Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5604E Rev. 5, Mar 2015 MPC5604E 100 LQFP 14 mm x 14 mm MPC5604E Microcontroller Data Sheet • • • • • • • Single issue, 32-bit CPU core complex (e200z0h) — Compliant with Power Architecture® embedded category — Variable Length Encoding (VLE) only Memory — 512 KB on-chip Code Flash with ECC and erase/program controller — additional 64 (4 × 16) KB on-chip Data Flash with ECC for EEPROM emulation — 96 KB on-chip SRAM with ECC Fail-safe protection — Programmable watchdog timer — Non-maskable interrupt — Fault collection unit Nexus 2+ interface Interrupts and events — 16-channel eDMA controller — 16 priority level controller — Up to 32 external interrupts for 100-pin LQFP — Upto 22 external interrupts for 64-pin LQFP — PIT implements four 32-bit timers — 120 interrupts are routed via INTC General purpose I/Os — Individually programmable as input, output or special function — 39 on LQFP64 — 71 on LQFP1001 1 general purpose eTimer unit — 6 timers each with up/down capabilities — 16-bit resolution, cascadeable counters 64 LQFP 10 mm x 10 mm • • • • • • • • • — Quadrature decode with rotation direction flag — Double buffer input capture and output compare Communications interfaces — 2 LINFlex channels (1 × Master/Slave, 1 × Master Only) — 3 DSPI controllers with automatic chip select generation (up to 2/2/4 chip selects) — 1 FlexCAN interface (2.0B Active) with 32 message buffers One 10-bit analog-to-digital converter (ADC) — 7 input channels – 4 channels routed to the pins – 3 internal connections: 1x temperature sensor, 1x core voltage, 1x IO voltage — Conversion time < 1 μ s including sampling time at full precision — 4 analog watchdogs with interrupt capability On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM) On-chip TSENS 100 MBit Fast Ethernet Controller (FEC) — Supports precision timestamps — MII on 100-pin LQFP package — MII-lite on 64-pin LQFP package JPEG/MJPEG 8/12bit Encoder 6 x stereo channels audio interface 2x I2C controller module CRC module 1.The 100-pin package is not a production package. It is used for software development only. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2015. All rights reserved. Table of Contents 1 2 3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .6 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.2.1 Power supply and reference voltage pins . . . . . .8 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .21 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .22 3.4 Recommended operating conditions . . . . . . . . . . . . . .23 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . .24 3.5.1 General notes for specifications at maximum junction temperature . . . . . . . . . . . . .25 3.6 Electromagnetic Interference (EMI) characteristics . . .26 3.7 Electrostatic Discharge (ESD) characteristics. . . . . . . .27 3.8 Power management electrical characteristics. . . . . . . .27 3.8.1 Power Management Overview . . . . . . . . . . . . .27 3.8.2 Voltage regulator electrical characteristics . . . .29 3.8.3 Voltage monitor electrical characteristics. . . . . .31 3.9 Power Up/Down reset sequencing . . . . . . . . . . . . . . . .31 3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . .33 3.11 Main oscillator electrical characteristics . . . . . . . . . . . .34 3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . .35 4 5 6 3.13 16 MHz RC oscillator electrical characteristics . . . . . . 3.14 Analog-to-Digital Converter (ADC) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14.1 Input impedance and ADC accuracy . . . . . . . . 3.14.2 ADC conversion characteristics . . . . . . . . . . . . 3.15 Temperature sensor electrical characteristics . . . . . . . 3.16 Flash memory electrical characteristics. . . . . . . . . . . . 3.17 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 3.18 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . 3.18.1 Generic timing diagrams . . . . . . . . . . . . . . . . . 3.18.2 RESET pin characteristics . . . . . . . . . . . . . . . . 3.18.3 Nexus and JTAG timing . . . . . . . . . . . . . . . . . . 3.18.4 GPIO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18.5 External interrupt timing (IRQ pin) . . . . . . . . . . 3.18.6 FlexCAN timing . . . . . . . . . . . . . . . . . . . . . . . . 3.18.7 LINFlex timing . . . . . . . . . . . . . . . . . . . . . . . . . 3.18.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18.9 Video interface timing. . . . . . . . . . . . . . . . . . . . 3.18.10Fast ethernet interface. . . . . . . . . . . . . . . . . . . 3.18.11I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18.12SAI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 100 LQFP mechanical outline drawing . . . . . . . . . . . . 4.2 64 LQFP mechanical outline drawing . . . . . . . . . . . . . Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 37 37 42 43 43 46 46 49 49 50 51 53 54 54 54 55 60 61 63 64 67 67 71 74 75 MPC5604E Microcontroller Data Sheet, Rev. 5 2 Freescale Semiconductor Overview 1 Overview This document provides electrical specifications, pin assignments, and package diagrams for the MPC5604E series of microcontroller units (MCUs). MPC5604E microcontrollers are members of a new family of next generation microcontrollers built on the Power Architecture. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices. The MPC5604E microcontroller is a gateway system designed to move data from different sources via Ethernet to a receiving system and vice versa. The supported data sources and sinks are: • • • • Video data (with 8/10/12 bits per data word) Audio data (6× stereo channels) RADAR data (2 × 12 bit with <1μs per sample, digitized externally and read in via SPI) Other serial communication interfaces including CAN, LIN, and SPI The Ethernet module has a bandwidth of 10/100 Mbits/sec and supports precision time stamps (IEEE1588). Unshielded twisted pair cables are used to transfer data (via Ethernet) in the car, resulting in a significant reduction of wiring costs by providing inexpensive high bandwidth data links. 1.1 Device summary Table 1 summarizes the MPC5604E device. NOTE The 100-pin package is not a production package. It is used for software development only. Table 1. Device summary MPC5604E Feature CPU 100-pin LQFP1 64-pin LQFP e200z0h, 64 MHz, VLE only, no SPE Flash with ECC CFlash: 512 KB (LC) DFlash: 64 KB (LC, area optimized) RAM with ECC 96 KB DMA 16 channels PIT yes SWT yes FCU yes Ethernet 100 Mbits MII 100 Mbits MII-Lite Video Encoder 8bpp/12bpp Audio Interface 6x Stereo (4x synchronous + 2x synchronous/asynchronous) ADC (10-bit) Timer I/O (eTimer) SCI (LINFlex) SPI (DSPI) 1× 4 channels + VDD_IO + VDDCore + TSens 1×6 channels 2× DSPI_0: 2 chip selects DSPI_1: 2 chip selects DSPI_2: 4 chip selects MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 3 Overview Table 1. Device summary (continued) MPC5604E Feature 100-pin LQFP1 CAN (FlexCAN) 1× IIC 2× Supply 3.3 V IO 1.2V Core with dedicated ballast source pin in two modes: • internal ballast or • external supply (using power on reset pin) 1× FMPLL Phase Lock Loop (PLL) Internal RC Oscillator 16 MHz External crystal Oscillator 4 MHz - 40 MHz CRC yes Debug JTAG, Nexus2+ Ambient Temperature 1 1.2 64-pin LQFP JTAG –40 to 125 °C The 100-pin package is not a production package. It is used for software development only. Block diagram Figure 1 shows a top-level block diagram of the MPC5604E MCU. MPC5604E Microcontroller Data Sheet, Rev. 5 4 Freescale Semiconductor Overview Internal and External Ballast e200z0 Core 32-bit General Purpose Registers Integer Execution Unit Special Purpose Registers Exception Handler Instruction Unit Variable Length Encoded Instructions Branch Prediction Unit Load/Store Unit 1.2 V Regulator Control XOSC 16 MHz RC Oscillator FMPLL (System) JTAG Nexus2+ JTAG Port Nexus2+ eDMA 16 channels Instruction Bus (32-bit) Master Interrupt Controller Data Bus (32-bit) Master FEC Master PTP MII Master 96 KB SRAM (ECC) PDI TSENS ME PCU video_clk Slave MJPEG 64 KB Data Flash (ECC) Slave Output Buffer 512 KB Code Flash (ECC) Slave RGM Slave CGM Crossbar Switch (XBAR, AMBA 2.0 v6 AHB) ADC BAM CRC DSPI eDMA eTimer FCD FCU FEC FlexCAN FMPLL I2C SAI LINFlex ME Analog-to-Digital Converter Boot Assist Module Cylic Redundancy Check Deserial Serial Peripheral Interface Enhanced Direct Memory Access Enhanced Timer Fractional Clock Divider Fault Collection Unit Fast Ethernet Controller Flexible Controller Area Network Frequency-Modulated Phase-Locked Loop Inter-Integrated Circuit serial interface Serial Audio Interface 6xStereo Serial Communication Interface (LIN support) Mode Entry Module CGM PCU RGM TSENS MJPEG PDI PIT PTP SIUL SRAM SSCM STM SWT FCU SIUL BAM SWT STM PIT SSCM FCD 3 x SAI 3 x I2C CRC FlexCAN 3 x DSPI 2 x LINFlex ADC 10-bit 4+3 channels eTimer Peripheral Bridge Clock Generation Module Power Control Unit Reset Generation Module Temperature sensor 12-bit Motion JPEG Encoder Parallel Data Interface (image sensor) Periodic Interrupt Timer IEEE 1588 Precision Time Stamps System Integration Unit Static Random-Access Memory System Status and Configuration Module System Timer Module Software Watchdog Timer Figure 1. MPC5604E block diagram MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 5 Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 C[6] C[5] C[4] A[15] C[3] VSS_LV VDD_LV C[2] VSS_HV VDD_HV C[1] C[0] B[15] B[14] B[13] B[12] The LQFP pinouts are shown in the following figures. NMI A[0] A[1] A[2] A[3] 64 LQFP 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 B[11] VSS_HV B[10] B[9] B[8] TDO TCK TMS TDI B[7] VDD_HV VSS_HV VSS_LV VDD_LV B[6] B[5] VDD_HV_ADC VSS_HV_ADC VDD_HV_S_BALLAST A[8] A[9] A[10] A[11] A[12] A[13] A[14] POR_B B[4] B[0] B[1] B[2] B[3] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS_LV VDD_LV A[4] A[5] A[6] VDD_HV VSS_HV XTAL EXTAL RESET A[7] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Note: 1. All VDD_HV and VSS_HV pins must be shorted on the board. The ADC supply (VDD_HV_ADC) and ground (VSS_HV_ADC) should be managed independently from other high-voltage supplies, (it may still be supplied from the same high-voltage source, but caution must be taken while routing it on the board.) 2. All VDD_LV and VSS_LV pins must be shorted on the board. Figure 2. 64-pin LQFP pinout (top view) MPC5604E Microcontroller Data Sheet, Rev. 5 6 Freescale Semiconductor 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 C[6] C[5] D[7] E[6] C[4] A[15] C[3] VSS_LV VDD_LV C[2] E[5] E[4]/ VSS_HV VDD_HV E[3] E[2] D[6] C[1] C[0] B[15] D[5] B[14] D[4] B[13] B[12] Package pinouts and signal descriptions NMI A[0] C[7] A[1] C[8] A[2] C[9] A[3] D[0] D[8] 100 LQFP 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 B[11] VSS_HV B[10] D[3] E[1] B[9] D[15] E[0] B[8] TDO TCK TMS TDI B[7] VDD_HV VSS_HV VSS_LV VDD_LV D[14] B[6] B[5] D[13] D[12] D[11] D[10] VDD_HV_S_BALLAST VSS_HV VDD_HV A[8] A[9] A[10] A[11] A[12] A[13] A[14] C[12] POR_B C[13] C[14] C[15] D[9] B[4] VDD_HV_ADC VSS_HV_ADC VSS_LV VDD_LV B[0] B[1] B[2] B[3] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_LV VDD_LV D[2] D[1] A[4] A[5] A[6] VDD_HV VSS_HV XTAL EXTAL RESET A[7] C[10] C[11] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1. All VDD_HV and VSS_HV pins must be shorted on the board. The ADC supply (VDD_HV_ADC) and ground (VSS_HV_ADC) should be managed independently from other high-voltage supplies, (it may still be supplied from the same high-voltage source, but caution must be taken while routing it on the board.) 2. All VDD_LV and VSS_LV pins must be shorted on the board. Figure 3. 100-pin LQFP pinout (top view)1 1.The 100-pin package is not a production package. It is used for software development only. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 7 Package pinouts and signal descriptions 2.2 Signal descriptions The following sections provide signal descriptions and related information about the functionality and configuration of the MPC5604E devices. 2.2.1 Power supply and reference voltage pins Table 2 lists the power supply and reference voltage for the MPC5604E devices. Table 2. Supply pins Supply Multi-bonded Power Supplies/Ground Port Pin Pin Description 64-pin 100-pin1 VREG control and power supply pins. Pins available on 64-pin and 100-pin package. VDD_HV_S_BALLAST VDD_HV_S_BALLAST0 Ballast Source/Supply Voltage VDD_HV_S_BALLAST1 Ballast Source/Supply Voltage 23 34 ADC0 reference and supply voltage. Pins available on 64-pin and 100-pin package. VDD_HV_ADC0 ADC0 supply voltage with respect to ground (VSS_HV_ADC) VDD_HV_ADC0 ADC0 high reference voltage with respect to ground (VSS_HV_ADC) VSS_HV_ADC0 ADC0 ground voltage with respect to ground VSS_HV_ADC0 ADC0 low reference voltage with respect to ground VDD_HV_ADC VSS_HV_ADC 21 30 22 31 11 18 38 61 55 87 - 36 12 19 37 60 Power supply pins (3.3 V). Pins available on 64-pin and 100-pin package. VDD_HV VDD_HV_IO0_0 Input/output ground voltage VDD_HV_OSC0 Crystal oscillator amplifier supply voltage VDD_HV_IO0_2 3.3 V Input/Output Supply Voltage (supply) VDD_HV_FLA1 Code and data flash supply voltage VDD_HV_IO0_3 3.3 V Input/Output Supply Voltage (supply) VDD_HV_FLA0 Code and data flash supply voltage VDD_HV VSS_HV HV Supply VSS_HV_IO0_0 Input/output ground voltage VSS_HV_OSC0 Crystal oscillator amplifier ground VSS_HV_IO0_2 Input/output ground voltage Vss_HV_FLA1 Code and data flash supply ground Vss_IO0_4 Vss_HV_FLA0 VSS_HV Input/output ground voltage 35 56 Code and data flash supply voltage HV Ground 88 47 74 MPC5604E Microcontroller Data Sheet, Rev. 5 8 Freescale Semiconductor Package pinouts and signal descriptions Table 2. Supply pins (continued) Supply Port Pin Multi-bonded Power Supplies/Ground Pin Description 64-pin 100-pin1 7 12 58 92 35 58 - 33 6 11 59 93 36 59 - 32 Power supply pins (1.2 V). Pins available on 64-pin and 100-pin package. VDD_LV_COR0_3 VDD_LV_PLL0 VDD_LV VDD_LV_COR0_2 VDD_LV_FLA0 VDD_LV_COR0_1 VDD_LV_FLA1 VDD_LV VSS_LV_COR0_3 VSS_LV_PLL0 VSS_LV_COR0_2 VSS_LV VSS_LV_FLA0 VSS_LV_COR0_1 VSS_LV_FLA1 VSS_LV 1 2.2.2 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR0_3 pin. 1.2 V PLL supply voltage 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR0_2 pin. Code and data flash supply voltage 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR0_1 pin. Code and data flash supply voltage Core supply 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected betwee.n these pins and the nearest VDD_LV_COR0_3 pin. PLL supply ground 1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected betwee.n these pins and the nearest VDD_LV_COR0_2 pin. Code and data flash supply ground 1.2 V supply pins for core logic and data Flash. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR0_1 pin. Code and data flash supply ground Core ground The 100-pin package is not a production package. It is used for software development only. System pins Table 3 and Table 4 contain information on pin functions for the MPC5604E devices. The pins listed in Table 3 are single-function pins. The pins shown in Table 4 are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 9 Package pinouts and signal descriptions Table 3. System pins Pad speed1 Symbol Description Pin Direction SRC = 0 SRC = 1 64-pin 100-pin2 Dedicated pins NMI Non-maskable Interrupt XTAL Oscillator amplifier output Input only Slow — 1 1 Output only — — 13 20 Input for oscillator amplifier circuit and internal clock generator Input only — — 14 21 JTAG test data input Input only Slow Medium 40 63 TMS JTAG state machine control Input only Slow Medium 41 64 TCK3 JTAG clock Input only Slow — 42 65 TDO3 JTAG test data output Output only Slow Medium 43 66 Bidirectional Medium — 15 22 Input only — — 31 45 EXTAL TDI3 3 Reset pin RESET Bidirectional reset with Schmitt trigger characteristics and noise filter POR_B Power-on reset 1 SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register. The 100-pin package is not a production package. It is used for software development only. 3 Additional board pull resistors are recommended when JTAG pins are not being used on the board or application. 2 2.2.3 Pin muxing Table 4 defines the pin list and muxing for the MPC5604E devices. Each row of Table 4 shows all the possible ways of configuring each pin, via “alternate functions”. The default function assigned to each pin after reset is the ALT0 function.Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode. MPC5604E devices provide four main I/O pad types depending of the associated functions: • • • Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission. Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission. Fast pads provide maximum speed. They are used for improved Nexus debugging capability. Medium and Fast pads can be used in slow configuration to reduce the electromagnetic emissions, at the cost of reducing AC performance. MPC5604E Microcontroller Data Sheet, Rev. 5 10 Freescale Semiconductor Package pinouts and signal descriptions Table 4. Pin muxing Port pin PCR register Alternate function1,2,8 Functions Peripheral3 I/O direction4 Pad speed5 SRC = 0 Pin6 SRC = 1 64-pin 100-pin7 Port A (16-bit) A[0] PCR[0] ALT0 ALT1 ALT2 ALT3 — — — GPIO[0] D[0] — — D[11] SIN EIRQ[0] SIUL SAI0 — — VID DSPI 1 SIUL I/O I/O — — I I I Slow Medium 2 2 A[1] PCR[1] ALT0 ALT1 ALT2 ALT3 — — GPIO[1] D[1] SOUT — D[10] EIRQ[1] SIUL SAI0 DSPI1 — VID SIUL I/O I/O O — I I Slow Medium 3 4 A[2] PCR[2] ALT0 ALT1 ALT2 ALT3 — — — GPIO[2] D[2] SCK D[0] D[9] ETC[5] EIRQ[2] SIUL SAI0 DSPI1 SAI1 VID ETIMER0 SIUL I/O I/O I/O I/O I I I Slow Medium 4 6 A[3] PCR[3] ALT0 ALT1 ALT2 ALT3 — — — GPIO[3] D[3] — D[0] D[8] SIN EIRQ[3] SIUL SAI0 — SAI2 VID DSPI2 SIUL I/O I/O — I/O I I I Slow Medium 5 8 A[4] PCR[4] ALT0 ALT1 ALT2 ALT3 — — — GPIO[4] SYNC SOUT — D[7] ETC[3] EIRQ[4] SIUL SAI0 DSPI2 — VID ETIMER0 SIUL I/O I/O O — I I I Slow Medium 8 15 A[5] PCR[5] ALT0 ALT1 ALT2 ALT3 — — — GPIO[5] SYNC SCK D[0] CLK ETC[4] EIRQ[5] SIUL SAI1 DSPI2 SAI1 VID ETIMER0 SIUL I/O I/O I/O I/O I I I Medium Fast 9 16 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 11 Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 Pin6 SRC = 1 64-pin 100-pin7 A[6] PCR[6] ALT0 ALT1 ALT2 ALT3 — — — — GPIO[6] SYNC CS0 — VSYNC D[0] ETC[1] EIRQ[6] SIUL SAI2 DSPI2 — VID VID ETIMER0 SIUL I/O I/O I/O — I I I I Slow Medium 10 17 A[7] PCR[7] ALT0 ALT1 ALT2 ALT3 — — — — GPIO[7] BCLK CS1 — HREF D[1] ETC[2] EIRQ[7] SIUL SAI0 DSPI2 — VID VID ETIMER0 SIUL I/O I/O I/O — I I I I Slow Medium 16 23 A[8] PCR[8] ALT0 ALT1 ALT2 ALT3 — — — GPIO[8] BCLK CS0 D[0] D[6] RX EIRQ[8] SIUL SAI1 DSPI1 SAI2 VID LIN1 SIUL I/O I/O I/O I/O I I I Slow Medium 24 37 A[9] PCR[9] ALT0 ALT1 ALT2 ALT3 — — GPIO[9] BCLK CS1 TX D[5] EIRQ[9] SIUL SAI2 DSPI1 LIN1 VID SIUL I/O I/O I/O O I I Slow Medium 25 38 A[10] PCR[10] ALT0 ALT1 ALT2 ALT3 — — — GPIO[10] MCLK ETC[5] — D[4] SIN EIRQ[10] SIUL SAI2 ETIMER0 — VID DSPI0 SIUL I/O I/O I/O — I I I Slow Medium 26 39 A[11] PCR[11] ALT0 ALT1 ALT2 ALT3 — — — GPIO[11] TX CS1 CS0 D[3] RX RX SIUL CAN0 DSPI0 DSPI1 VID LIN0 LIN1 I/O O O I/O I I I Slow Medium 27 40 MPC5604E Microcontroller Data Sheet, Rev. 5 12 Freescale Semiconductor Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 SRC = 1 Pin6 64-pin 100-pin7 A[12] PCR[12] ALT0 ALT1 ALT2 ALT3 — — — GPIO[12] TX CS0 TX D[2] RX EIRQ[11] SIUL LIN0 DSPI0 LIN1 VID CAN0 SIUL I/O O I/O O I I I Slow Medium 28 41 A[13] PCR[13] ALT0 ALT1 ALT2 ALT3 — GPIO[13] CLK F[0] CS0 EIRQ[12] SIUL IIC1 FCU0 DSPI0 SIUL I/O I/O O I/O I Slow Medium 29 42 A[14] PCR[14] ALT0 ALT1 ALT2 ALT3 — — GPIO[14] DATA F[1] CS1 SIN EIRQ[13] SIUL IIC1 FCU0 DSPI0 DSPI0 SIUL I/O I/O O O I I Slow Medium 30 43 A[15] PCR[15] ALT0 ALT1 ALT2 ALT3 — — — GPIO[15] SCK PPS3 MCLK SCK ETC[0] EIRQ[18] SIUL DSPI0 CE_RTC SAI1 DSPI1 ETIMER0 SIUL I/O I/O O I/O I I I Slow Medium 61 95 Port B (16-bit) B[0] PCR[16] ALT0 ALT1 ALT2 ALT3 — GPIO[16] TX ALARM2 BCLK AN[0] SIUL CAN0 CE_RTC SAI1 ADC08 I/O O O I/O I Slow Medium 17 26 B[1] PCR[17] ALT0 ALT1 ALT2 ALT3 — — — GPIO[17] — — D[0] AN[1] RX TRIGGER2 SIUL — — SAI1 ADC08 CAN0 CE_RTC I/O — — I/O I I I Slow Medium 18 27 B[2] PCR[18] ALT0 ALT1 ALT2 ALT3 — — GPIO[18] TX PPS2 ALARM1 AN[2] TRIGGER1 SIUL LIN0 CE_RTC CE_RTC ADC08 CE_RTC I/O O O O I I Slow Medium 19 28 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 13 Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 Pin6 SRC = 1 64-pin 100-pin7 B[3] PCR[19] ALT0 ALT1 ALT2 ALT3 — — — GPIO[19] ETC[2] SOUT PPS1 AN[3] RX EIRQ[14] SIUL ETIMER0 DSPI0 CE_RTC ADC08 LIN0 SIUL I/O I/O I/O O I I I Slow Medium 20 29 B[4] PCR[20] ALT0 ALT1 ALT2 ALT3 — GPI[20] — — — RX_DV SIUL — — — FEC I — — — I Slow Medium 32 50 B[5] PCR[21] ALT0 ALT1 ALT2 ALT3 GPIO[21] TX_D0 DEBUG[0] — SIUL FEC SSCM — I/O O I/O — Slow Medium 33 55 B[6] PCR[22] ALT0 ALT1 ALT2 ALT3 GPIO[22] TX_D1 DEBUG[1] — SIUL FEC SSCM — I/O O I/O — Slow Medium 34 56 B[7] PCR[23] ALT0 ALT1 ALT2 ALT3 GPIO[23] TX_D2 DEBUG[2] — SIUL FEC SSCM — I/O O I/O — Slow Medium 39 62 B[8] PCR[24] ALT0 ALT1 ALT2 ALT3 GPIO[24] TX_D3 DEBUG[3] — SIUL FEC SSCM — I/O O I/O — Slow Medium 44 67 B[9] PCR[25] ALT0 ALT1 ALT2 ALT3 GPIO[25] TX_EN DEBUG[4] — SIUL FEC SSCM — I/O O I/O — Slow Medium 45 70 B[10] PCR[26] ALT0 ALT1 ALT2 ALT3 GPIO[26] MDC DEBUG[5] — SIUL FEC SSCM — I/O O I/O — Slow Medium 46 73 B[11] PCR[27] ALT0 ALT1 ALT2 ALT3 GPIO[27] MDIO DEBUG[6] — SIUL FEC SSCM — I/O I/O I/O — Slow Medium 48 75 B[12] PCR[28] ALT0 ALT1 ALT2 ALT3 — GPIO[28] — DEBUG[7] — TX_CLK SIUL — SSCM — FEC I/O — I/O — I Slow Medium 49 76 MPC5604E Microcontroller Data Sheet, Rev. 5 14 Freescale Semiconductor Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral Pad speed5 I/O direction4 SRC = 0 SRC = 1 Pin6 64-pin 100-pin7 B[13] PCR[29] ALT0 ALT1 ALT2 ALT3 — GPI[29] — — — RX_D0 SIUL — — — FEC I — — — I Slow Medium 50 77 B[14] PCR[30] ALT0 ALT1 ALT2 ALT3 — GPI[30] — — — RX_D1 SIUL — — — FEC I — — — I Slow Medium 51 79 B[15] PCR[31] ALT0 ALT1 ALT2 ALT3 — GPI[31] — — — RX_D2 SIUL — — — FEC I — — — I Slow Medium 52 81 Port C (64-pin: 7-bit; 100-pin: 16-bit) C[0] PCR[32] ALT0 ALT1 ALT2 ALT3 — GPI[32] — — — RX_D3 SIUL — — — FEC I — — — I Slow Medium 53 82 C[1] PCR[33] ALT0 ALT1 ALT2 ALT3 — — GPI[33] — — — RX_CLK EIRQ[15] SIUL — — — FEC SIUL I — — — I I Slow Medium 54 83 C[2] PCR[34] ALT0 ALT1 ALT2 ALT3 — — — GPIO[34] ETC[0] TX PPS1 D[0] RX EIRQ[16] SIUL ETIMER0 CAN0 CE_RTC VID LIN0 SIUL I/O I/O O O I I I Slow Medium 57 91 C[3] PCR[35] ALT0 ALT1 ALT2 ALT3 — — — GPIO[35] ETC[1] TX SYNC D[1] RX EIRQ[17] SIUL ETIMER0 LIN0 SAI1 VID CAN0 SIUL I/O I/O O I/O I I I Slow Medium 60 94 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 15 Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 Pin6 SRC = 1 64-pin 100-pin7 C[4] PCR[36] ALT0 ALT1 ALT2 ALT3 — — — GPIO[36] CLK_OUT ETC[4] MCLK TRIGGER1 ABS[0] EIRQ[19] SIUL MC_CGL ETIMER0 SAI0 CE_RTC MC_RGM SIUL I/O O I/O I/O I I I Medium Fast 62 96 C[5] PCR[37] ALT0 ALT1 ALT2 ALT3 — — GPIO[37] CLK ETC[3] CS2 ABS[2] EIRQ[20] SIUL IIC0 ETIMER0 DSPI2 MC_RGM SIUL I/O — I/O O I I Slow Medium 63 99 C[6] PCR[38] ALT0 ALT1 ALT2 ALT3 — — GPIO[38] DATA CS0 CS3 FAB EIRQ[21] SIUL IIC0 DSPI1 DSPI2 MC_RGM SIUL I/O — I/O O I I Slow Medium 64 100 C[7] PCR[39] ALT0 ALT1 ALT2 ALT3 — GPIO[39] TXD — — RXD SIUL LIN0 — — LIN1 I/O O — — I Slow Medium — 3 C[8] PCR[40] ALT0 ALT1 ALT2 ALT3 — — GPIO[40] TXD — — RXD EIRQ[22] SIUL LIN1 — — LIN0 SIUL I/O O — — I I Slow Medium — 5 C[9] PCR[41] ALT0 ALT1 ALT2 ALT3 — — GPI[41] — — — SIN EIRQ[23] SIUL — — — DSPI0 SIUL I — — — I I Slow Medium — 7 C[10] PCR[42] ALT0 ALT1 ALT2 ALT3 — — GPIO[42] ETC[5] ETC[4] — SIN EIRQ[24] SIUL ETIMER0 ETIMER0 — DSPI1 SIUL I/O I/O I/O — I I Slow Medium — 24 C[11] PCR[43] ALT0 ALT1 ALT2 ALT3 GPIO[43] ETC[2] ETC[1] ETC[3] SIUL ETIMER0 ETIMER0 ETIMER0 I/O I/O I/O I/O Slow Medium — 25 MPC5604E Microcontroller Data Sheet, Rev. 5 16 Freescale Semiconductor Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 SRC = 1 Pin6 64-pin 100-pin7 C[12] PCR[44] ALT0 ALT1 ALT2 ALT3 — — — GPIO[44] PPS1 PPS2 ALARM1 TRIGGER1 TRIGGER2 EIRQ[25] SIUL CE_RTC CE_RTC CE_RTC CE_RTC CE_RTC SIUL I/O O O O I I I Slow Medium — 44 C[13] PCR[45] ALT0 ALT1 ALT2 ALT3 — — GPIO[45] — — — D[1] EIRQ[26] SIUL — — — VID SIUL I/O — — — I I Slow Medium — 46 C[14] PCR[46] ALT0 ALT1 ALT2 ALT3 — — GPIO[46] — — — D[0] EIRQ[27] SIUL — — — VID SIUL I/O — — — I I Slow Medium — 47 C[15] PCR[47] ALT0 ALT1 ALT2 ALT3 — GPI[47] — — — COL SIUL — — — FEC I — — — I Slow Medium — 48 Port D (100-pin package: 16-bit) D[0] PCR[48] ALT0 ALT1 ALT2 ALT3 GPIO[48] MDO0 — — SIUL NEXUS — — I/O O — — Slow Medium — 9 D[1] PCR[49] ALT0 ALT1 ALT2 ALT3 GPIO[49] MCK0 — — SIUL NEXUS — — I/O O — — Slow Medium — 14 D[2] PCR[50] ALT0 ALT1 ALT2 ALT3 GPIO[50] EVTO — — SIUL NEXUS — — I/O O — — Slow Medium — 13 D[3] PCR[51] ALT0 ALT1 ALT2 ALT3 GPIO[51] MSEO1 — — SIUL NEXUS — — I/O O — — Slow Medium — 72 D[4] PCR[52] ALT0 ALT1 ALT2 ALT3 GPIO[52] MSEO0 — — SIUL NEXUS — — I/O O — — Slow Medium — 78 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 17 Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 Pin6 SRC = 1 64-pin 100-pin7 D[5] PCR[53] ALT0 ALT1 ALT2 ALT3 GPIO[53] MDO3 — — SIUL NEXUS — — I/O O — — Slow Medium — 80 D[6] PCR[54] ALT0 ALT1 ALT2 ALT3 GPIO[54] MDO2 — — SIUL NEXUS — — I/O O — — Slow Medium — 84 D[7] PCR[55] ALT0 ALT1 ALT2 ALT3 GPIO[55] MDO1 — — SIUL NEXUS — — I/O — — — Slow Medium — 98 D[8] PCR[56] ALT0 ALT1 ALT2 ALT3 — GPI[56] — — — EVTI SIUL — — — NEXUS I — — — I Slow Medium — 10 D[9] PCR[57] ALT0 ALT1 ALT2 ALT3 — — GPIO[57] ETC[3] ETC[2] — RXD EIRQ[28] SIUL ETIMER0 ETIMER0 — CAN0 SIUL I/O I/O I/O — I I Slow Medium — 49 D[10] PCR[58] ALT0 ALT1 ALT2 ALT3 GPIO[58] TXD — — SIUL CAN0 — — I/O O — — Slow Medium — 51 D[11] PCR[59] ALT0 ALT1 ALT2 ALT3 GPIO[59] ETC[0] ETC[5] ETC[4] SIUL ETIMER0 ETIMER0 ETIMER0 I/O I/O I/O I/O Slow Medium — 52 D[12] PCR[60] ALT0 ALT1 ALT2 ALT3 — GPIO[60] ETC[1] ETC[0] — SIN SIUL ETIMER0 ETIMER0 — DSPI0 I/O I/O I/O — I Slow Medium — 53 D[13] PCR[61] ALT0 ALT1 ALT2 ALT3 — — GPI[61] — — — CRS EIRQ[29] SIUL — — — FEC SIUL I — — — I I Slow Medium — 54 MPC5604E Microcontroller Data Sheet, Rev. 5 18 Freescale Semiconductor Package pinouts and signal descriptions Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2,8 Functions 3 Peripheral I/O direction4 Pad speed5 SRC = 0 SRC = 1 Pin6 64-pin 100-pin7 D[14] PCR[62] ALT0 ALT1 ALT2 ALT3 — — GPI[62] — — — RX_ER EIRQ[30] SIUL — — — FEC SIUL I — — — I I Slow Medium — 57 D[15] PCR[63] ALT0 ALT1 ALT2 ALT3 GPIO[63] F[0] — — SIUL FCU0 — — I/O O — — Slow Medium — 69 Port E (100-pin package: 7-bit) E[0] PCR[64] ALT0 ALT1 ALT2 ALT3 GPIO[64] F[1] — — SIUL FCU0 — — I/O O — — Slow Medium — 68 E[1] PCR[65] ALT0 ALT1 ALT2 ALT3 GPIO[65] TX_ER — — SIUL FEC — — I/O O — — Slow Medium — 71 E[2] PCR[66] ALT0 ALT1 ALT2 ALT3 — — GPI[66] — — — RXD EIRQ[31] SIUL — — — LIN1 SIUL I — — — I I Slow Medium — 85 E[3] PCR[67] ALT0 ALT1 ALT2 ALT3 GPIO[67] TXD — — SIUL LIN1 — — I/O O — — Slow Medium — 86 E[4] PCR[68] ALT0 ALT1 ALT2 ALT3 GPIO[68] CS0 CS0 CS0 SIUL DSPI0 DSPI1 DSPI2 I/O I/O I/O I/O Slow Medium — 89 E[5] PCR[69] ALT0 ALT1 ALT2 ALT3 GPIO[69] SCK SCK SCK SIUL DSPI0 DSPI1 DSPI2 I/O I/O I/O I/O Slow Medium — 90 E[6] PCR[70] ALT0 ALT1 ALT2 ALT3 — — — GPIO[70] SOUT SOUT SOUT SIN SIN SIN SIUL DSPI0 DSPI1 DSPI2 DSPI0 DSPI2 DSPI2 I/O O O O I I I Slow Medium — 97 1 ALT0 is the primary (default) function for each port after reset. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 19 Package pinouts and signal descriptions 2 3 4 5 6 7 8 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 → ALT1; PCR.PA = 10 → ALT2; PCR.PA = 11 → ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. Module included on the MCU. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register. Additional board pull resistors are recommended when JTAG pins are not being used on the board or application. The 100-pin package is not a production package. It is used for software development only. Do not use ALT multiplexing when ADC channels are used. MPC5604E Microcontroller Data Sheet, Rev. 5 20 Freescale Semiconductor Electrical characteristics 3 Electrical characteristics 3.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. CAUTION All of the following figures are indicative and must be confirmed during either silicon validation, silicon characterization or silicon reliability trial. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where appropriate. Table 5. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 21 Electrical characteristics 3.3 Absolute maximum ratings Table 6. Absolute Maximum Ratings1 Conditions Min Max2 Unit SR Device ground — VSS VSS V VDD_HV_IO SR 3.3 V Input/Output Supply Voltage (supply). Code Flash supply with VDD_HV_IO3 and Data Flash with VDD_HV_IO2 — VSS _ 0.3 VSS + 6.0 V VSS_HV_IO SR 3.3 VInput/Output Supply Voltage (ground). Code Flash ground with VSS_HV_IO3 and Data Flash with VSS_HV_IO2 — VSS _ 0.1 VSS + 0.1 V Symbol VSS VDD_HV_OSC SR 3.3 V Crystal Oscillator Amplifier Supply voltage (supply) VSS_HV_OSC SR 3.3 V Crystal Oscillator Amplifier Supply voltage (ground) The oscillator and flash supply segments are double-bounded with the VDD_HV_IO segments. See VDD_HV_IO and VSS_HV_IO specifications. VDD_HV_ADC03 SR 3.3 V ADC_0 Supply and High Reference voltage — VSS _ 0.3 VSS_HV_ADC0 SR 3.3 V ADC_0 Ground and Low Reference voltage — VSS _ 0.1 VDD_HV_REG SR 3.3 V Voltage Regulator Supply voltage — VSS _ 0.3 TVDD SR Slope characteristics on all VDD during power up4 — — VDD_LV_COR SR 1.2 V supply pins for core logic (supply) — VSS _ 0.3 VSS_LV_COR SR 1.2 V supply pins for core logic (ground) — VSS _ 0.1 SR Voltage on any pin with respect to ground (VSS_HV_IO) — VSS_HV_IO _ 0.3 IINJPAD SR Input current on any pin during overload condition — IINJSUM SR Absolute sum of all input currents during overload condition VIN TSTORAGE TJ TA 1 Parameter — VSS + 6.0 V VSS + 0.1 V VSS + 6.0 V 0.1 V/us VSS + 1.4 V VSS + 0.1 V VDD_HV_IO +0.5 V –10 10 mA — –50 50 mA SR Storage temperature — –55 150 °C SR Junction temperature under bias — –40 150 °C SR Ambient temperature under bias fCPU<64 MHz –40 125 °C fCPU<64 MHz Video use case with internal supply –40 105 °C Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. MPC5604E Microcontroller Data Sheet, Rev. 5 22 Freescale Semiconductor Electrical characteristics 2 Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. 3 MPC5604E’s I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies. 4 Guaranteed by device validation. 3.4 Recommended operating conditions Table 7. Recommended operating conditions Conditions Min Max1 Unit SR Device ground — VSS VSS V VDD_HV_IO SR 3.3 V input/output supply voltage — 3.0 3.6 V VSS_HV_IO SR Input/output ground voltage — 0 0 V Symbol VSS Parameter VDD_HV_OSC SR 3.3 V Crystal Oscillator Amplifier Supply voltage (supply) VSS_HV_OSC SR 3.3 V Crystal Oscillator Amplifier Supply voltage (ground) The oscillator and flash supply segments are double-bounded with the VDD_HV_IOx segments. See VDD_HV_IOx and VSS_HV_IOx specifications. — SR 3.3 V ADC_0 Supply and High Reference voltage — 3.0 3.6 V SR 3.3 V voltage regulator supply voltage — 3.0 3.6 V VDD_LV_EXTCOR SR Externally supplied core voltage — 1.15 1.32 V VDD_LV_REGCOR SR Internal supply voltage — — — V VSS_LV_REGCOR SR Internal reference voltage — 0 0 V VDD_LV_COR SR Internal supply voltage — — — V VSS_LV_COR SR Internal reference voltage — 0 0 V VSS_HV_ADC0 SR Ground and Low Reference voltage — 0 0 V –40 150 °C fCPU<64 MHz –40 125 °C fCPU<64 MHz Video use case with internal supply –40 105 °C VDD_HV_ADC02 VDD_HV_REG TJ SR Junction temperature under bias SR Ambient temperature under bias TA 1 Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2 MPC5604E’s I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 23 Electrical characteristics 3.5 Thermal characteristics Table 8. Thermal characteristics for 100-pin LQFP1 Symbol RθJA Parameter Conditions Thermal resistance junction-to-ambient, natural convection2 Thermal resistance junction-to-ambient 2 1 2 3 4 5 6 51 °C/W Four layer board—2s2p 38 °C/W @ 200 ft./min. , single layer board—1s 41 °C/W @ 200 ft./min.3, four layer board—2s2p 32 °C/W — 23 °C/W — 11 °C/W — 2 °C/W Thermal resistance junction to board4 RθJCtop Thermal resistance junction to case (top) ΨJT Single layer board—1s 3 RθJMA RθJB Typical Unit value 5 Junction to package top natural convection6 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. Flow rate of forced air flow. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Table 9. Thermal characteristics for 64-pin LQFP1 Symbol RθJA Parameter Conditions Thermal resistance junction-to-ambient, natural convection2 Thermal resistance junction-to-ambient2 RθJMA RθJB RθJCtop Thermal resistance junction to case (top)5 ΨJT Single layer board—1s 64 °C/W Four layer board—2s2p 45 °C/W 52 °C/W 39 °C/W — 28 °C/W — 14 °C/W — 3 °C/W ft./min.3, @ 200 board—1s single layer @ 200 ft./min.3, four layer board—2s2p Thermal resistance junction to board4 Junction to package top natural convection6 Typical Unit value 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2 Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. MPC5604E Microcontroller Data Sheet, Rev. 5 24 Freescale Semiconductor Electrical characteristics 3 Flow rate of forced air flow. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 5 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 6 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 4 3.5.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: TJ = TA + (RθJA * PD) Eqn. 1 where: TA = ambient temperature for the package (°C) RθJA = junction to ambient thermal resistance (°C/W) PD = power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: RθJA = RθJC + RθCA Eqn. 2 where: RθJA = junction to ambient thermal resistance (°C/W) RθJC = junction to case thermal resistance (°C/W) RθCA = case to ambient thermal resistance (°C/W) RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RθCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: TJ = TT + (ΨJT x PD) Eqn. 3 where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 25 Electrical characteristics The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 1. 2. 3. 3.6 C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53-58, March 1998. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. Electromagnetic Interference (EMI) characteristics Table 10. EMI Testing Specifications1 Symbol Radiated emissions Parameter VEME Conditions Clocks Frequency Range VDD = 3.3 V TA = +25 °C Oscillator Frequency = 8 150 kHz–50 MHz MHz; 50–150 MHz System Bus Frequency = Device 64 MHz; 150–500 MHz Configuration, test CPU Freq = 64MHZ 500–1000 MHz conditions and EM No PLL Frequency testing per standard Modulation IEC Level IEC61967-2. External Oscillator Freq = 150 kHz–50 MHz 8 MHz 50–150 MHz System Bus Freq = 64 MHz 150–500 MHz CPU Freq = 64MHZ 500–1000 MHz Level (Typ) Unit 2 14 dBμV 11 7 M 1 11 dBμV 7 1 2% PLL Freq Modulation IEC Level 1 N EMI testing and I/O port waveforms per standard IEC61967-2. MPC5604E Microcontroller Data Sheet, Rev. 5 26 Freescale Semiconductor Electrical characteristics 3.7 Electrostatic Discharge (ESD) characteristics Table 11. ESD ratings1,2 Symbol Parameter VESD(HBM) SR Electrostatic discharge (Human Body Model) VESD(CDM) SR Conditions Value Unit — 2000 V Electrostatic discharge (Charged Device Model) 750 (corners) — V 500 (other) 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification 3.8 Power management electrical characteristics 3.8.1 Power Management Overview The device supports the following power modes: • • Internal voltage regulation mode External voltage regulation mode 3.8.1.1 Internal voltage regulation mode In this mode, the following supplies are involved: • VDD_HV_IO (3.3V) — This is the main supply provided externally. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 27 Electrical characteristics • VDD_LV_COR (1.2V) — This is the core logic supply. In the internal regulation mode, the core supply is derived from the main supply via an on-chip linear regulator driving an internal PMOS ballast transistor. The PMOS ballast transistors are located in the pad ring and their source connectors are directly bonded to a dedicated pin. See Figure 4. Pads Pins Vss_HV_IO0_X 3.3V Vdd_HV_IO0_X Vdd_HV_S_Ballast0/1 Vreg LVD ... POR_B 1.2V ... Vdd_LV_REGCOR0 Vdd_LV_COR0_X (3 supply pairs) Vss_LV_COR0_X Figure 4. Internal Regulation Mode The core supply can also be provided externally. Table 12 shows how to connect VDD_HV_S_BALLAST pin for internal and external core supply mode. NOTE VDD_HV_S_BALLAST pin is the supply pin, which carries the entire core logic current in the internal regulation mode, while in external regulation mode it is used as a signal to bypass the regulator. Table 12. Core Supply Select Mode VDD_HV_S_Ballast Internal supply mode (via internal PMOS ballast transistors) VDD_HV_IO (3.3V) External supply mode (e.g., via external switched regulator) VDD_LV_COR (1.2V) MPC5604E Microcontroller Data Sheet, Rev. 5 28 Freescale Semiconductor Electrical characteristics 3.8.1.2 External voltage regulation mode In the external regulation mode, the core supply is provided externally using a switched regulator. This saves on-chip power consumption by avoiding the voltage drop over the ballast transistor. The external supply mode is selected via a board level supply change at the VDD_HV_S_BALLAST pin. Pads Pins Vss_HV_IO0_X Vdd_HV_IO0_X 3.3V Vdd_HV_S_Ballast0/1 1.2V (1.15V-1.32V) Vreg relaxed LVD ... POR_B Power Supply, e.g., switched or linear 1.2V ... Vdd_LV_REGCOR0 Vdd_LV_COR0_X (3 supply pairs) Vss_LV_COR0_X Figure 5. External Regulation Mode 3.8.1.3 Recommended power supply sequencing1 For MPC5604E, the external supplies need to be maintained as per the following relations: • • • 3.8.2 VDD_HV_IO should be always greater or equal to VDD_HV_S_Ballast VDD_HV_IO should be always greater than VDD_LV_COR0_X VDD_HV_IO should be always greater than VDD_HV_ADC Voltage regulator electrical characteristics 1.Investigations are in process to relax power supply sequencing recommendation. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 29 Electrical characteristics \ CREG2 (LV_COR/LV_CFLA) GND 600 nF VDD_HV_IO VDD_LV_COR0_2 VSS_LV_COR0_2 VDD_HV_S_BALLAST0 - VREF Voltage Regulator I CREG1 (LV_COR/LV_DFLA) VDD_LV_COR0_0 VDD_HV_S_BALLAST1 CDEC1 (Ballast decoupling) + VDD_LV_COR0_3 DEVICE VSS_HV_IO GND DEVICE VSS_LV_COR0_0 VSS_LV_COR0_1 VSS_HV_IO VDD_HV_IO VDD_LV_COR0_1 600 nF GND GND CREG3 (LV_COR/LV_PLL) CDEC2 (supply/IO decoupling) Figure 6. Voltage regulator capacitance connection Table 13. Voltage regulator electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max CREGn2 SR — Internal voltage regulator external capacitance — 200 — 600 nF RREG SR — Stability capacitor equivalent serial resistance — 0.05 — 0.2 Ω Decoupling capacitance3 ballast — 1004 CDEC1 SR — — 400 CDEC2 SR — — 100 nF 1 μF — — 1.32 — 1.15 1.28 1.32 — — 150 IMREG = 200 mA — — 2 IMREG = 0 mA — — 1 T VMREG Decoupling capacitance regulator supply Main regulator output voltage CC P IMREG IMREGINT SR — Before exiting from reset After trimming Main regulator current provided to VDD_LV domain Main regulator module current CC D consumption — 4705 — nF — — V mA mA MPC5604E Microcontroller Data Sheet, Rev. 5 30 Freescale Semiconductor Electrical characteristics Table 13. Voltage regulator electrical characteristics (continued) Symbol IDD_BV 1 C CC D Parameter Value Conditions1 In-rush current on VDD_BV during power-up6 Unit — Min Typ Max — — 407 mA VDD = 3.3 V ± 10%, TA = −40 to 125 °C, unless otherwise specified It is required by the device in internal voltage regulation mode only. This capacitance value is driven by the constraints of the external voltage regulator that supplies the VDD_BV voltage. A typical value is in the range of 470 nF. This capacitance should be placed close to the device pin. This value is acceptable to guarantee operation from 3.0 V to 3.6 V External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating range. In-rush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external LV capacitances to be load) The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc. 2 3 4 5 6 7 3.8.3 Voltage monitor electrical characteristics The device implements a POR module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD_HV and the VDD_LV voltage while device is supplied: • • • POR monitors VDD_HV during the power-up phase to ensure device is maintained in a safe reset state LVDHV3 monitors VDD_HV to ensure device reset below minimum functional supply LVDLVCOR monitors low voltage digital power domain Table 14. Low voltage monitor electrical characteristics Symbol 1 3.9 Parameter VPORH T Power-on reset threshold VPORUP D Supply for functional POR module Conditions1 Value Unit Min Max — 1.5 2.7 V TA = 25°C 1.0 — V — — 2.95 V VDDHVLVDMOK_H P VDD_HV low voltage detector high threshold VDDHVLVDMOK_L P VDD_HV low voltage detector low threshold — 2.6 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.235 V VMLVDDOK_L P Digital supply low voltage detector low — 1.095 — V VDD_HV = 3.3V ± 10% TA = –40 °C to TA MAX, unless otherwise specified Power Up/Down reset sequencing The MPC5604E implements a precise sequence to ensure each module is started only when all conditions for switching it ON are available. This prevents overstress event or miss-functionality within and outside the device: • A POR module working on voltage regulator supply is controlling the correct start-up of the regulator. This is a key module ensuring safe configuration for all Voltage regulator functionality when supply is below 1.5 V. Associated POR (or POR) signal is active low. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 31 Electrical characteristics • • Several Low Voltage Detectors, working on voltage regulator supply are monitoring the voltage of the critical modules (Voltage regulator, I/Os, Flash and Low voltage domain). LVDs are gated low when POWER_ON is active. A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, Flash and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated module are set into a safe state. VDD_HV_REG VPORH VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VDD_LV_REGCOR VMLVDOK_H 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM P0 P1 1.2V 0V Figure 7. Power-up typical sequence VLVDHV3L VDD_HV_REG VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE P0 1.2V 0V Figure 8. Power-down typical sequence MPC5604E Microcontroller Data Sheet, Rev. 5 32 Freescale Semiconductor Electrical characteristics 3.10 DC electrical characteristics Table 15 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IO < 3.6 V). Table 15. DC electrical characteristics (3.3 V)1 Symbol 1 2 Parameter Conditions Min Max Unit VIL D Minimum low level input voltage — –0.42 — V VIL P Maximum low level input voltage — — 0.35 VDD_HV_IO V VIH P Minimum high level input voltage — 0.65 VDD_HV_IO — V VIH D Maximum high level input voltage — — VDD_HV_IO + 0.42 V VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IO — V VOL_S P Slow, low level output voltage IOL = 2 mA — 0.1VDD_HV_IO V VOH_S P Slow, high level output voltage IOH = –2 mA 0.8VDD_HV_IO — V VOL_M P Medium, low level output voltage IOL = 2 mA — 0.1VDD_HV_IO V VOH_M P Medium, high level output voltage IOH = –3 mA 0.8VDD_HV_IO — V VOL_F P Fast, high level output voltage IOL = 11 mA — 0.1VDD_HV_IO V VOH_F P Fast, high level output voltage IOH = –11 mA 0.8VDD_HV_IO — V µA IPU P Equivalent pull-up current VIN = VIL –95 — IPD P Equivalent pull-down current VIN = VIH — 95 IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C — 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C — 0.5 µA VILR D Minimum RESET, low level input voltage — –0.42 — V VILR P Maximum RESET, low level input voltage — — 0.35 VDD_HV_IO V VIHR P Minimum RESET, high level input voltage — 0.65 VDD_HV_IO — V VIHR D Maximum RESET, high level input voltage — — VDD_HV_IO + 0.42 V VHYSR D RESET, Schmitt trigger hysteresis — 0.1 VDD_HV_IO — V VOLR D RESET, low level output voltage IOL = 0.5 mA — 0.1VDD_HV_IO V VIN = VIL –130 — VIN = VIH — –10 — — 10 IPU RESET, equivalent pull-up D current CIN D Input capacitance µA pF These specifications are design targets and subject to change per device characterization. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 6. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 33 Electrical characteristics Table 16. Supply current Value1 Conditions Symbol Unit Parameter I DD_LV_CORE C P P RUN Mode, I/O currents not included, worst case over temperature for system clock HALT Mode2 V DD_LV_CORx externally forced at 1.3 V STOP Mode3 V DD_LV_CORx externally forced at 1.3 V IDD_FLASH Min Typ Max — 75 120 — 4 25 — 4 25 — 4 7 — 9 14 — 3.5 6 — 7.5 12 Code Flash FLASH supply current during read VDD_HV_IO at 3.3 V FLASH supply current Supply during erase operation current on 1 Flash module VDD_HV_IO at 3.3 V mA C Data Flash IDD_ADC C I DD_OSC C FLASH supply current during read VDD_HV_IO at 3.3 V FLASH supply current during erase operation on 1 Flash module VDD_HV_IO at 3.3 V ADC supply current VDD_HV_ADC0 at 3.3 V ADC Freq = 16MHz — 1.8 3 OSC supply current VDD_HV_OSC at 3.3 V 16 MHz — 0.74 4 1 All values to be confirmed after characterization/data collection. Halt mode configurations: Code fetched from SRAM, Code Flash and Data Flash in low power mode, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled. 3 STOP "P" mode DUT configuration: Code fetched from SRAM, Code Flash and Data Flash off, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled. 2 3.11 Main oscillator electrical characteristics The MPC5604E provides an oscillator/resonator driver. Table 17. Main oscillator electrical characteristics Symbol Parameter Min Max Unit 40 MHz fOSC SR Oscillator frequency 4 gm P Transconductance 4 VOSC tOSCSU T Oscillation amplitude on XTAL pin 1,2 T Start-up time 15.846 mA/V 1.3 2.25 V — 5 ms MPC5604E Microcontroller Data Sheet, Rev. 5 34 Freescale Semiconductor Electrical characteristics 1 The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2 Value captured when amplitude reaches 90% of XTAL Table 18. Input clock characteristics Symbol Min Typ Max Unit fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 100 MHz trCLK SR Rise/fall time in bypass — — 1 ns 47.5 50 52.5 % SR Duty cycle tDC 3.12 Parameter FMPLL electrical characteristics Table 19. PLLMRFM electrical specifications1 (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol Parameter PLL reference frequency range2 Conditions Unit Min Max 4 40 MHz fref_crystal fref_ext D fpll_in D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLO D Clock frequency range in normal mode — 4 120 MHz Measured using clock division—typicall y /16 20 150 MHz UT VCO free running frequency Crystal reference fVCO P fsys D On-chip PLL frequency2 — 16 64 MHz tCYC D System clock period — — 1 / fsys ns — 20 150 MHz fSYS maximum 500 500 –6 6 ns fSCM CJITTER D Self-clocked mode T CLKOUT period jitter5,6,7,8 frequency3,4 Peak-to-peak (clock edge to clock edge) Long-term jitter (avg. over 2 ms interval) ps tlpll D PLL lock time 9, 10 — — 200 μs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — –6 6 % fsys MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 35 Electrical characteristics Table 19. PLLMRFM electrical specifications1 (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued) Value Symbol Parameter fUL D fCS fDS D fMOD D Frequency un-LOCK range Modulation Depth Modulation frequency12 Conditions Unit Min Max –18 18 Center spread ±0.25 ±4.011 Down Spread –0.5 –8.0 — 100 — — % fsys %fsys kHz 1 All values given are initial design targets and subject to change. Considering operation with PLL not bypassed. 3 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 4 f VCO self clock range is 20-150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 5 This value is determined by the crystal manufacturer and board design. 6 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 7 Proper PC board layout procedures must be followed to achieve specifications. 8 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C JITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 9 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 10 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 11 This value is true when operating at frequencies above 60 MHz, otherwise f CS is 2% (above 64 MHz). 12 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. 2 3.13 16 MHz RC oscillator electrical characteristics Table 20. 16 MHz RC oscillator electrical characteristics Symbol fRC 1 Parameter C RC oscillator frequency ΔRCMVAR Fast internal RC oscillator variation in temperature and supply with respect to P fRC at TA = 55 °C in high-frequency configuration ΔRCMTRIM T Post Trim Accuracy: The variation of the PTF1 from the 16 MHz oscillator Conditions Min Typ Max Unit TA = 25 °C 8.5 16 24 MHz — –5 — 5 % TA = 25 °C –2 — 2 % PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature MPC5604E Microcontroller Data Sheet, Rev. 5 36 Freescale Semiconductor Electrical characteristics 3.14 Analog-to-Digital Converter (ADC) electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 9. ADC characteristics and error definitions 3.14.1 Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 37 Electrical characteristics be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc×CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Eqn. 4 R S + R F + R L + R SW + R AD V A • --------------------------------------------------------------------------- < 1 --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF Channel Selection Sampling RSW1 RAD CP1 CP2 RS Source Impedance RF Filter Resistance CF Filter Capacitance Current Limiter Resistance RL RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 10. Input equivalent circuit A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 10): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). MPC5604E Microcontroller Data Sheet, Rev. 5 38 Freescale Semiconductor Electrical characteristics Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS << TS τ2 = RL (CS + CP1 + CP2) VA1 TS t Figure 11. Transient behavior during sampling phase In particular two different transient periods can be distinguished: • A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Eqn. 5 CP • CS τ 1 = ( R SW + R AD ) • --------------------CP + CS Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Eqn. 6 τ 1 < ( R SW + R AD ) • C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Eqn. 7 V A1 • ( C S + C P1 + C P2 ) = V A • ( C P1 + C P2 ) • A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 8 τ 2 < R L • ( C S + C P1 + C P2 ) MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 39 Electrical characteristics In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Eqn. 9 10 • τ 2 = 10 • R L • ( C S + C P1 + C P2 ) < TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 10 VA2 • ( C S + C P1 + C P2 + C F ) = V A • C F + V A1 • ( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Analog Source Bandwidth (VA) Noise TC ≤ 2 RFCF (Conversion Rate vs. Filter Pole) fF = f0 (Anti-aliasing Filtering Condition) 2 f0 ≤ fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF f Sampled Signal Spectrum (fC = conversion Rate) f0 fC f Figure 12. Spectral representation of input signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: MPC5604E Microcontroller Data Sheet, Rev. 5 40 Freescale Semiconductor Electrical characteristics Eqn. 11 VA C P1 + C P2 + C F ------------ = -------------------------------------------------------V A2 C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Eqn. 12 C F > 2048 • C S MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 41 Electrical characteristics 3.14.2 ADC conversion characteristics Table 21. ADC conversion characteristics Symbol fCK fs Parameter Unit Min Typ Max ADC clock frequency (depends on ADC SR configuration) (The duty cycle depends on ADCClk2 frequency) — 1 — 64 MHz SR Sampling frequency — — — 1.53 MHz 500 — — ns — — 28.2 µs 500 — — ns — — — 2.5 pF Sample time3 tADC_S Value Conditions1 fADC = 20 MHz, ADC_conf_sample_input = 17 D fADC = 9 MHz, INPSAMP = 255 Conversion time4 fADC = 20 MHz5, ADC_conf_comp = 3 tADC_C P CS6 D CP16 D ADC input pin capacitance 1 — — — 0.87 pF 6 D ADC input pin capacitance 2 — — — 1 pF CP2 ADC input sampling capacitance RSW16 D Internal resistance of analog source — — — 0.6 kΩ RAD6 D Internal resistance of analog source — — — 2 kΩ IINJ T Current injection on one ADC input, different from the converted one. Remains within TUE specification –5 — 5 mA INL P Integral Non Linearity No overload –1.5 — 1.5 LSB DNL P Differential Non Linearity No overload –1.0 — 1.0 LSB OFS T Offset error — — ±1 — LSB GNE T Gain error — — ±1 — LSB TUE P Total unadjusted error without current injection — –3 — 3 LSB TUE T Total unadjusted error with current injection — –3 — 3 LSB TUE P Total unadjusted error — –3 — 3 LSB -2 — 2 LSB — — — LSB No overload -3 — 3 LSB overload conditions on adjacent channel — — — LSB Input current injection TUEP TUEX Total Unadjusted Error for No overload precise channels, input only CC overload conditions on adjacent pins channel Total Unadjusted Error for CC extended channel, MPC5604E Microcontroller Data Sheet, Rev. 5 42 Freescale Semiconductor Electrical characteristics 1 2 3 4 5 6 7 3.15 VDD = 3.3 V to 3.6 V, TA = –40 to +125 °C, unless otherwise specified and analog input voltage from VAGND to VAREF. ADCClk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the time to load the result register with the conversion result. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC. See Figure 10. Does not include packaging and bonding capacitances Temperature sensor electrical characteristics Table 22. Temperature sensor electrical characteristics Value Symbol 3.16 C Parameter Temperature monitoring range Conditions Unit min typical max — –40 — 150 °C — — 5.14 — mV/°C — CC C — CC C Sensitivity — CC C Accuracy TJ = –40 to 25 °C –10 — 10 °C — CC C TJ = –25 to 125 °C –10 — 10 °C Flash memory electrical characteristics Table 23. Code flash program and erase specifications1 Symbol TDWPRG Parameter Double Word Program5 KB)5, 6 Typical Min Value Value2 (0 Cycles) Initial Max4 Max3 (100000 (100 Cycles) Cycles) Unit — 22 50 500 μs — 1.45 1.65 33 s TBKPRG Bank Program (512 TER8K Sector Erase (8KB) — 0.2 0.4 5.0 s TER16K Sector Erase (16KB) — 0.3 0.5 5.0 s TER32K Sector Erase (32KB) — 0.3 0.6 5.0 s TER64K Sector Erase (64KB) — 0.6 0.9 5.0 s TER128K Sector Erase (128KB) — 0.8 1.3 7.5 s TER512K Bank Erase (512KB) — 4.8 7.6 55 s TPABT Program Abort Latency — — 10 10 μs TEABT Erase Abort Latency — — 30 30 μs MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 43 Electrical characteristics Table 23. Code flash program and erase specifications1 Symbol 1 2 3 4 5 6 Parameter Typical Min Value Value2 (0 Cycles) Initial Max4 Max3 (100000 (100 Cycles) Cycles) Unit TEABT Erase Suspend Latency — — 30 30 μs TEABT Erase Suspend Request Rate 10 — — — ms NER Endurance (8KB, 16KB sectors) Endurance (32KB, 64KB sectors) Endurance (128KB sectors) 100 10 1 — — — Kcycles TDR Data Retention at 1K cycles Data Retention at 10K cycles Data Retention at 100K cycles 20 10 5 — — — Years TBC = To be confirmed Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. Actual hardware programming times. This does not include software overhead. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). Table 24. Data flash program and erase specifications1 Symbol 1 2 Parameter Typical Min Value Value2 (0 Cycles) Initial Max4 Max3 (100000 (100 Cycles) Cycles) Unit TDWPRG Word Program5 — 30 TBC TBC μs TBKPRG Bank Program (64 KB)5, 6 — 0.49 TBC TBC s TER16K Sector Erase (16KB) — 0.7 TBC TBC s TER512K Bank Erase (64KB) — 1.9 TBC TBC s TPABT Program Abort Latency — — 12 12 μs TEABT Erase Abort Latency — — 30 30 μs TEABT Erase Suspend Latency — — 30 30 μs TEABT Erase Suspend Request Rate 10 — — — ms NER Endurance (16KB sectors) 100 — — — K cycles TDR Data Retention at 1K cycles Data Retention at 10K cycles Data Retention at 100K cycles 20 10 1 — — — Years @85C TBC = To be confirmed Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. MPC5604E Microcontroller Data Sheet, Rev. 5 44 Freescale Semiconductor Electrical characteristics 3 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 5 Actual hardware programming times. This does not include software overhead. 6 Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). 4 Table 25. Flash read access timing Symbol Fmax Fmax 1 C Parameter Maximum working frequency for Code Flash at C given number of WS in worst conditions C Maximum working frequency for Data Flash at given number of WS in worst conditions Conditions1 Max 2 wait states 66 0 wait states 18 8 wait states 66 Unit MHz MHz VDD_HV = 3.3 V ± 10%, TA = –40 to 125 °C, unless otherwise specified MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 45 Electrical characteristics 3.17 3.17.1 AC specifications Pad AC specifications Table 26 gives the AC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IO < 3.6 V) operation. Table 26. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1) Symbol Parameter Pad Tswitchon tr/tf Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition Slope at rising/falling edge Slow Frequency of Operation Freq Current Slew Slew rate at rising edge of current Load drive (pF) Rise/Fall1 (ns) Unit Min Typ Max 25 3 — 40 ns 50 3 — 40 ns 100 3 — 40 ns 200 3 — 40 ns 25 4 — 40 ns 50 6 — 50 ns 100 10 — 75 ns 200 14 — 100 ns 25 — — 4 MHz 50 — — 2 MHz 100 — — 2 MHz 200 — — 2 MHz 25 0.01 — 2 mA/ns 50 0.01 — 2 mA/ns 100 0.01 — 2 mA/ns 200 0.01 — 2 mA/ns MPC5604E Microcontroller Data Sheet, Rev. 5 46 Freescale Semiconductor Electrical characteristics Table 26. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1) Symbol Parameter Pad Tswitchon tr/tf Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition Slope at rising/falling edge Medium Frequency of Operation Freq Current Slew Tswitchon tr/tf Slew rate at rising edge of current Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition Slope at rising/falling edge Fast Frequency of Operation Freq Current Slew Slew rate at rising edge of current Load drive (pF) Rise/Fall1 (ns) Unit Min Typ Max 25 1 — 15 ns 50 1 — 15 ns 100 1 — 15 ns 200 1 — 15 ns 25 2 — 12 ns 50 4 — 25 ns 100 8 — 40 ns 200 14 — 70 ns 25 — — 40 MHz 50 — — 20 MHz 100 — — 13 MHz 200 — — 7 MHz 25 2.5 — 7 mA/ns 50 2.5 — 7 mA/ns 100 2.5 — 7 mA/ns 200 2.5 — 7 mA/ns 25 1 — 6 ns 50 1 — 6 ns 100 1 — 6 ns 200 1 — 6 ns 25 1 — 4 ns 50 1.5 — 7 ns 100 3 — 12 ns 200 5 — 18 ns 25 — — 72 MHz 50 — — 55 MHz 100 — — 40 MHz 200 — — 25 MHz 25 3 — 40 mA/ns 50 3 — 40 mA/ns 100 3 — 40 mA/ns 200 3 40 mA/ns — MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 47 Electrical characteristics Table 26. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1) Symbol Load drive (pF) Parameter Pad Min Typ Max 25 1 — 8 ns tr/tf Slope at rising/falling edge 25 1 — 5 ns TRise/TFall Delay at rising/falling edge 25 3 — 12 ns |TRise - TFall Delay between rising and falling edge 25 0.05 — 1 ns Frequency of Operation 25 — — 50 MHz Slew rate at rising edge of current 25 3 — 25 mA/ns Freq Current Slew 1 Unit Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition Tswitchon Symmetric Rise/Fall1 (ns) Slope at rising/falling edge VDD_HV_IO/2 Pad Data Input Rising Edge Output Delay Falling Edge Output Delay VOH VOL Pad Output Figure 13. Pad output delay MPC5604E Microcontroller Data Sheet, Rev. 5 48 Freescale Semiconductor Electrical characteristics 3.18 AC timing characteristics 3.18.1 Generic timing diagrams The generic timing diagrams in Figure 14 and Figure 15 apply to all I/O pins with pad types fast, slow and medium. See Section 2.2, “Signal descriptions” for the pad type for each pin. CLKOUT VDD_HV_IOx/2 A B I/O OUTPUTS VDD_HV_IOx/2 A—Maximum output delay time B—Minimum output hold time Figure 14. Generic output delay/hold timing CLKOUT VDD_HV_IOx/2 B A I/O INPUTS VDD_HV_IOx/2 A—Minimum input setup time B—Minimum input hold time Figure 15. Generic Input setup/hold timing MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 49 Electrical characteristics 3.18.2 RESET pin characteristics The MPC5604E implements a dedicated bidirectional RESET pin. Figure 16. Start-up reset requirements VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 17. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST MPC5604E Microcontroller Data Sheet, Rev. 5 50 Freescale Semiconductor Electrical characteristics Table 27. RESET electrical characteristics Symbol C Value2 Conditions1 Parameter Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V VOL CC P Output low level Push Pull, IOL = 3 mA, — — 0.1VDD V CL = 25 pF, VDD = 3.3 V ± 10% — — 12 CL = 50 pF, VDD = 3.3 V ± 10% — — 25 CL = 100 pF, VDD = 3.3 V ± 10% — — 40 Output transition time output pin3 MEDIUM configuration Ttr CC D ns WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 500 — — ns VDD = 3.3 V ± 10% 10 — 150 µA |IWPU| CC P Weak pull-up current absolute value 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified All values need to be confirmed during device validation. 3 C includes device and package capacitance (C L PKG < 5 pF). 2 3.18.3 Nexus and JTAG timing Table 28. Nexus debug port timing1 Value No. Symbol C Parameter Unit Min Typ Max 1 tMCYC CC D MCKO Cycle Time 2 — 8 tCYC 2A tMCYCP CC D MCKO cycle period 15 — — ns 2B tMDC CC D 52 % 3 tMDOV CC D MCKO low to MDO data valid2 MCKO duty cycle 48 — –0.1 — 0.22 tMCYC valid2 –0.1 — 0.22 tMCYC –0.1 — 0.22 tMCYC 4 tMSEOV CC D MCKO low to MSEO data 5 tEVTOV CC D MCKO low to EVTO data valid2 6 tTCYC CC D TCK cycle time 50 — — ns 7 tTDC CC D TCK Duty Cycle 40 — 60 % MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 51 Electrical characteristics Table 28. Nexus debug port timing1 (continued) Value No. 8 9 1 2 Symbol C Parameter Unit Min Typ Max tNTDIS CC D TDI data setup time 0.2 — — tTCYC tNTMSS CC D TMS data setup time 0.2 — — tTCYC tNTDIH CC D TDI data hold time 0.1 — — tTCYC tNTMSH CC D TMS data hold time 0.1 — — tTCYC 10 tTDOV CC D TCK low to TDO data valid — — 25 ns 11 tTDOV CC D TCK low to TDO data invalid 0.1 — — tTCYC All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 2A 2B MCKO 3 4 5 MDO MSEO EVTO Output Data Valid Figure 18. Nexus output timing 7 TCK 6 Figure 19. Nexus event trigger and test clock timings MPC5604E Microcontroller Data Sheet, Rev. 5 52 Freescale Semiconductor Electrical characteristics TCK 8 9 TMS, TDI 10 11 TDO Figure 20. Nexus TDI, TMS, TDO Timing 3.18.4 GPIO timing The GPIO specifications for setup time and output valid relative to CLKOUT are the same for all pins on the device regardless of the primary pin function. Table 29. GPIO Timing No. Symbol 1 tREAD 2 tWRITE Characteristic GPIO Read Time GPIO Write Time Min. Max. Unit 5 — tCYC 6 — tCYC MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 53 Electrical characteristics 3.18.5 External interrupt timing (IRQ pin) Table 30. External interrupt timing1 No. Symbol C Parameter Conditions Min Max Unit 1 tIPWL CC D IRQ pulse width low — 4 — tCYC 2 tIPWH CC D IRQ pulse width high — 4 — tCYC 3 tICYC CC D IRQ edge to edge time2 — 4+N3 — tCYC 1 IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 3 N = ISR time to clear the flag 2 IRQ 1 2 3 Figure 21. External interrupt timing 3.18.6 FlexCAN timing Table 31. FlexCAN timing1 1 Num Characteristic Symbol Min. Value Max. Value Unit 1 CTNX Output Valid after CLKOUT Rising Edge (Output Delay) tCANOV — 26.0 ns 2 CNRX Input Valid to CLKOUT Rising Edge (Setup Time) tCANSU — 9.8 ns FlexCAN timing specified at fSYS = 64 MHz, VDD = 1.35 V to 1.65 V, VDDEH = 3.0 V to 5.5 V, VRC33 and VDDPLL = 3.0 V to 3.6 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00. 3.18.7 LINFlex timing Minimum design target for interface frequency is 2 MBit/s. MPC5604E Microcontroller Data Sheet, Rev. 5 54 Freescale Semiconductor Electrical characteristics 3.18.8 DSPI timing Table 32. DSPI timing No. 1 Symbol tSCK CC C D Parameter DSPI cycle time Conditions Min Max Master (MTFE = 0) 62.5 — Slave (MTFE = 0) 128 — 31.25 — Master (MTFE = 1,CPHA=1) ns 2 tCSC CC D CS to SCK delay — 16 — ns 3 tASC CC D After SCK delay — 16 — ns 4 tSDC CC D SCK duty cycle — 5 tA CC D Slave access time SS active to SOUT valid — 40 ns 6 tDIS CC D Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 10 ns 7 tPCSC CC D PCSx to PCSS time — 13 — ns 8 tPASC CC D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 12 — Slave 2 — 9 10 11 12 tSUI tHI tSUO tHO CC D 0.4 * tSCK 0.6 * tSCK Data setup time for inputs CC D Master (MTFE = 1, CPHA = 1) 12 — Master (MTFE = 0) –5 — Slave 4 — Data hold time for inputs CC D Master (MTFE = 1, CPHA = 1) –5 — Master (MTFE = 0) — 4 Slave — 33 Data valid (after SCK edge) D ns NA1 Master (MTFE = 1, CPHA = 0) CC ns NA1 Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) — 11 Master (MTFE = 0) –2 — Slave 6 — Data hold time for outputs ns NA1 Master (MTFE = 1, CPHA = 0) –2 ns ns NA1 Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) 1 Unit — This mode is not feasible at 32 MHz. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 55 Electrical characteristics 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 SOUT First Data 11 Data Last Data Figure 22. DSPI classic SPI timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Figure 23. DSPI classic SPI timing — Master, CPHA = 1 MPC5604E Microcontroller Data Sheet, Rev. 5 56 Freescale Semiconductor Electrical characteristics 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Figure 24. DSPI classic SPI timing — Slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Figure 25. DSPI classic SPI timing — Slave, CPHA = 1 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 57 Electrical characteristics 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Figure 26. DSPI modified transfer format timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Figure 27. DSPI modified transfer format timing — Master, CPHA = 1 MPC5604E Microcontroller Data Sheet, Rev. 5 58 Freescale Semiconductor Electrical characteristics 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) First Data SOUT Data 6 Last Data 10 9 Data First Data SIN 12 11 5 Last Data Figure 28. DSPI modified transfer format timing — Slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 First Data SOUT 9 SIN Data Last Data Data Last Data 6 10 First Data Figure 29. DSPI modified transfer format timing — Slave, CPHA = 1 MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 59 Electrical characteristics 8 7 PCSS PCSx Figure 30. DSPI PCS Strobe (PCSS) timing 3.18.9 Video interface timing Table 33 details the MPC5604E’s video encoder block’s pixel input clocking requirement. Table 33. Input pixel clock characteristics No. Parameter Min Max Unit 1 PDI Clock Period 10 — ns 2 PDI Clock Duty Cycle 50 50 % 3 Input setup time 2 — ns 4 Input Hold Time 2 — ns 5 Input Pixel Clock Slew Rate — 2 ns VCLKIN 1 3 4 VID_DATA[15:0] VID_LINE_V Input Data Valid VID_FRAME_V Figure 31. Video interface timing MPC5604E Microcontroller Data Sheet, Rev. 5 60 Freescale Semiconductor Electrical characteristics 3.18.10 Fast ethernet interface MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics. 3.18.10.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency. Table 34. MII receive signal timing No. Parameter Min Max Unit 1 Rx Clock Period 40 — ns 2 RXD[3:0], RX_DV, RX_ER to RX_CLK setup 5 — ns 3 RX_CLK to RXD[3:0], RX_DV, RX_ER hold 5 — ns 4 Rx Clock Duty Cycle 40 60 % 4 RX_CLK (input) 1 RXD[3:0] (inputs) RX_DV RX_ER 2 3 Figure 32. MII receive signal timing diagram 3.18.10.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency. The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Ethernet chapter for details of this option and how to enable it. Table 35. MII transmit signal timing1 No. 1 Parameter Min Max Unit 5 TX Clock Period 40 — ns 6 TX_CLK to TXD[3:0], TX_EN, TX_ER invalid 5 — ns 7 TX_CLK to TXD[3:0], TX_EN, TX_ER valid — 25 ns 8 TX Clock Duty Cycle 40 60 % Output pads configured with SRC = 0b11. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 61 Electrical characteristics TX_CLK (input) 6 TXD[3:0] (outputs) TX_EN TX_ER 7 Figure 33. MII transmit signal timing diagram 3.18.10.3 MII async inputs signal timing (CRS and COL) Table 36. MII async inputs signal timing1 No. 9 1 Parameter Min Max Unit 1.5 — TX_CLK period CRS, COL minimum pulse width Output pads configured with SRC = 0b11. CRS, COL 9 Figure 34. MII async inputs timing diagram 3.18.10.4 MII serial management channel timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 5 MHz. Table 37. MII serial management channel timing (MDIO and MDC) No. Parameter Min Max Unit 1 MDIO Input delay setup 28 — ns 2 MDIO Input delay hold 0 — ns 3 MDIO Output delay valid — 25 ns 4 MDIO Output delay Invalid 0 — ns 5 MDC clock period 100 — ns 6 MDC Duty Cycle 40 60 % MPC5604E Microcontroller Data Sheet, Rev. 5 62 Freescale Semiconductor Electrical characteristics 3.18.11 I2C timing Table 38. I2C SCL and SDA input timing specifications Value No. 1 Symbol Parameter Unit Min Max 1 — D Start condition hold time 2 — IP bus cycle1 2 — D Clock low time 8 — IP bus cycle1 4 — D Data hold time 0.0 — ns 6 — D Clock high time 4 — IP bus cycle1 7 — D Data setup time 0.0 — ns 8 — D Start condition setup time (for repeated start condition only) 2 — IP bus cycle1 9 — D Stop condition setup time 2 — IP bus cycle1 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device. It is equal to the system clock (Sys_clk). Table 35. I2C SCL and SDA output timing specifications Value No. Symbol Parameter Unit Min Max 11 — D Start condition hold time 6 — IP bus cycle2 21 — D Clock low time 10 — IP bus cycle1 33 — D SCL/SDA rise time — 99.6 ns 41 — D Data hold time 7 — IP bus cycle1 51 — D SCL/SDA fall time — 99.5 ns 1 6 — D Clock high time 10 — IP bus cycle1 71 — D Data setup time 2 — IP bus cycle1 81 — D Start condition setup time (for repeated start condition only) 20 — IP bus cycle1 91 — D Stop condition setup time 10 — IP bus cycle1 1 Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR. 2 Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device. 3 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values. MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 63 Electrical characteristics 2 5 6 SCL 3 1 8 7 4 9 SDA Figure 36. I2C input/output timing 3.18.12 SAI timing All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device. Table 39. Master Mode SAI Timing Value No. Parameter Unit Min Max Operating voltage 2.7 3.6 S1 SAI_MCLK cycle time 40 — S2 SAI_MCLK pulse width high/low 45% 55% S3 SAI_BCLK cycle time 80 — S4 SAI_BCLK pulse width high/low 45% 55% S5 SAI_BCLK to SAI_FS output valid — 15 S6 SAI_BCLK to SAI_FS output invalid 0 — S7 SAI_BCLK to SAI_TXD valid — 15 S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 28 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK — ns 0 V ns MCLK period BCLK period ns ns ns ns MPC5604E Microcontroller Data Sheet, Rev. 5 64 Freescale Semiconductor Electrical characteristics Figure 37. SAI timing master modes Table 40. Slave Mode SAI Timing Value No. Parameter Unit Min Max Operating voltage 2.7 3.6 S11 SAI_BCLK cycle time (input) 80 — S12 SAI_BCLK pulse width high/low (input) 45% 55% S13 SAI_FS input setup before SAI_BCLK 10 — S14 SAI_FS input hold after SAI_BCLK 2 — S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 28 S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — S17 SAI_RXD setup before SAI_BCLK 10 — S18 SAI_RXD hold after SAI_BCLK 2 — V ns BCLK period ns ns ns ns ns ns MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 65 Electrical characteristics Figure 38. SAI timing slave modes MPC5604E Microcontroller Data Sheet, Rev. 5 66 Freescale Semiconductor Package mechanical data 4 Package mechanical data 4.1 100 LQFP mechanical outline drawing MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 67 Package mechanical data Figure 39. 100 LQFP package mechanical drawing (part 1) MPC5604E Microcontroller Data Sheet, Rev. 5 68 Freescale Semiconductor Package mechanical data Figure 40. 100 LQFP package mechanical drawing (part 2) MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 69 Package mechanical data Figure 41. 100 LQFP package mechanical drawing (part 3) MPC5604E Microcontroller Data Sheet, Rev. 5 70 Freescale Semiconductor Package mechanical data 4.2 64 LQFP mechanical outline drawing Figure 42. 64 LQFP package mechanical drawing (part 1) MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 71 Package mechanical data Figure 43. 64LQFP package mechanical drawing (part 2) MPC5604E Microcontroller Data Sheet, Rev. 5 72 Freescale Semiconductor Package mechanical data Figure 44. 64LQFP package mechanical drawing (part 3) MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 73 Ordering information 5 Ordering information MPC 56 0 4 E E F1 M LH R Qualification status Automotive platform (56 = Power architecture in 90 nm) Core version (0 = e200z0h) Config Product (E = Family) EEPROM (E = Data Flash) Optional fields Temperature spec Package code (LH = 64LQFP) Tape and Reel (R = Tape and reel) Qualification status Config 4 = SAI + ENET + MJPEG 3 = SAI + ENET 2 = ENET M = MC status S = Auto qualified P = PC status Optional fields F = ATMC 1 = Maskset revision 1 2 = Maskset revision 2 Tempearture spec C = - 40 to 85 oC V = - 40 to 105 oC M = - 40 to 125 oC Figure 45. Commercial product code structure Table 5-41. Orderable part number summary Part number1 Flash/SRAM Package Speed SPC5604EEF1MLHR and SPC5604EEF1MLHR SPC5603EEF1MLHR and SPC5603EEF1MLHR Key Features SAI + ENET + MJPEG 512K / 96K 64 LQFP 64 MHz SAI + ENET SPC5602EEF1MLHR and SPC5602EEF1MLHR 1 ENET All packaged devices are PPC, rather than MPC or SPC, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete. Not all configurations are available in the PPC parts. MPC5604E Microcontroller Data Sheet, Rev. 5 74 Freescale Semiconductor Document revision history 6 Document revision history Table 42. Revision history Revision Date 1 15 Feb 2011 Initial Release 13 June 2011 • In the Recommended operating conditions table, changed the external supply voltage changed from 1.14 V to 1.15 V • Added a footnote in the Device Summary table • Changed the description of VDD_HV_S_BALLAST0 in the Supply pins table 1 Nov 2011 • Editorial changes and improvements • In the Low voltage monitor electrical characteristics table, changed the marking of VPORUP from P to D • In the DC electrical characteristics table, changed the IOL of the Medium, low level output voltage to 2 mA. From the same table, removed VOL_SYM and VOH_SYM. Revised the IPU and IPD • In the Main oscillator electrical characteristics table, changed the minimum value of transconductance to 4 mA/V • In the 16 MHz RC oscillator electrical characteristics table, changed the marking of fRC from P to C and revised its minimum and value. • In the ADC conversion characteristics table, changed the minimum and maximum value of TUE from TBD to -3 and 3 • In the Pin muxing table, C5 port ABS[2] assignment changed from SIUL to MC_RGM • IRevised the 64-pin and 100-pin package pinouts and added a footnote. • In the Supply pins table, revised the description of ADC0 pins • In the Supply pins table, added a column Port Pin and renamed the Symbol column • IRemoved Power Supply segment table • In the Pin Muxing table, clarified the peripherals in the following port pins: C5, A3, A8, A10, A12, A15, C3, C4, C5, C6, C12 • In the Low voltage monitor electrical characteristics table, changed the maximum value of VMLVDDOK_H • In the ADC conversion characteristics, changed the ADC sampling time to 500 ns 3.1 2 Dec 2011 • Inserted values for TBDs in the table EMI Testing Specifications • From Supply Pins table, removed VVD_HV_ADV0 • In the PLLMRFM electrical specifications table, added the value of Self-clocked mode frequency • In the ADC conversion characteristics table, added the value of INJ 4 23 Jan 2012 • System Pin table, swapped the description of XTAL and EXTAL 25 Mar 2015 On the first page: • added 32 external interrupts for 100-pin LQFP and updated 22 external interrupts for 64-pin LQFP. • changed "8 input channels" to "7 input channels". • changed "4 internal connection..." to "3 internal connection...". • Removed “1 x VGate Current”. In Table 1., “Device summary”, removed VGate current from the equation for ADC (10-bit). In Figure 1., “MPC5604E block diagram”: changed "4+4 channels" to "4+3 channels". Updated Table 2., “Supply pins”. In Table 4., “Pin muxing”, function of port pins B4, B13, B14, B15, C0, C1, C9, C15, D8, D13, D14, and E2 changed from GPIO to GPI. Added new section - Section 5, “Ordering information” and Table 5-41., “Orderable part number summary”. In Figure 2., “64-pin LQFP pinout (top view)”, changed VSS (pin 47) to VSS_HV. In Figure 3., “100-pin LQFP pinout (top view)”, changed VSS (pin 74) to VSS_HV. 2 3 5 Substantive changes MPC5604E Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 75 How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc. Document Number: MPC5604E Rev. 5 Mar 2015