Freescale Semiconductor Technical Data Document Number: MRF6S18060N Rev. 4, 12/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF6S18060NR1 MRF6S18060NBR1 Designed for GSM and GSM EDGE base station applications with frequencies from 1800 to 2000 MHz. Suitable for TDMA, CDMA, and multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 Watts CW, f = 1990 MHz Power Gain — 15 dB Drain Efficiency - 50% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 26 Volts, IDQ = 450 mA, Pout = 25 Watts Avg., Full Frequency Band (1805- 1880 MHz or 1930- 1990 MHz) Power Gain — 15.5 dB Spectral Regrowth @ 400 kHz Offset = - 62 dBc Spectral Regrowth @ 600 kHz Offset = - 76 dBc EVM — 2% rms • Capable of Handling 5:1 VSWR, @ 26 Vdc, 1990 MHz, 60 Watts CW Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • 225°C Capable Plastic Package • N Suffix Indicates Lead - Free Terminations. RoHS Compliant. • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 1800- 2000 MHz, 60 W, 26 V GSM/GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 PLASTIC MRF6S18060NR1 CASE 1484 - 04, STYLE 1 TO - 272 WB - 4 PLASTIC MRF6S18060NBR1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +68 Vdc Gate - Source Voltage VGS - 0.5, +12 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 60 W CW Case Temperature 77°C, 25 W CW RθJC 0.81 0.95 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2006, 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF6S18060NR1 MRF6S18060NBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 26 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 200 μAdc) VGS(th) 1 2 3 Vdc Gate Quiescent Voltage (VDD = 26 Vdc, ID = 600 mAdc, Measured in Functional Test) VGS(Q) 2 2.8 4 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.24 — Vdc Crss — 1.5 — pF Off Characteristics On Characteristics Dynamic Characteristics Reverse Transfer Capacitance (1) (VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W CW, f = 1990 MHz Power Gain Gps 14 15 17 dB Drain Efficiency ηD 48 50 — % Input Return Loss IRL — - 12 -9 dB P1dB 60 65 — W Pout @ 1 dB Compression Point Typical GSM EDGE Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 450 mA, Pout = 25 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz, EDGE Modulation Power Gain Drain Efficiency Gps — 15.5 — dB ηD — 32 — % Error Vector Magnitude EVM — 2 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 62 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 76 — dBc Typical CW Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W, 1805 - 1880 MHz or 1930 - 1990 MHz Power Gain Gps — 15 — dB Drain Efficiency ηD — 50 — % Input Return Loss IRL — - 12 — dB P1dB — 65 — W Pout @ 1 dB Compression Point, CW 1. Part is internally matched both on input and output. MRF6S18060NR1 MRF6S18060NBR1 2 RF Device Data Freescale Semiconductor VBIAS VSUPPLY R1 R2 C1 C2 Z6 C9 + C10 C11 Z13 C7 R3 RF INPUT Z8 Z1 Z2 Z3 Z4 Z5 Z9 Z10 Z11 Z7 Z12 RF OUTPUT C4 C8 C3 Z1 Z2* Z3* Z4* Z5 Z6 Z7, Z8 C5 DUT C6 0.250″ x 0.083″ Microstrip 0.950″ x 0.083″ Microstrip 0.250″ x 0.083″ Microstrip 0.315″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 0.680″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z12 Z13 PCB 0.485″ x 1.000″ Microstrip 0.500″ x 0.083″ Microstrip 0.895″ x 0.083″ Microstrip 0.250″ x 0.083″ Microstrip 0.200″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning Figure 1. MRF6S18060NR1(NBR1) Test Circuit Schematic — 1900 MHz Table 6. MRF6S18060NR1(NBR1) Test Circuit Component Designations and Values — 1900 MHz Part Description Part Number Manufacturer C1, C2, C3, C4 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C5 1.5 pF Chip Capacitor ATC100B1R5BT500XT ATC C6 1.8 pF Chip Capacitor ATC100B1R8BT500XT ATC C7, C8 1 pF Chip Capacitors ATC100B1R0BT500XT ATC C9, C10 10 μF Chip Capacitors C5750X5R1H106MT TDK C11 220 μF, 63 V Electrolytic Capacitor, Radial 2222 - 136 - 68221 Vishay R1, R2 10 kW, 1/4 W Chip Resistors CRCW12061002FKEA Vishay R3 10 W, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 3 C11 VGS R1 VDS R2 C2 C1 C9 C10 R3 C5 C6 CUT OUT AREA C3 C7 C8 C4 MRF6S18060N/NB Rev. 0 Figure 2. MRF6S18060NR1(NBR1) Test Circuit Component Layout — 1900 MHz MRF6S18060NR1 MRF6S18060NBR1 4 RF Device Data Freescale Semiconductor Gps, POWER GAIN (dB) 17 ηD 57 0 55 −5 53 16 Gps 51 15 IRL 49 14 ηD, DRAIN EFFICIENCY (%) 18 −10 −15 −20 IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS — 1900 MHz VDD = 26 Vdc IDQ = 600 mA 13 1900 1920 1940 1960 1980 47 2020 2000 −25 f, FREQUENCY (MHz) Gps, POWER GAIN (dB) 17 ηD 16 42 0 40 −5 38 Gps 36 15 IRL 14 34 ηD, DRAIN EFFICIENCY (%) 18 −10 −15 −20 IRL, INPUT RETURN LOSS (dB) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 60 Watts VDD = 26 Vdc IDQ = 600 mA 13 1900 1920 1940 1960 1980 32 2020 2000 −25 f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 30 Watts 17 17 IDQ = 600 mA f = 1960 MHz IDQ = 900 mA 750 mA 16 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 16 600 mA 15 450 mA 14 300 mA 15 VDD = 32 V 14 26 V 13 13 VDD = 26 Vdc f = 1960 MHz 24 V 12 12 1 10 100 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. Power Gain versus Output Power Figure 6. Power Gain versus Output Power 100 MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1900 MHz 70 Gps 60 25_C 15 50 85_C 14 40 85_C ηD 13 30 12 20 VDD = 26 Vdc IDQ = 600 mA f = 1960 MHz 11 10 1 10 0 100 10 25 W Avg. 2 1.5 10 W Avg. 1 1900 1920 1940 1960 1980 2000 TC = −30_C, 25_C 50 85_C 40 ηD 30 6 85_C 25_C 4 20 −30_C 2 10 EVM 0 100 0 10 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) Figure 8. EVM versus Frequency 1 −55 2020 Pout = 35 W Avg. SR @ 400 kHz −60 25 W Avg. −65 10 W Avg. VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation −70 35 W Avg. SR @ 600 kHz −75 25 W Avg. 10 W Avg. −80 1920 1940 1960 1980 2000 Pout, OUTPUT POWER (WATTS) AVG. f, FREQUENCY (MHz) Figure 9. EVM and Drain Efficiency versus Output Power Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −45 −55 VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation −50 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) 2.5 Figure 7. Power Gain and Drain Efficiency versus CW Output Power 60 8 VDD = 26 Vdc IDQ = 450 mA 3 f, FREQUENCY (MHz) VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation 10 Pout = 35 W Avg. 3.5 Pout, OUTPUT POWER (WATTS) CW 12 EVM, ERROR VECTOR MAGNITUDE (% rms) 4 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 16 25_C ηD, DRAIN EFFICIENCY (%) TC = −30_C −30_C EVM, ERROR VECTOR MAGNITUDE (% rms) 17 −55 TC = −30_C −60 −65 25_C 85_C −70 −75 VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation −60 TC = 85_C −65 25_C −70 −30_C −75 −80 −85 0 10 20 30 40 50 60 0 10 20 30 40 50 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 11. Spectral Regrowth at 400 kHz versus Output Power Figure 12. Spectral Regrowth at 600 kHz versus Output Power 60 MRF6S18060NR1 MRF6S18060NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 108 MTTF (HOURS) 107 106 105 104 90 110 130 150 170 190 210 230 250 This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 60 W CW, and ηD = 50%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 13. MTTF Factor versus Junction Temperature GSM TEST SIGNAL −10 −20 Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 −90 400 kHz 400 kHz 600 kHz 600 kHz −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 14. EDGE Spectrum MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 7 Zo = 10 Ω f = 1930 MHz Zsource f = 1990 MHz f = 1990 MHz f = 1930 MHz Zload VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W CW f MHz Zsource Ω Zload Ω 1930 8.00 - j6.48 2.83 - j5.13 1960 7.57 - j6.82 2.63 - j4.84 1990 7.06 - j7.06 2.44 - j4.54 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance — 1900 MHz MRF6S18060NR1 MRF6S18060NBR1 8 RF Device Data Freescale Semiconductor VBIAS VSUPPLY R1 R2 C1 C2 Z6 C10 C11 + C12 Z14 R3 RF INPUT Z8 Z9 Z10 Z11 Z12 Z13 RF OUTPUT C6 Z1 Z2 Z3 Z4 Z5 Z7 C4 C8 C3 C5 Z1 Z2* Z3* Z4* Z5 Z6 Z7, Z8 C9 DUT C7 0.250″ x 0.083″ Microstrip 0.320″ x 0.083″ Microstrip 0.660″ x 0.083″ Microstrip 0.535″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 0.860″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z12* Z13 Z14 PCB 0.485″ x 1.000″ Microstrip 0.420″ x 0.083″ Microstrip 0.230″ x 0.083″ Microstrip 0.745″ x 0.083″ Microstrip 0.250″ x 0.083″ Microstrip 0.640″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning Figure 16. MRF6S18060NR1(NBR1) Test Circuit Schematic — 1800 MHz Table 7. MRF6S18060NR1(NBR1) Test Circuit Component Designations and Values — 1800 MHz Part Description Part Number Manufacturer C1, C2, C3, C4 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C5 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C6, C9 0.5 pF Chip Capacitors ATC100B0R5BT500XT ATC C7 2.2 pF Chip Capacitor ATC100B2R2BT500XT ATC C8 1.5 pF Chip Capacitor ATC100B1R5BT500XT ATC C10, C11 10 μF Chip Capacitors C5750X5R1H106MT TDK C12 220 μF, 63 V Electrolytic Capacitor, Radial 2222 - 136 - 68221 Vishay R1, R2 10 kW, 1/4 W Chip Resistors CRCW12061002FKEA Vishay R3 10 W, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 9 VGS C12 R1 VDS R2 C2 C1 C10 C11 R3 C3 C5 C7 CUT OUT AREA C6 C8 C9 C4 MRF6S18060N/NB Rev. 0 Figure 17. MRF6S18060NR1(NBR1) Test Circuit Component Layout — 1800 MHz MRF6S18060NR1 MRF6S18060NBR1 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1800 MHz 17 57 0 55 −4 15 53 14 51 IRL 13 49 −8 −12 −16 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) Gps ηD, DRAIN EFFICIENCY (%) ηD 16 VDD = 26 Vdc IDQ = 600 mA 12 1780 1800 1820 1840 1860 1880 1900 47 1920 −20 f, FREQUENCY (MHz) 17 0 41 −4 15 39 ηD 37 14 IRL 13 35 ηD, DRAIN EFFICIENCY (%) Gps 16 Gps, POWER GAIN (dB) 43 −8 −12 −16 IRL, INPUT RETURN LOSS (dB) Figure 18. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 60 Watts VDD = 26 Vdc IDQ = 600 mA 12 1760 1780 1800 1820 1840 1860 1880 1900 33 1920 −20 f, FREQUENCY (MHz) Figure 19. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 30 Watts 4 Pout = 35 W Avg. 3.5 3 VDD = 26 Vdc IDQ = 450 mA 2.5 2 25 W Avg. 1.5 15 W Avg. 1 0.5 1780 1800 1820 1840 1860 1880 1900 1920 10 50 VDD = 26 Vdc IDQ = 450 mA f = 1860 MHz EDGE Modulation 8 40 ηD 6 30 4 TC = 25_C 2 EVM 0 1 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 20. EVM versus Frequency Figure 21. EVM and Drain Efficiency versus Output Power 20 10 ηD, DRAIN EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% rms) EVM, ERROR VECTOR MAGNITUDE (% rms) 4.5 0 100 MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 11 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TYPICAL CHARACTERISTICS — 1800 MHz −50 Pout = 35 W Avg. −55 −60 25 W Avg. SR @ 400 kHz −65 15 W Avg. VDD = 26 Vdc IDQ = 450 mA EDGE Modulation −70 35 W Avg. −75 −80 1780 25 W Avg. SR @ 600 kHz 10 W Avg. 1800 1820 1840 1860 1880 1900 1920 f, FREQUENCY (MHz) Figure 22. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −60 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) −45 −50 TC = 25_C −55 −60 −65 VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation −70 −75 −65 TC = 25_C −70 −75 VDD = 26 Vdc IDQ = 450 mA f = 1960 MHz EDGE Modulation −80 −85 0 10 20 30 40 50 60 0 10 20 30 40 50 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 23. Spectral Regrowth at 400 kHz versus Output Power Figure 24. Spectral Regrowth at 600 kHz versus Output Power 60 MRF6S18060NR1 MRF6S18060NBR1 12 RF Device Data Freescale Semiconductor Zo = 10 Ω f = 1880 MHz f = 1805 MHz Zload f = 1805 MHz f = 1880 MHz Zsource VDD = 26 Vdc, IDQ = 600 mA, Pout = 65 W CW f MHz Zsource Ω Zload Ω 1805 4.16 - j7.56 3.29 - j4.91 1840 3.89 - j7.40 3.10 - j4.69 1880 3.56 - j7.21 2.88 - j4.45 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 25. Series Equivalent Source and Load Impedance — 1800 MHz MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 13 PACKAGE DIMENSIONS MRF6S18060NR1 MRF6S18060NBR1 14 RF Device Data Freescale Semiconductor MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 15 MRF6S18060NR1 MRF6S18060NBR1 16 RF Device Data Freescale Semiconductor MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 17 MRF6S18060NR1 MRF6S18060NBR1 18 RF Device Data Freescale Semiconductor MRF6S18060NR1 MRF6S18060NBR1 RF Device Data Freescale Semiconductor 19 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 4 Dec. 2008 Description • Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 1, 2 • Removed Total Device Dissipation from Max Ratings table as data was redundant (information already provided in Thermal Characteristics table), p. 1 • Changed Storage Temperature Range in Max Ratings table from - 65 to +175 to - 65 to +150 for standardization across products, p. 1 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1 • Corrected VDS to VDD in the RF test condition voltage callout for VGS(Q), and added “Measured in Functional Test”, On Characteristics table, p. 2 • Removed Forward Transconductance from On Characteristics table as it no longer provided usable information, p. 2 • Updated Part Numbers in Tables 6, 7, Component Designations and Values, to latest RoHS compliant part numbers, p. 3, 9 • Removed lower voltage tests from Fig. 6, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 5 • Replaced Fig. 13, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed operating characteristics and location of MTTF calculator for device, p. 7 • Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 14 - 16. Added pin numbers 1 through 4 on Sheet 1. • Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 17 - 19. Added pin numbers 1 through 4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations. • Added Product Documentation and Revision History, p. 20 MRF6S18060NR1 MRF6S18060NBR1 20 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006, 2008. All rights reserved. MRF6S18060NR1 MRF6S18060NBR1 Document RF DeviceNumber: Data MRF6S18060N Rev. 4, 12/2008 Freescale Semiconductor 21