTF7 ADC2_SE7b ADC2_SE7b PTF7 FTM3_CH7 UART3_RX I2S1_TXD1 L9 VSS VSS VSS K10 VDD VDD VDD F16 PTF8 DISABLED PTF8 FTM3_FLT0 UART3_TX I2S1_MCLK E14 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/ CMP1_OUT NFC_DATA8 I2S1_TX_BC LK E15 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_AL I2S0_RXD0 T2 FB_AD10/ CMP0_OUT NFC_DATA7 I2S1_TX_FS F12 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_SOUT PDB0_EXTR I2S0_RX_BC FB_AD9/ I2S0_MCLK G LK NFC_DATA6 G12 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_ OUT I2S0_RX_FS FB_AD8/ NFC_DATA5 H12 PTC8 ADC1_SE4b/ ADC1_SE4b/ PTC8 CMP0_IN2 CMP0_IN2 FTM3_CH4 I2S0_MCLK F11 PTC9 ADC1_SE5b/ ADC1_SE5b/ PTC9 CMP0_IN3 CMP0_IN3 FTM3_CH5 I2S0_RX_BC FB_AD6/ FTM2_FLT0 LK NFC_DATA3 G11 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5/ I2S1_MCLK NFC_DATA2 H11 PTC11/ LLWU_P11 ADC1_SE7b ADC1_SE7b PTC11/ LLWU_P11 I2C1_SDA FTM3_CH7 I2S0_RXD1 J12 PTC12 DISABLED PTC12 UART4_RTS _b FB_AD27 K13 PTC13 DISABLED PTC13 UART4_CTS _b FB_AD26 J11 DISABLED PTC14 UART4_RX FB_AD25 PTC14 CMP1_IN1 PTC3/ LLWU_P7 FB_AD29/ CMP2_OUT NFC_DATA1 3 K12 PTF9 CMP2_IN4 CMP2_IN4 PTF9 UART3_RTS _b L12 PTF10 CMP2_IN5 CMP2_IN5 PTF10 UART3_CTS _b F10 PTC15 DISABLED PTC15 EzPort UART4_TX I2S0_TX_BC LK FB_AD7/ NFC_DATA4 FB_RW_b/ NFC_WE FTM3_FLT0 FB_AD24 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 83 Pinout 256 MAP BGA N7 Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 VSS VSS VSS L10 VDD VDD VDD K11 PTF11 DISABLED PTF11 UART2_RTS _b L11 PTF12 DISABLED PTF12 UART2_CTS _b F9 PTC16 DISABLED PTC16 CAN1_RX UART3_RX ENET0_158 8_TMR0 FB_CS5_b/ NFC_RB FB_TSIZ1/ FB_BE23_16 _b E9 PTC17 DISABLED PTC17 CAN1_TX UART3_TX ENET0_158 8_TMR1 FB_CS4_b/ NFC_CE0_b FB_TSIZ0/ FB_BE31_24 _b M9 PTC18 DISABLED PTC18 UART3_RTS ENET0_158 _b 8_TMR2 FB_TBST_b/ NFC_CE1_b FB_CS2_b/ FB_BE15_8_ b M8 PTC19 DISABLED PTC19 UART3_CTS ENET0_158 _b 8_TMR3 FB_CS3_b/ FB_TA_b FB_BE7_0_b L8 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 SPI0_PCS0 UART2_RTS FTM3_CH0 _b FB_ALE/ FB_CS1_b/ FB_TS_b I2S1_RXD1 F8 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK UART2_CTS FTM3_CH1 _b FB_CS0_b I2S1_RXD0 K6 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2S1_RX_FS J6 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2S1_RX_BC LK K5 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI0_PCS1 UART0_RTS FTM0_CH4 _b FB_AD2/ EWM_IN NFC_DATA1 J5 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_CTS FTM0_CH5 _b/ UART0_COL _b FB_AD1/ EWM_OUT_ NFC_DATA0 b K4 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI0_PCS3 UART0_RX FB_AD0 FTM0_CH6 ALT7 EzPort FTM0_FLT0 H6 PTF13 DISABLED PTF13 UART2_RX G6 PTF14 DISABLED PTF14 UART2_TX T4 VSS VSS E7 PTD7 DISABLED PTD7 CMT_IRO UART0_TX J4 PTD8 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16/ NFC_CLE F7 PTD9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17/ NFC_ALE E6 PTD10 DISABLED PTD10 UART5_RTS _b FB_A18/ NFC_RE VSS FTM0_CH7 FTM0_FLT1 K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 84 Preliminary Freescale Semiconductor, Inc. Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 G5 PTD11 DISABLED PTD11 SPI2_PCS0 UART5_CTS SDHC0_CLK _b IN FB_A19 F5 PTD12 DISABLED PTD12 SPI2_SCK FTM3_FLT0 SDHC0_D4 FB_A20 F4 PTD13 DISABLED PTD13 SPI2_SOUT SDHC0_D5 FB_A21 E5 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22 E4 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23 F6 PTF15 DISABLED PTF15 E1 PTF16 DISABLED PTF16 B1 DDR_VDD DDR_VDD DDR_VDD A1 DDR_VSS DDR_VSS DDR_VSS D3 DDR_DQS1 DISABLED DDR_DQS1 D1 DDR_DQ8 DISABLED DDR_DQ8 C1 DDR_DQ9 DISABLED DDR_DQ9 B5 DDR_VDD DDR_VDD DDR_VDD A5 DDR_VSS DDR_VSS DDR_VSS D5 DDR_VSS DDR_VSS DDR_VSS C2 DDR_DQ10 DISABLED DDR_DQ10 B2 DDR_DQ11 DISABLED DDR_DQ11 C3 DDR_DQ12 DISABLED DDR_DQ12 B8 DDR_VDD DDR_VDD DDR_VDD A12 DDR_VSS DDR_VSS DDR_VSS C4 DDR_DQ13 DISABLED DDR_DQ13 B3 DDR_DQ14 DISABLED DDR_DQ14 A2 DDR_DQ15 DISABLED DDR_DQ15 A3 DDR_DM1 DISABLED DDR_DM1 E8 DDR_VSS DDR_VSS DDR_VSS B12 DDR_VDD DDR_VDD DDR_VDD A16 DDR_VSS DDR_VSS DDR_VSS C6 DDR_VREF DDR_VREF DDR_VREF C5 DDR_DQ0 DISABLED DDR_DQ0 B4 DDR_DQ1 DISABLED DDR_DQ1 A4 DDR_DQ2 DISABLED DDR_DQ2 C16 DDR_VDD DDR_VDD DDR_VDD C7 DDR_VSS DDR_VSS DDR_VSS B6 DDR_DQ3 DISABLED DDR_DQ3 D6 DDR_DQ4 DISABLED DDR_DQ4 A6 DDR_DQ5 DISABLED DDR_DQ5 A7 DDR_ODT DISABLED DDR_ODT ALT7 EzPort UART0_RTS _b SPI2_PCS0 FTM0_CH3 UART0_CTS _b/ UART0_COL _b K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 85 Pinout 256 MAP BGA Pin Name Default ALT0 ALT1 E11 DDR_VSS DDR_VSS DDR_VSS D2 DDR_VDD DDR_VDD DDR_VDD C9 DDR_VSS DDR_VSS DDR_VSS B7 DDR_DQ6 DISABLED DDR_DQ6 A8 DDR_DQ7 DISABLED DDR_DQ7 C8 DDR_DQS0 DISABLED DDR_DQS0 D9 DDR_DM0 DISABLED DDR_DM0 D4 DDR_VDD DDR_VDD DDR_VDD C14 DDR_VSS DDR_VSS DDR_VSS A9 DDR_BA0 DISABLED DDR_BA0 B10 DDR_BA1 DISABLED DDR_BA1 B9 DDR_BA2 DISABLED DDR_BA2 A10 DDR_CKB DISABLED DDR_CKB A11 DDR_CK DISABLED DDR_CK D7 DDR_VDD DDR_VDD DDR_VDD D8 DDR_VSS DDR_VSS DDR_VSS D10 DDR_A0 DISABLED DDR_A0 C11 DDR_A1 DISABLED DDR_A1 B11 DDR_A2 DISABLED DDR_A2 C12 DDR_A3 DISABLED DDR_A3 E10 DDR_VDD DDR_VDD DDR_VDD D12 DDR_VSS DDR_VSS DDR_VSS C10 DDR_A4 DISABLED DDR_A4 A13 DDR_A5 DISABLED DDR_A5 A14 DDR_A6 DISABLED DDR_A6 D11 DDR_A7 DISABLED DDR_A7 A15 DDR_A8 DISABLED DDR_A8 E12 DDR_VDD DDR_VDD DDR_VDD E3 DDR_VSS DDR_VSS DDR_VSS B16 DDR_CKE DISABLED DDR_CKE B15 DDR_A9 DISABLED DDR_A9 B13 DDR_A10 DISABLED DDR_A10 B14 DDR_A11 DISABLED DDR_A11 C15 DDR_A12 DISABLED DDR_A12 D16 DDR_A13 DISABLED DDR_A13 D15 DDR_A14 DISABLED DDR_A14 E16 DDR_RAS_ B DISABLED DDR_RAS_ B C13 DDR_CAS_ B DISABLED DDR_CAS_ B D14 DDR_CS_B DISABLED DDR_CS_B ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 86 Preliminary Freescale Semiconductor, Inc. Pinout 256 MAP BGA Pin Name Default D13 DDR_WE_B DISABLED ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort DDR_WE_B 8.2 K61 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 87 Revision History 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A DDR_VSS DDR_DQ15 DDR_DM1 DDR_DQ2 DDR_VSS DDR_DQ5 DDR_ODT DDR_DQ7 DDR_BA0 DDR_CKB DDR_CK DDR_VSS DDR_A5 DDR_A6 DDR_A8 DDR_VSS A B DDR_VDD DDR_DQ11 DDR_DQ14 DDR_DQ1 DDR_VDD DDR_DQ3 DDR_DQ6 DDR_VDD DDR_BA2 DDR_BA1 DDR_A2 DDR_VDD DDR_A10 DDR_A11 DDR_A9 DDR_CKE B C DDR_DQ9 DDR_DQ10 DDR_DQ12 DDR_DQ13 DDR_DQ0 DDR_VREF DDR_VSS DDR_DQS0 DDR_VSS DDR_A4 DDR_A1 DDR_A3 DDR_ CAS_B DDR_VSS DDR_A12 DDR_VDD C D DDR_DQ8 DDR_VDD DDR_DQS1 DDR_VDD DDR_VSS DDR_DQ4 DDR_VDD DDR_VSS DDR_DM0 DDR_A0 DDR_A7 DDR_VSS DDR_WE_B DDR_CS_B DDR_A14 DDR_A13 D PTC4/ LLWU_P8 PTC5/ LLWU_P9 DDR_ RAS_B E PTC2 PTF7 PTF8 F PTB20 PTB21 PTB22 PTC0 G PTC8 PTB17 PTB18 PTB19 PTB23 H PTC14 PTC12 PTB10 PTB11 PTB16 PTF6 J VDD PTF11 PTF9 PTC13 PTB8 PTB9 PTF5 K VSS VDD PTF12 PTF10 PTF1 PTB6 PTB7 PTF4 L PTC19 PTC18 PTA12 PTB1 PTB0/ LLWU_P5 PTA26 PTB3 PTB5 PTF3 M E PTF16 PTE0 DDR_VSS PTD15 PTD14 PTD10 PTD7 DDR_VSS PTC17 F PTF17 PTE1/ LLWU_P0 PTE2/ LLWU_P1 PTD13 PTD12 PTF15 PTD9 PTD1 PTC16 PTC15 PTC9 G PTF18 PTE3 PTE4/ LLWU_P2 PTE5 PTD11 PTF14 VDD VDD VDD VDD PTC10 PTC7 H PTF19 PTE6 PTE7 PTE8 PTF20 PTF13 VDDINT VSS VSS VDDINT PTC11/ LLWU_P11 J PTE9 PTE10 PTE16 PTD8 PTD5 PTD3 VDD VSS VSS VDD K PTE11 PTE17 PTE12 PTE27 VSS VSS L VOUT33 VSS VREGIN PTE18 TAMPER1 TAMPER2 PTE28 PTD0/ LLWU_P12 M USB0_DP USB0_DM PTE19 VREFL TAMPER0/ TAMPER7 RTC_ WAKEUP_B PTE26 PTD6/ PTD4/ PTD2/ LLWU_P15 LLWU_P14 LLWU_P13 DDR_VDD DDR_VSS DDR_VDD PTC3/ LLWU_P7 PTC6/ PTC1/ LLWU_P10 LLWU_P6 N PGA2_DP/ PGA2_DM/ ADC0_SE16/ ADC2_DP0/ ADC2_DM0/ CMP1_IN2/ ADC3_DP3/ ADC3_DM3/ ADC0_SE21 ADC0_DP1 ADC0_DM1 VSSA VDDA TAMPER6 VSS PTA1 PTF22 PTA13/ LLWU_P4 PTA16 PTA8 PTA24 PTA29 PTB4 PTF2 N P PGA3_DP/ PGA3_DM/ ADC1_SE16/ ADC3_DP0/ ADC3_DM0/ CMP2_IN2/ ADC2_DP3/ ADC2_DM3/ ADC0_SE22 ADC1_DP1 ADC1_DM1 VREFH VBAT TAMPER4 PTE24 PTA3 PTF21 PTF23 PTA15 PTA7 PTA10 PTA28 PTB2 PTF0 P R DAC1_OUT/ PGA0_DP/ PGA0_DM/ DAC0_OUT/ CMP0_IN4/ ADC0_DP0/ ADC0_DM0/ CMP1_IN3/ TAMPER3 TAMPER5 CMP2_IN3/ ADC1_DP3 ADC1_DM3 ADC0_SE23 ADC1_SE23 PTE25 PTA4/ LLWU_P3 PTF25 PTF24 PTA14 PTA6 PTA11 PTA25 PTA27 RESET_b R T VREF_OUT/ PGA1_DP/ PGA1_DM/ CMP1_IN5/ ADC1_DP0/ ADC1_DM0/ CMP0_IN5/ ADC0_DP3 ADC0_DM3 ADC1_SE18 T 1 2 3 VSS EXTAL32 XTAL32 PTA0 PTA2 PTF26 PTF27 PTA17 PTA5 PTA9 VSS PTA18 PTA19 4 5 6 7 8 9 10 11 12 13 14 15 16 Figure 38. K61 256 MAPBGA Pinout Diagram 9 Revision History The following table provides a revision history for this document. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. 88 Preliminary Freescale Semiconductor, Inc. Revision History Table 53. Revision History Rev. No. Date 1 6/2011 2 11/2011 Substantial Changes Initial public revision. Corrected USB conditions. • • • • • • • • • • • • • • • • • • • • • • Added AC electrical specifications. Updated Part identification section for 120 MHz CPU frequency. Updated Voltage and current operating ratings section. Updated Voltage and current operating requirements section. Updated LVD and POR operating requirements section. Updated Voltage and current operating behaviors section. Updated Power mode transition operating behaviors section. Updated Power consumption operating behaviors section. In Run mode supply current vs. core frequency section, added Run and VLPR modes supply current vs. core frequency diagrams. In Device clock specifications section, updated flash clock frequency and DDR clock frequency. Updated Thermal attributes. In MCG specifications section, updated total deviation of trimmed average DCO output Frequency, PLL reference frequency range, and lock detector detection time. In Oscillator frequency specifications section, updated crystal startup time — 32 kHz. Updated NFC specifications section. Updated DDR controller specifications section. In DryIce Tamper Electrical Specifications section, updated supply current. In DSPI switching specifications section, updated master and slave modes frequency of operation for limited voltage and full voltage ranges. In I2S/SAI Switching Specifications section, updated cycle time for master and slave modes. In USB DCD electrical specifications section, updated data detect voltage. In TSI electrical specifications, updated reference oscillator frequency. Updated Pinouts. Updated Pinouts. K61 Sub-Family Data Sheet Data Sheet, Rev. 3, 2/2012. Freescale Semiconductor, Inc. Preliminary 89 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Document Number: K61P256M120SF3 Rev. 3, 2/2012 Preliminary Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc.