Freescale Semiconductor Technical Data Document Number: MRF5S9101 Rev. 2, 7/2005 RF Power Field Effect Transistors MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 N - Channel Enhancement - Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 869 to 960 MHz. Suitable for multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 26 Volts, IDQ = 700 mA, Pout = 100 Watts CW, Full Frequency Band (869 - 894 MHz and 921 - 960 MHz) Power Gain - 17.5 dB Drain Efficiency - 60% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 650 mA, Pout = 50 Watts Avg., Full Frequency Band (869 - 894 MHz and 921 - 960 MHz) Power Gain — 18 dB Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 78 dBc EVM — 2.3% rms • Capable of Handling 10:1 VSWR, @ 26 Vdc, @ 100 W CW Output Power, @ f = 960 MHz • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • N Suffix Indicates Lead - Free Terminations • 200°C Capable Plastic Package • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 869 - 960 MHz, 100 W, 26 V GSM/GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 PLASTIC MRF5S9101NR1(MR1) CASE 1484 - 02, STYLE 1 TO - 272 WB - 4 PLASTIC MRF5S9101NBR1(MBR1) Table 1. Maximum Ratings Rating Symbol Value Unit Drain- Source Voltage VDSS - 0.5, +68 Vdc Gate- Source Voltage VGS - 0.5, +15 Vdc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 427 2.44 W W/°C Storage Temperature Range Tstg - 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Value (1,2) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 100 W CW Case Temperature 80°C, 50 W CW RθJC 0.41 0.47 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. Freescale Semiconductor, Inc., 2005. All rights reserved. RF Device Data Freescale Semiconductor MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1C (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 µAdc Zero Gate Voltage Drain Leakage Current (VDS = 26 Vdc, VGS = 0 Vdc) IDSS — — 1 µAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 µAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 400 µAdc) VGS(th) 2 2.8 3.5 Vdc Gate Quiescent Voltage (VDS = 26 Vdc, ID = 700 mAdc) VGS(Q) — 3.7 — Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.21 0.3 Vdc Forward Transconductance (VDS = 10 Vdc, ID = 6 Adc) gfs — 7 — S Output Capacitance (VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 70 — pF Reverse Transfer Capacitance (VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.2 — pF On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, Pout = 100 W, IDQ = 700 mA, f = 960 MHz Power Gain Gps 16 17.5 19 dB Drain Efficiency ηD 56 60 — % Input Return Loss IRL — - 15 -9 dB P1dB 100 110 — W Pout @ 1 dB Compression Point, CW 1. Part is internally input matched. (continued) MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, Pout = 50 W Avg., IDQ = 650 mA, 869 MHz<Frequency<894 MHz, 920 MHz<Frequency<960 MHz Power Gain Gps — 18 — dB Drain Efficiency ηD — 42 — % Error Vector Magnitude EVM — 2.3 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 78 — dBc MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 3 Z11 VBIAS C1 VSUPPLY + R1 R2 C4 C7 C8 Z13 C5 C2 C21 R3 C16 RF INPUT C13 Z2 DUT Z10 Z9 C19 Z8 C10 Z7 RF OUTPUT C14 Z3 Z4 Z5 C15 C18 C20 Z6 Z1 C11 C12 C17 Z12 C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.698″ x 0.827″ Microstrip 0.720″ x 0.788″ Microstrip 0.195″ x 0.087″ Microstrip 0.524″ x 0.087″ Microstrip 0.233″ x 0.087″ Microstrip 0.560″ x 0.087″ Microstrip 0.095″ x 0.827″ Microstrip 0.472″ x 0.087″ Microstrip 0.384″ x 0.087″ Microstrip Z10 Z11, Z12* Z13* PCB C6 C3 1.491″ x 0.087″ Microstrip 1.6″ x 0.089″ Microstrip (quarter wave length for supply purpose) 1.2″ x 0.059″ Microstrip (quarter wave length for bias purpose) Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning Figure 1. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Schematic Table 6. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C3 4.7 mF Chip Capacitors (2220) GRM55ER7H475KA01 Murata C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC C7, C8, C9 33 pF 100B Chip Capacitors 100B330JW ATC C10, C11 22 pF 100B Chip Capacitors 100B220GW ATC C12, C13 10 pF 100B Chip Capacitors 100B100GW ATC C14, C15, C16, C17 8.2 pF 100B Chip Capacitors 100B8R2CW ATC C18 5.6 pF 100B Chip Capacitor 100B5R6CW ATC C19 4.7 pF 100B Chip Capacitor 100B4R7BW ATC C20 3.9 pF 100B Chip Capacitor 100B3R9BW ATC C21 220 mF, 50 V Electrolytic Capacitor, Axial 516D227M050NP7B Sprague R1, R2 10 kW, 1/4 W Chip Resistors (1206) R3 10 W, 1/4 W Chip Resistor (1206) MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 4 RF Device Data Freescale Semiconductor C21 VDD VGG R1 C1 C4 C7 C8 C2 C5 R2 C10 C19 C17 CUT OUT AREA R3 C16 C13 C14 C11 C18 C20 C12 C15 C3 MRF5S9101N 900 MHz Rev 2 C9 C6 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 2. MRF5S9101NR1(NBR1)/MR1(MBR1) 900 MHz Test Circuit Component Layout MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS - 900 MHz 18 G ps , POWER GAIN (dB) 17 60 ηD 16 50 15 40 VDD = 26 Vdc IDQ = 700 mA 14 30 0 13 12 −15 IRL ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 70 Gps −30 11 10 860 880 900 920 940 960 980 1000 −45 1020 f, FREQUENCY (MHz) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts CW 19 G ps , POWER GAIN (dB) 18 45 Gps 17 40 35 16 ηD 15 30 VDD = 26 Vdc IDQ = 700 mA 14 −8 −12 13 IRL 12 −16 11 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 50 −20 10 860 880 900 920 940 960 980 1000 −24 1020 f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts CW 19 19 IDQ = 1500 mA VDD = 12 V 18 17 G ps , POWER GAIN (dB) G ps , POWER GAIN (dB) 18 700 mA 1300 mA 16 500 mA VDD = 26 Vdc f = 940 MHz 1100 mA 900 mA 15 17 16 32 V 15 10 100 1000 28 V 16 V 14 14 1 24 V 20 V 300 mA 0 20 40 60 80 100 120 140 160 180 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. Power Gain versus Output Power Figure 6. Power Gain versus Output Power 200 MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 6 RF Device Data Freescale Semiconductor 20 70 60 25_C TC = −30_C 85_C 18 50 25_C 17 40 85_C 16 30 ηD 15 20 VDD = 26 Vdc IDQ = 700 mA f = 940 MHz 14 13 1 10 10 0 1000 100 3.5 VDD = 28 Vdc IDQ = 650 mA 3 Pout = 50 W Avg. 2.5 2 40 W Avg. 1.5 25 W Avg. 1 0.5 0 910 900 920 930 940 950 960 970 Pout, OUTPUT POWER (WATTS) CW f, FREQUENCY (MHz) Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 8. Error Vector Magnitude versus Frequency EVM, ERROR VECTOR MAGNITUDE (% rms) 9 980 60 VDD = 28 Vdc IDQ = 650 mA f = 940 MHz 8 50 6 40 5 30 TC = 85_C ηD 25_C 3 20 −30_C EVM 2 ηD, DRAIN EFFICIENCY (%) G ps , POWER GAIN (dB) 19 ηD, DRAIN EFFICIENCY (%) TC = −30_C Gps EVM, ERROR VECTOR MAGNITUDE (% rms) TYPICAL CHARACTERISTICS - 900 MHz 10 0 0 10 1 100 Pout, OUTPUT POWER (WATTS) AVG. −45 SR 400 kHz −63 Pout = 50 W Avg. −68 25 W Avg. −73 SR 600 kHz 40 W Avg. 40 W Avg. 25 W Avg. −78 VDD = 28 Vdc IDQ = 650 mA f = 940 MHz 50 W Avg. −83 900 910 920 930 940 950 SPECTRAL REGROWTH @ 400 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz and 600 kHz (dBc) Figure 9. Error Vector Magnitude and Drain Efficiency versus Output Power VDD = 28 Vdc IDQ = 650 mA f = 940 MHz −50 TC = 85_C −55 25_C −60 −30_C −65 −70 −75 −80 960 970 980 0 10 20 30 40 50 60 70 80 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 11. Spectral Regrowth at 400 kHz versus Output Power 90 MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS - 900 MHz SPECTRAL REGROWTH @ 600 kHz (dBc) −65 VDD = 28 Vdc IDQ = 650 mA f = 940 MHz −70 TC = 85_C 25_C −75 −30_C −80 −85 0 10 20 30 40 50 60 70 80 90 Pout, OUTPUT POWER (WATTS) AVG. Figure 12. Spectral Regrowth @ 600 kHz versus Output Power MTTF FACTOR (HOURS X AMPS2) 1.E+10 1.E+09 1.E+08 1.E+07 90 100 110 120 130 140 150 160 170 180 190 200 210 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 13. MTTF Factor versus Junction Temperature MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 8 RF Device Data Freescale Semiconductor Z12 VBIAS C1 VSUPPLY + R1 R2 C4 C7 C8 Z14 C5 C2 C21 R3 C16 RF INPUT C13 Z10 C19 Z9 C10 Z8 Z7 Z3 Z2 DUT Z11 RF OUTPUT C14 Z4 Z5 C18 C20 Z6 Z1 C11 C22 C12 C17 C15 Z13 C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.432″ x 0.827″ Microstrip 0.720″ x 0.788″ Microstrip 0.195″ x 0.087″ Microstrip 0.584″ x 0.087″ Microstrip 0.173″ x 0.087″ Microstrip 0.560″ x 0.087″ Microstrip 0.378″ x 0.827″ Microstrip 0.279″ x 0.087″ Microstrip 0.193″ x 0.087″ Microstrip Z10 Z11 Z12, Z13* Z14* PCB C6 C3 0.897″ x 0.087″ Microstrip 1.161″ x 0.087″ Microstrip 1.6″ x 0.089″ Microstrip (quarter wave length for supply purpose) 1.2″ x 0.059″ Microstrip (quarter wave length for bias purpose) Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning Figure 14. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Schematic Table 7. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C3 4.7 mF Chip Capacitors (2220) GRM55ER7H475KA01 Murata C4, C5, C6 10 nF 200B Chip Capacitors 200B103MW ATC C7, C8, C9 33 pF 100B Chip Capacitors 100B330JW ATC C10, C11 22 pF 100B Chip Capacitors 100B220GW ATC C12, C13, C17 10 pF 100B Chip Capacitors 100B100GW ATC C14, C15 8.2 pF 100B Chip Capacitors 100B8R2CW ATC C16, C22 6.8 pF 100B Chip Capacitors 100B6R8CW ATC C18 5.6 pF 100B Chip Capacitor 100B5R6CW ATC C19, C20 2.7 pF 100B Chip Capacitors 100B2R7BW ATC C21 220 mF, 50 V Electrolytic Capacitor, Axial 516D227M050NP7B Sprague R1, R2 10 kW, 1/4 W Chip Resistors (1206) R3 10 W, 1/4 W Chip Resistor (1206) MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 9 C21 VDD VGG R1 C1 C4 C7 C8 C2 C5 C16 R3 C10 C22 CUT OUT AREA R2 C13 C14 C18 C11 C20 C17 C12 C15 C3 C19 MRF5S9101N 800 MHz Rev 2 C9 C6 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. Figure 15. MRF5S9101NR1(NBR1)/MR1(MBR1) 800 MHz Test Circuit Component Layout MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS - 800 MHz 65 G ps , POWER GAIN (dB) 19 60 18 Gps 55 17 ηD 50 16 15 45 VDD = 26 Vdc IDQ = 700 mA IRL −10 14 −12 13 −14 12 −16 11 −18 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) 20 10 −20 820 830 840 850 860 870 880 890 900 910 920 930 940 f, FREQUENCY (MHz) Figure 16. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 W CW 20 18 17 40 Gps 35 ηD 30 16 25 VDD = 26 Vdc IDQ = 700 mA 15 14 −10 −12 IRL 13 −14 12 −16 11 −18 ηD, DRAIN EFFICIENCY (%) IRL, INPUT RETURN LOSS (dB) G ps , POWER GAIN (dB) 19 45 10 −20 820 830 840 850 860 870 880 890 900 910 920 930 940 f, FREQUENCY (MHz) 3 2.5 Pout = 50 W Avg. 2 40 W Avg. 25 W Avg. 1.5 1 VDD = 28 Vdc IDQ = 650 mA 0.5 0 9 60 VDD = 28 Vdc IDQ = 650 mA f = 880 MHz 8 50 6 40 η 5 30 TC = 25_C 3 20 EVM 2 10 0 850 860 870 880 890 910 900 η, DRAIN EFFICIENCY (%) 3.5 EVM, ERROR VECTOR MAGNITUDE (% rms) EVM, ERROR VECTOR MAGNITUDE (% rms) Figure 17. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 W CW 0 1 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Error Vector Magnitude versus Frequency Figure 19. Error Vector Magnitude and Drain Efficiency versus Output Power 100 MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 11 −45 −64 Pout = 50 W Avg. −66 SPECTRAL REGROWTH @ 400 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TYPICAL CHARACTERISTICS - 800 MHz 40 W Avg. −68 SR 400 kHz −70 25 W Avg. −72 −74 SR 600 kHz −76 VDD = 28 Vdc IDQ = 650 mA 25 W Avg. −78 Pout = 50 W Avg. −80 40 W Avg. −82 850 860 −50 TC = 25_C −55 −60 −65 −70 VDD = 28 Vdc IDQ = 650 mA f = 880 MHz −75 −80 870 880 890 900 910 0 10 20 30 40 50 60 70 80 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 20. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 21. Spectral Regrowth at 400 kHz versus Output Power 90 SPECTRAL REGROWTH @ 400 kHz (dBc) −65 VDD = 28 Vdc IDQ = 650 mA f = 880 MHz −70 −75 TC = 25_C −80 −85 0 10 20 30 40 50 60 70 80 90 Pout, OUTPUT POWER (WATTS) AVG. Figure 22. Spectral Regrowth at 600 kHz versus Output Power MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 12 RF Device Data Freescale Semiconductor f = 990 MHz f = 845 MHz Zload f = 845 MHz Zsource f = 990 MHz Zo = 5 Ω VDD = 26 Vdc, IDQ = 700 mA, Pout = 100 W CW f MHz Zload Ω Zsource Ω 845 4.29 - j2.23 1.15 - j0.04 865 3.94 - j1.24 1.05 - j0.10 890 2.72 - j0.96 1.02 - j0.07 920 1.96 - j1.02 1.03 - j0.15 960 1.58 - j1.43 1.03 - j0.05 990 1.27 - j1.54 0.73 - j0.07 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 23. Series Equivalent Source and Load Impedance MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 13 PACKAGE DIMENSIONS E1 B A 2X E3 GATE LEAD DRAIN LEAD D D1 4X e 4X aaa b1 C A M 2X 2X D2 c1 E H DATUM PLANE F ZONE J A A1 2X A2 E2 NOTE 7 E5 E4 4 D3 3 ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ E5 BOTTOM VIEW C SEATING PLANE PIN 5 NOTE 8 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H−. 5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE “b1" DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. 1 2 CASE 1486 - 03 ISSUE C TO - 270 WB - 4 PLASTIC MRF5S9101NR1(MR1) DIM A A1 A2 D D1 D2 D3 E E1 E2 E3 E4 E5 F b1 c1 e aaa INCHES MIN MAX .100 .104 .039 .043 .040 .042 .712 .720 .688 .692 .011 .019 .600 −−− .551 .559 .353 .357 .132 .140 .124 .132 .270 −−− .346 .350 .025 BSC .164 .170 .007 .011 .106 BSC .004 STYLE 1: PIN 1. 2. 3. 4. 5. MILLIMETERS MIN MAX 2.54 2.64 0.99 1.09 1.02 1.07 18.08 18.29 17.48 17.58 0.28 0.48 15.24 −−− 14 14.2 8.97 9.07 3.35 3.56 3.15 3.35 6.86 −−− 8.79 8.89 0.64 BSC 4.17 4.32 0.18 0.28 2.69 BSC 0.10 DRAIN DRAIN GATE GATE SOURCE MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 14 RF Device Data Freescale Semiconductor E1 r1 aaa M C A B 2X A B GATE LEAD E2 DRAIN LEAD 3 D D2 D1 4X e 4 b1 aaa M C A 4X ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉ H ZONE J A A1 A2 7 Y E3 1 2 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. F DATUM PLANE NOTE 8 E3 VIEW Y - Y E c1 PIN 5 Y C SEATING PLANE STYLE 1: PIN 1. 2. 3. 4. 5. CASE 1484 - 02 ISSUE B TO - 272 WB - 4 PLASTIC MRF5S9101NBR1(MBR1) DRAIN DRAIN GATE GATE SOURCE DIM A A1 A2 D D1 D2 E E1 E2 E3 F b1 c1 r1 e aaa INCHES MIN MAX .100 .104 .039 .043 .040 .042 .928 .932 .810 BSC .600 −−− .551 .559 .353 .357 .270 −−− .346 .350 .025 BSC .164 .170 .007 .011 .063 .068 .106 BSC .004 MILLIMETERS MIN MAX 2.54 2.64 0.99 1.09 1.02 1.07 23.57 23.67 20.57 BSC 15.24 −−− 14 14.2 8.97 9.07 6.86 −−− 8.79 8.89 0.64 BSC 4.17 4.32 .18 .28 1.60 1.73 2.69 BSC .10 MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 RF Device Data Freescale Semiconductor 15 How to Reach Us: Home Page: www.freescale.com E - mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2005. All rights reserved. MRF5S9101NR1 MRF5S9101NBR1 MRF5S9101MR1 MRF5S9101MBR1 Document Number: MRF5S9101 Rev. 2, 7/2005 16 RF Device Data Freescale Semiconductor