Freescale Semiconductor Technical Data Document Number: MW7IC2020N Rev. 0, 1/2012 RF LDMOS Wideband Integrated Power Amplifier MW7IC2020NT1 The MW7IC2020N wideband integrated circuit is designed with on--chip matching that makes it usable from 1805 to 2170 MHz. This multi--stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats. Driver Application — 2100 MHz • Typical Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) PAE (%) Output PAR (dB) ACPR (dBc) 2110 MHz 32.6 16.8 7.7 --51.3 2140 MHz 32.6 17.0 7.6 --51.4 2170 MHz 32.4 17.0 7.5 --51.6 1805--2170 MHz, 2.4 W AVG., 28 V SINGLE W--CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIER • Capable of Handling 10:1 VSWR, @ 32 Vdc, 2140 MHz, Pout = 33 Watts CW (3 dB Input Overdrive from Rated Pout) • Typical Pout @ 1 dB Compression Point ≃ 20 Watts CW Driver Application — 1800 MHz • Typical Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) PAE (%) Output PAR (dB) ACPR (dBc) 1805 MHz 31.8 17.4 7.6 --51.2 1840 MHz 31.8 17.4 7.7 --50.2 1880 MHz 31.8 17.4 7.7 --51.0 CASE 1894--01 PQFN 8x8 PLASTIC VGS1 Quiescent Current Temperature Compensation (1) RFin NC GND RFout/VDS2 VDS1 Figure 1. Functional Block Diagram RFin RFin GND NC 1 2 3 4 5 6 24 23 22 21 20 19 7 8 9 10 11 12 18 17 16 15 14 13 NC NC RFout/VDS2 RFout/VDS2 NC NC VDS1 NC NC NC VGS2 NC VDS1 VGS1 NC VGS2 NC NC NC Features • Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source S--Parameters • On--Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • In Tape and Reel. T1 Suffix = 1000 Units, 16 mm Tape Width, 13 inch Reel. Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987. © Freescale Semiconductor, Inc., 2012. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MW7IC2020NT1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg --65 to +150 °C Operating Junction Temperature (1,2) TJ 150 °C Input Power Pin 37 dBm Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 84°C, 2.4 W CW Stage 1, 28 Vdc, IDQ1 = 40 mA, 2140 MHz Stage 2, 28 Vdc, IDQ2 = 230 mA, 2140 MHz Case Temperature 92°C, 24 W CW Stage 1, 28 Vdc, IDQ1 = 40 mA, 2140 MHz Stage 2, 28 Vdc, IDQ2 = 230 mA, 2140 MHz RθJC °C/W 9.0 1.9 8.6 1.6 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) A Charge Device Model (per JESD22--C101) III Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 12 μAdc) VGS(th) 1.0 2.0 3.0 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ1 = 40 mAdc) VGS(Q) — 2.9 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ1 = 40 mAdc, Measured in Functional Test) VGG(Q) 6.2 6.9 7.7 Vdc Characteristic Stage 1 — Off Characteristics Stage 1 — On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. (continued) MW7IC2020NT1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 75 μAdc) VGS(th) 1.0 2.0 3.0 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ2 = 230 mAdc) VGS(Q) — 2.8 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ2 = 230 mAdc, Measured in Functional Test) VGG(Q) 4.7 5.5 6.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 0.75 Adc) VDS(on) 0.1 0.3 0.8 Vdc Stage 2 — Off Characteristics Stage 2 — On Characteristics Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg., f = 2140 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Power Added Efficiency Adjacent Channel Power Ratio Input Return Loss Gps 31.0 32.6 36.0 dB PAE 16.0 17.0 — % ACPR — --51.4 --47.0 dBc IRL — --12 --10 dB Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg., Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Frequency Gps (dB) PAE (%) Output PAR (dB) ACPR (dBc) IRL (dB) 2110 MHz 32.6 16.8 7.7 --51.3 --14 2140 MHz 32.6 17.0 7.6 --51.4 --12 2170 MHz 32.4 17.0 7.5 --51.6 --11 Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, 2110--2170 MHz Bandwidth Characteristic Pout @ 1 dB Compression Point, CW Symbol Min Typ Max Unit P1dB — 20 — W — 25 — IMD Symmetry @ 9 W PEP, Pout where IMD Third Order Intermodulation 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — 90 — MHz ∆IQT — — 0.00 3.70 — — % Gain Flatness in 60 MHz Bandwidth @ Pout = 2.4 W Avg. GF — 0.2 — dB Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.045 — dB/°C ∆P1dB — 0.004 — dB/°C Quiescent Current Accuracy over Temperature (2) with 2 kΩ Gate Feed Resistors (--30 to 85°C) Output Power Variation over Temperature (--30°C to +85°C) Stage 1 Stage 2 MHz 1. Part internally input matched. 2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987. (continued) MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 3 Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Typical Performance — 1800 MHz (In Freescale 1800 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg., Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Frequency Gps (dB) PAE (%) Output PAR (dB) ACPR (dBc) IRL (dB) 1805 MHz 31.8 17.4 7.6 --51.2 --13 1840 MHz 31.8 17.4 7.7 --50.2 --9 1880 MHz 31.8 17.4 7.7 --51.0 --6 MW7IC2020NT1 4 RF Device Data Freescale Semiconductor, Inc. VGG2 C10 C11 C12 R2 VDD2 VGG1 C2 R1 C3 C7 C1 C8 C9 MW7IC2020N Rev. 0 C4 C5 VDD1 VDD2 C6 C13 C14 C15 Figure 3. MW7IC2020NT1 Test Circuit Component Layout Table 6. MW7IC2020NT1 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.2 pF, Chip Capacitor ATC600F1R2BT250XT ATC C2, C3, C11, C14 4.7 μF, 50 V Chip Capacitors GRM31CR71H475KA12L Murata C4, C9, C10, C13 33 pF Chip Capacitors ATC600F330JT250XT ATC C5 1.0 μF, 100 V Chip Capacitor GRM31CR72A105KA01L Murata C6, C12, C15 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C7 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C8 0.6 pF Chip Capacitor ATC600F0R6BT250XT ATC R1, R2 4.7 kΩ, 1/4 W Chip Resistors CRCW12064K70FKEA Vishay PCB 0.020″, εr = 3.5 RO4350 Rogers MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 5 16 Gps 32.7 15 Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 32.6 32.5 32.4 14 32.2 32 2060 --51 ACPR 2080 2100 2120 --10 --50 PARC 32.1 --8 --48 --49 IRL 32.3 --47 2140 2160 2180 2200 --12 --14 --16 --52 2220 --18 0.4 0.3 0.2 0.1 0 PARC (dB) 17 PAE IRL, INPUT RETURN LOSS (dB) 18 ACPR (dBc) Gps, POWER GAIN (dB) 33 VDD = 28 Vdc, Pout = 2.4 W (Avg.), IDQ1 = 40 mA 32.9 I DQ2 = 230 mA 32.8 PAE, POWER ADDED EFFICIENCY (%) TYPICAL CHARACTERISTICS --0.1 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 4. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 2.4 Watts Avg. --20 VDD = 28 Vdc, Pout = 9 W (PEP) IDQ1 = 40 mA, IDQ2 = 230 mA --30 IM3--U IM3--L IM5--U --40 IM5--L IM7--L --50 IM7--U --60 --70 Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 2140 MHz 1 100 10 TWO--TONE SPACING (MHz) 32 0 30 28 26 24 22 PAE --1 dB = 5.7 W PARC 43 ACPR --1 36 VDD = 28 Vdc, IDQ1 = 40 mA IDQ2 = 230 mA, f = 2140 MHz Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth --2 dB = 7.8 W Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF --3 dB = 10.4 W --2 --3 --4 --5 0 5 --10 50 Gps 10 15 20 29 22 15 25 8 --20 --30 --40 ACPR (dBc) 1 PAE, POWER ADDED EFFICIENCY (%) 34 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 5. Intermodulation Distortion Products versus Two--Tone Spacing --50 --60 --70 Pout, OUTPUT POWER (WATTS) Figure 6. Output Peak--to--Average Ratio Compression (PARC) versus Output Power MW7IC2020NT1 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 50 PAE 31 ACPR 40 2170 MHz 2140 MHz 2110 MHz 29 30 2110 MHz 2140 MHz 27 20 2170 MHz 25 Gps 10 Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 23 1 0 --10 --20 --30 --40 --50 0 10 ACPR (dBc) 33 Gps, POWER GAIN (dB) 60 VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth PAE, POWER ADDED EFFICIENCY (%) 35 --60 40 Pout, OUTPUT POWER (WATTS) AVG. Figure 7. Single--Carrier W--CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power 0 36 30 --3 Gain GAIN (dB) --9 18 IRL IRL (dB) --6 24 --12 12 VDD = 28 Vdc Pin = 0 dBm IDQ1 = 40 mA IDQ2 = 230 mA 6 0 1350 1550 1750 1950 2150 2350 2550 2750 --15 --18 2950 f, FREQUENCY (MHz) Figure 8. Broadband Frequency Response W--CDMA TEST SIGNAL 100 10 0 --10 Input Signal --30 0.1 0.01 W--CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 3.84 MHz Channel BW --20 1 (dB) PROBABILITY (%) 10 0 1 2 3 4 5 6 --40 --50 --60 +ACPR in 3.84 MHz Integrated BW --ACPR in 3.84 MHz Integrated BW --70 --80 7 8 9 PEAK--TO--AVERAGE (dB) Figure 9. CCDF W--CDMA IQ Magnitude Clipping, Single--Carrier Test Signal 10 --90 --100 --9 --7.2 --5.4 --3.6 --1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 10. Single--Carrier W--CDMA Spectrum MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 7 VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg. f MHz Zin Ω Zload Ω 2060 53.3 -- j50.4 7.28 -- j4.02 2080 50.9 -- j50.9 7.28 -- j3.92 2100 47.8 -- j51.0 7.28 -- j3.82 2120 45.0 -- j51.3 7.30 -- j3.74 2140 41.7 -- j51.0 7.32 -- j3.68 2160 39.4 -- j49.6 7.33 -- j3.61 2180 37.4 -- j48.5 7.35 -- j3.54 2200 36.1 -- j47.2 7.38 -- j3.49 34.9 -- j45.9 7.42 -- j3.46 2220 Zin = Zload = Device input impedance as simulated from gate to ground. Test circuit impedance as simulated from drain to ground. Output Matching Network Device Under Test Zin Zload Figure 11. Series Equivalent Input and Load Impedance MW7IC2020NT1 8 RF Device Data Freescale Semiconductor, Inc. VDD = 28 Vdc, IDQ1 = 30 mA, IDQ2 = 195 mA, CW Max Output Power P1dB P3dB f (MHz) Zin (Ω) Zload (1) (Ω) (dBm) (W) PAE (%) (dBm) (W) PAE (%) 2110 42.0 -- j42.0 8.0 -- j10.1 45.5 36 51.3 46.0 40 50.9 2140 42.6 -- j42.0 7.8 -- j10.4 45.5 36 50.7 46.0 39 50.4 2170 39.0 -- j45.0 7.5 -- j10.5 45.3 34 50.3 45.8 38 50.2 (1) Load impedance for optimum P1dB power. Zin = Impedance as measured from input contact to ground. Zload = Impedance as measured from drain contact to ground. Output Load Pull Tuner Device Under Test Zin Zload Figure 12. Load Pull Performance — Maximum P1dB Tuning VDD = 28 Vdc, IDQ1 = 30 mA, IDQ2 = 195 mA, CW Max Power Added Efficiency P1dB P3dB f (MHz) Zin (Ω) Zload (1) (Ω) (dBm) (W) PAE (%) (dBm) (W) PAE (%) 2110 43.0--j48.0 8.1--j4.5 44.3 27 57.2 44.8 30 55.4 2140 42.0--j48.0 7.6--j5.3 44.4 28 56.6 44.8 30 54.8 2170 36.5--j50.0 7.1--j5.8 44.3 27 56.0 44.7 30 54.5 (1) Load impedance for optimum P1dB efficiency. Zin = Impedance as measured from input contact to ground. Zload = Impedance as measured from drain contact to ground. Output Load Pull Tuner Device Under Test Zin Zload Figure 13. Load Pull Performance — Maximum Power Added Efficiency Tuning MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 9 VGG2 R2 C13 VDD2 VGG1 C12 C4 R1 C1 C14 L1 C2 C9 C5 C3 MW7IC2020N Rev. 0 C6 C7 VDD1 C11 C10 C15 VDD2 C8 C16 C17 Figure 14. MW7IC2020NT1 Test Circuit Component Layout — 1800 MHz Table 7. MW7IC2020NT1 Test Circuit Component Designations and Values — 1800 MHz Part Description Part Number Manufacturer C1, C6, C12, C15 33 pF Capacitors ATC600F330JT250XT ATC C2 1.1 pF Chip Capacitor ATC600F1R1BT250XT ATC C3 1.6 pF Chip Capacitor ATC600F1R6BT250XT ATC C4, C5, C13, C16 4.7 μF, 50 V Chip Capacitors GRM31CR71H475KA12L Murata C7 1.0 μF, 100 V Chip Capacitor GRM31CR72A105KA01L Murata C8, C14, C17 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C9 0.3 pF Chip Capacitor ATC100B0R3BT500XT ATC C10 0.5 pF Chip Capacitor ATC600F0R5BT250XT ATC C11 10 pF Capacitors ATC600F100JT250XT ATC L1 12 nH Chip Inductor L0805120JESTR AVX R1, R2 4.7 kΩ, 1/4 W Chip Resistors CRCW12064K70FKEA Vishay PCB 0.020″, εr = 3.5 RO4350 Rogers MW7IC2020NT1 10 RF Device Data Freescale Semiconductor, Inc. Gps, POWER GAIN (dB) 32.1 31.8 17 Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF Gps 31.9 18 16 15 IRL 31.7 31.6 31.4 --8 --51 ACPR 31.3 1760 --5 --49 --50 PARC 31.5 --48 1780 1800 --52 1820 1840 1860 1880 1900 --53 1920 --11 --14 --17 --20 0.3 0.2 0.1 0 --0.1 PARC (dB) PAE 32 19 VDD = 28 Vdc, Pout = 2.4 W (Avg.) IDQ1 = 40 mA, IDQ2 = 230 mA IRL, INPUT RETURN LOSS (dB) 32.2 ACPR (dBc) 32.3 PAE, POWER ADDED EFFICIENCY (%) TYPICAL CHARACTERISTICS — 1800 MHz --0.2 f, FREQUENCY (MHz) Figure 15. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 2.4 Watts Avg. Gps, POWER GAIN (dB) 32 30 1880 MHz 50 PAE 40 ACPR 1840 MHz 1805 MHz 28 60 30 1805 MHz 1840 MHz 26 20 Gps 1880 MHz 24 10 Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 22 1 0 0 10 --10 --20 --30 --40 ACPR (dBc) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth PAE, POWER ADDED EFFICIENCY (%) 34 --50 --60 40 Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single--Carrier W--CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power 0 36 30 --4 Gain GAIN (dB) --12 18 IRL --16 12 VDD = 28 Vdc Pin = 0 dBm IDQ1 = 40 mA IDQ2 = 230 mA 6 0 1400 IRL (dB) --8 24 1525 1650 1775 1900 2025 2150 2275 --20 --24 2400 f, FREQUENCY (MHz) Figure 17. Broadband Frequency Response MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 11 VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg. f MHz Zin Ω Zload Ω 1760 46.6 + j14.0 14.4 -- j7.06 1780 54.0 + j15.2 14.0 -- j6.89 1800 62.4 + j14.5 13.6 -- j6.71 1820 70.8 + j11.4 13.2 -- j6.53 1840 78.8 + j5.70 12.9 -- j6.34 1860 85.2 -- j2.64 12.6 -- j6.14 1880 88.8 -- j12.5 12.4 -- j5.94 1900 89.2 -- j22.9 12.1 -- j5.74 86.7 -- j32.6 11.9 -- j5.53 1920 Zin = Zload = Device input impedance as simulated from gate to ground. Test circuit impedance as simulated from drain to ground. Output Matching Network Device Under Test Zin Zload Figure 18. Series Equivalent Input and Load Impedance — 1800 MHz MW7IC2020NT1 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 13 MW7IC2020NT1 14 RF Device Data Freescale Semiconductor, Inc. MW7IC2020NT1 RF Device Data Freescale Semiconductor, Inc. 15 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Jan. 2012 Description • Initial Release of Data Sheet MW7IC2020NT1 16 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2012. All rights reserved. MW7IC2020NT1 Document Number: RF Device Data MW7IC2020N Rev. 0, 1/2012 Freescale Semiconductor, Inc. 17