FREESCALE MW7IC2020NT1

Freescale Semiconductor
Technical Data
Document Number: MW7IC2020N
Rev. 0, 1/2012
RF LDMOS Wideband Integrated
Power Amplifier
MW7IC2020NT1
The MW7IC2020N wideband integrated circuit is designed with on--chip
matching that makes it usable from 1805 to 2170 MHz. This multi--stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular base
station modulation formats.
Driver Application — 2100 MHz
• Typical Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQ1 =
40 mA, IDQ2 = 230 mA, Pout = 2.4 Watts Avg., IQ Magnitude Clipping,
Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01%
Probability on CCDF.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
2110 MHz
32.6
16.8
7.7
--51.3
2140 MHz
32.6
17.0
7.6
--51.4
2170 MHz
32.4
17.0
7.5
--51.6
1805--2170 MHz, 2.4 W AVG., 28 V
SINGLE W--CDMA
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIER
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 2140 MHz, Pout = 33 Watts
CW (3 dB Input Overdrive from Rated Pout)
• Typical Pout @ 1 dB Compression Point ≃ 20 Watts CW
Driver Application — 1800 MHz
• Typical Single--Carrier W--CDMA Performance: VDD = 28 Volts,
IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 Watts Avg., IQ Magnitude
Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB
@ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
1805 MHz
31.8
17.4
7.6
--51.2
1840 MHz
31.8
17.4
7.7
--50.2
1880 MHz
31.8
17.4
7.7
--51.0
CASE 1894--01
PQFN 8x8
PLASTIC
VGS1
Quiescent Current
Temperature Compensation (1)
RFin
NC
GND
RFout/VDS2
VDS1
Figure 1. Functional Block Diagram
RFin
RFin
GND
NC
1
2
3
4
5
6
24 23 22 21 20 19
7 8 9 10 11 12
18
17
16
15
14
13
NC
NC
RFout/VDS2
RFout/VDS2
NC
NC
VDS1
NC
NC
NC
VGS2
NC
VDS1
VGS1
NC
VGS2
NC
NC
NC
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source S--Parameters
• On--Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)
• Integrated ESD Protection
• In Tape and Reel. T1 Suffix = 1000 Units, 16 mm Tape Width, 13 inch Reel.
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2012. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MW7IC2020NT1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
--65 to +150
°C
Operating Junction Temperature (1,2)
TJ
150
°C
Input Power
Pin
37
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 84°C, 2.4 W CW
Stage 1, 28 Vdc, IDQ1 = 40 mA, 2140 MHz
Stage 2, 28 Vdc, IDQ2 = 230 mA, 2140 MHz
Case Temperature 92°C, 24 W CW
Stage 1, 28 Vdc, IDQ1 = 40 mA, 2140 MHz
Stage 2, 28 Vdc, IDQ2 = 230 mA, 2140 MHz
RθJC
°C/W
9.0
1.9
8.6
1.6
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
III
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 12 μAdc)
VGS(th)
1.0
2.0
3.0
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1 = 40 mAdc)
VGS(Q)
—
2.9
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1 = 40 mAdc, Measured in Functional Test)
VGG(Q)
6.2
6.9
7.7
Vdc
Characteristic
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
(continued)
MW7IC2020NT1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 75 μAdc)
VGS(th)
1.0
2.0
3.0
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2 = 230 mAdc)
VGS(Q)
—
2.8
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2 = 230 mAdc, Measured in Functional Test)
VGG(Q)
4.7
5.5
6.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 0.75 Adc)
VDS(on)
0.1
0.3
0.8
Vdc
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg.,
f = 2140 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured
in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Power Added Efficiency
Adjacent Channel Power Ratio
Input Return Loss
Gps
31.0
32.6
36.0
dB
PAE
16.0
17.0
—
%
ACPR
—
--51.4
--47.0
dBc
IRL
—
--12
--10
dB
Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W
Avg., Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in
3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
2110 MHz
32.6
16.8
7.7
--51.3
--14
2140 MHz
32.6
17.0
7.6
--51.4
--12
2170 MHz
32.4
17.0
7.5
--51.6
--11
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, 2110--2170 MHz Bandwidth
Characteristic
Pout @ 1 dB Compression Point, CW
Symbol
Min
Typ
Max
Unit
P1dB
—
20
—
W
—
25
—
IMD Symmetry @ 9 W PEP, Pout where IMD Third Order
Intermodulation  30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
90
—
MHz
∆IQT
—
—
0.00
3.70
—
—
%
Gain Flatness in 60 MHz Bandwidth @ Pout = 2.4 W Avg.
GF
—
0.2
—
dB
Gain Variation over Temperature
(--30°C to +85°C)
∆G
—
0.045
—
dB/°C
∆P1dB
—
0.004
—
dB/°C
Quiescent Current Accuracy over Temperature (2)
with 2 kΩ Gate Feed Resistors (--30 to 85°C)
Output Power Variation over Temperature
(--30°C to +85°C)
Stage 1
Stage 2
MHz
1. Part internally input matched.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent
Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application
Notes -- AN1977 or AN1987.
(continued)
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
3
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Typical Performance — 1800 MHz (In Freescale 1800 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA,
Pout = 2.4 W Avg., Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Frequency
Gps
(dB)
PAE
(%)
Output PAR
(dB)
ACPR
(dBc)
IRL
(dB)
1805 MHz
31.8
17.4
7.6
--51.2
--13
1840 MHz
31.8
17.4
7.7
--50.2
--9
1880 MHz
31.8
17.4
7.7
--51.0
--6
MW7IC2020NT1
4
RF Device Data
Freescale Semiconductor, Inc.
VGG2
C10 C11 C12
R2
VDD2
VGG1
C2
R1
C3
C7
C1
C8
C9
MW7IC2020N
Rev. 0
C4
C5
VDD1
VDD2
C6
C13 C14
C15
Figure 3. MW7IC2020NT1 Test Circuit Component Layout
Table 6. MW7IC2020NT1 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
1.2 pF, Chip Capacitor
ATC600F1R2BT250XT
ATC
C2, C3, C11, C14
4.7 μF, 50 V Chip Capacitors
GRM31CR71H475KA12L
Murata
C4, C9, C10, C13
33 pF Chip Capacitors
ATC600F330JT250XT
ATC
C5
1.0 μF, 100 V Chip Capacitor
GRM31CR72A105KA01L
Murata
C6, C12, C15
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C7
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C8
0.6 pF Chip Capacitor
ATC600F0R6BT250XT
ATC
R1, R2
4.7 kΩ, 1/4 W Chip Resistors
CRCW12064K70FKEA
Vishay
PCB
0.020″, εr = 3.5
RO4350
Rogers
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
5
16
Gps
32.7
15
Single--Carrier W--CDMA
3.84 MHz Channel Bandwidth
Input Signal PAR = 7.5 dB
@ 0.01% Probability on CCDF
32.6
32.5
32.4
14
32.2
32
2060
--51
ACPR
2080
2100
2120
--10
--50
PARC
32.1
--8
--48
--49
IRL
32.3
--47
2140
2160
2180
2200
--12
--14
--16
--52
2220
--18
0.4
0.3
0.2
0.1
0
PARC (dB)
17
PAE
IRL, INPUT RETURN LOSS (dB)
18
ACPR (dBc)
Gps, POWER GAIN (dB)
33
VDD = 28 Vdc, Pout = 2.4 W (Avg.), IDQ1 = 40 mA
32.9 I
DQ2 = 230 mA
32.8
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
--0.1
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 4. Output Peak--to--Average Ratio Compression (PARC)
Broadband Performance @ Pout = 2.4 Watts Avg.
--20
VDD = 28 Vdc, Pout = 9 W (PEP)
IDQ1 = 40 mA, IDQ2 = 230 mA
--30
IM3--U
IM3--L
IM5--U
--40
IM5--L
IM7--L
--50
IM7--U
--60
--70
Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 2140 MHz
1
100
10
TWO--TONE SPACING (MHz)
32
0
30
28
26
24
22
PAE
--1 dB = 5.7 W
PARC
43
ACPR
--1
36
VDD = 28 Vdc, IDQ1 = 40 mA
IDQ2 = 230 mA, f = 2140 MHz
Single--Carrier W--CDMA
3.84 MHz Channel Bandwidth
--2 dB = 7.8 W
Input Signal PAR = 7.5 dB
@ 0.01% Probability on CCDF
--3 dB = 10.4 W
--2
--3
--4
--5
0
5
--10
50
Gps
10
15
20
29
22
15
25
8
--20
--30
--40
ACPR (dBc)
1
PAE, POWER ADDED EFFICIENCY (%)
34
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 5. Intermodulation Distortion Products
versus Two--Tone Spacing
--50
--60
--70
Pout, OUTPUT POWER (WATTS)
Figure 6. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
MW7IC2020NT1
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
50
PAE
31
ACPR 40
2170 MHz
2140 MHz
2110 MHz
29
30
2110 MHz
2140 MHz
27
20
2170 MHz
25
Gps
10
Input Signal PAR = 7.5 dB @
0.01% Probability on CCDF
23
1
0
--10
--20
--30
--40
--50
0
10
ACPR (dBc)
33
Gps, POWER GAIN (dB)
60
VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Single--Carrier
W--CDMA, 3.84 MHz Channel Bandwidth
PAE, POWER ADDED EFFICIENCY (%)
35
--60
40
Pout, OUTPUT POWER (WATTS) AVG.
Figure 7. Single--Carrier W--CDMA Power Gain, Power
Added Efficiency and ACPR versus Output Power
0
36
30
--3
Gain
GAIN (dB)
--9
18
IRL
IRL (dB)
--6
24
--12
12
VDD = 28 Vdc
Pin = 0 dBm
IDQ1 = 40 mA
IDQ2 = 230 mA
6
0
1350
1550
1750
1950
2150
2350
2550
2750
--15
--18
2950
f, FREQUENCY (MHz)
Figure 8. Broadband Frequency Response
W--CDMA TEST SIGNAL
100
10
0
--10
Input Signal
--30
0.1
0.01
W--CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Input Signal PAR = 7.5 dB @ 0.01%
Probability on CCDF
0.001
0.0001
3.84 MHz
Channel BW
--20
1
(dB)
PROBABILITY (%)
10
0
1
2
3
4
5
6
--40
--50
--60
+ACPR in 3.84 MHz
Integrated BW
--ACPR in 3.84 MHz
Integrated BW
--70
--80
7
8
9
PEAK--TO--AVERAGE (dB)
Figure 9. CCDF W--CDMA IQ Magnitude
Clipping, Single--Carrier Test Signal
10
--90
--100
--9
--7.2 --5.4
--3.6 --1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 10. Single--Carrier W--CDMA Spectrum
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
7
VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg.
f
MHz
Zin
Ω
Zload
Ω
2060
53.3 -- j50.4
7.28 -- j4.02
2080
50.9 -- j50.9
7.28 -- j3.92
2100
47.8 -- j51.0
7.28 -- j3.82
2120
45.0 -- j51.3
7.30 -- j3.74
2140
41.7 -- j51.0
7.32 -- j3.68
2160
39.4 -- j49.6
7.33 -- j3.61
2180
37.4 -- j48.5
7.35 -- j3.54
2200
36.1 -- j47.2
7.38 -- j3.49
34.9 -- j45.9
7.42 -- j3.46
2220
Zin
=
Zload =
Device input impedance as simulated from
gate to ground.
Test circuit impedance as simulated from
drain to ground.
Output
Matching
Network
Device
Under Test
Zin
Zload
Figure 11. Series Equivalent Input and Load Impedance
MW7IC2020NT1
8
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQ1 = 30 mA, IDQ2 = 195 mA, CW
Max Output Power
P1dB
P3dB
f
(MHz)
Zin
(Ω)
Zload (1)
(Ω)
(dBm)
(W)
PAE (%)
(dBm)
(W)
PAE (%)
2110
42.0 -- j42.0
8.0 -- j10.1
45.5
36
51.3
46.0
40
50.9
2140
42.6 -- j42.0
7.8 -- j10.4
45.5
36
50.7
46.0
39
50.4
2170
39.0 -- j45.0
7.5 -- j10.5
45.3
34
50.3
45.8
38
50.2
(1) Load impedance for optimum P1dB power.
Zin = Impedance as measured from input contact to ground.
Zload = Impedance as measured from drain contact to ground.
Output
Load Pull
Tuner
Device
Under Test
Zin
Zload
Figure 12. Load Pull Performance — Maximum P1dB Tuning
VDD = 28 Vdc, IDQ1 = 30 mA, IDQ2 = 195 mA, CW
Max Power Added Efficiency
P1dB
P3dB
f
(MHz)
Zin
(Ω)
Zload (1)
(Ω)
(dBm)
(W)
PAE (%)
(dBm)
(W)
PAE (%)
2110
43.0--j48.0
8.1--j4.5
44.3
27
57.2
44.8
30
55.4
2140
42.0--j48.0
7.6--j5.3
44.4
28
56.6
44.8
30
54.8
2170
36.5--j50.0
7.1--j5.8
44.3
27
56.0
44.7
30
54.5
(1) Load impedance for optimum P1dB efficiency.
Zin = Impedance as measured from input contact to ground.
Zload = Impedance as measured from drain contact to ground.
Output
Load Pull
Tuner
Device
Under Test
Zin
Zload
Figure 13. Load Pull Performance — Maximum Power Added Efficiency Tuning
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
9
VGG2
R2
C13
VDD2
VGG1
C12
C4
R1
C1
C14
L1 C2
C9
C5
C3
MW7IC2020N
Rev. 0
C6
C7
VDD1
C11
C10
C15
VDD2
C8
C16
C17
Figure 14. MW7IC2020NT1 Test Circuit Component Layout — 1800 MHz
Table 7. MW7IC2020NT1 Test Circuit Component Designations and Values — 1800 MHz
Part
Description
Part Number
Manufacturer
C1, C6, C12, C15
33 pF Capacitors
ATC600F330JT250XT
ATC
C2
1.1 pF Chip Capacitor
ATC600F1R1BT250XT
ATC
C3
1.6 pF Chip Capacitor
ATC600F1R6BT250XT
ATC
C4, C5, C13, C16
4.7 μF, 50 V Chip Capacitors
GRM31CR71H475KA12L
Murata
C7
1.0 μF, 100 V Chip Capacitor
GRM31CR72A105KA01L
Murata
C8, C14, C17
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C9
0.3 pF Chip Capacitor
ATC100B0R3BT500XT
ATC
C10
0.5 pF Chip Capacitor
ATC600F0R5BT250XT
ATC
C11
10 pF Capacitors
ATC600F100JT250XT
ATC
L1
12 nH Chip Inductor
L0805120JESTR
AVX
R1, R2
4.7 kΩ, 1/4 W Chip Resistors
CRCW12064K70FKEA
Vishay
PCB
0.020″, εr = 3.5
RO4350
Rogers
MW7IC2020NT1
10
RF Device Data
Freescale Semiconductor, Inc.
Gps, POWER GAIN (dB)
32.1
31.8
17
Single--Carrier W--CDMA
3.84 MHz Channel Bandwidth
Input Signal PAR = 7.5 dB
@ 0.01% Probability on CCDF
Gps
31.9
18
16
15
IRL
31.7
31.6
31.4
--8
--51
ACPR
31.3
1760
--5
--49
--50
PARC
31.5
--48
1780
1800
--52
1820
1840
1860
1880
1900
--53
1920
--11
--14
--17
--20
0.3
0.2
0.1
0
--0.1
PARC (dB)
PAE
32
19
VDD = 28 Vdc, Pout = 2.4 W (Avg.)
IDQ1 = 40 mA, IDQ2 = 230 mA
IRL, INPUT RETURN LOSS (dB)
32.2
ACPR (dBc)
32.3
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 1800 MHz
--0.2
f, FREQUENCY (MHz)
Figure 15. Output Peak--to--Average Ratio Compression (PARC)
Broadband Performance @ Pout = 2.4 Watts Avg.
Gps, POWER GAIN (dB)
32
30
1880 MHz
50
PAE
40
ACPR
1840 MHz
1805 MHz
28
60
30
1805 MHz
1840 MHz
26
20
Gps
1880 MHz
24
10
Input Signal PAR = 7.5 dB @
0.01% Probability on CCDF
22
1
0
0
10
--10
--20
--30
--40
ACPR (dBc)
VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Single--Carrier
W--CDMA, 3.84 MHz Channel Bandwidth
PAE, POWER ADDED EFFICIENCY (%)
34
--50
--60
40
Pout, OUTPUT POWER (WATTS) AVG.
Figure 16. Single--Carrier W--CDMA Power Gain, Power
Added Efficiency and ACPR versus Output Power
0
36
30
--4
Gain
GAIN (dB)
--12
18
IRL
--16
12
VDD = 28 Vdc
Pin = 0 dBm
IDQ1 = 40 mA
IDQ2 = 230 mA
6
0
1400
IRL (dB)
--8
24
1525
1650
1775
1900
2025
2150
2275
--20
--24
2400
f, FREQUENCY (MHz)
Figure 17. Broadband Frequency Response
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
11
VDD = 28 Vdc, IDQ1 = 40 mA, IDQ2 = 230 mA, Pout = 2.4 W Avg.
f
MHz
Zin
Ω
Zload
Ω
1760
46.6 + j14.0
14.4 -- j7.06
1780
54.0 + j15.2
14.0 -- j6.89
1800
62.4 + j14.5
13.6 -- j6.71
1820
70.8 + j11.4
13.2 -- j6.53
1840
78.8 + j5.70
12.9 -- j6.34
1860
85.2 -- j2.64
12.6 -- j6.14
1880
88.8 -- j12.5
12.4 -- j5.94
1900
89.2 -- j22.9
12.1 -- j5.74
86.7 -- j32.6
11.9 -- j5.53
1920
Zin
=
Zload =
Device input impedance as simulated from
gate to ground.
Test circuit impedance as simulated from
drain to ground.
Output
Matching
Network
Device
Under Test
Zin
Zload
Figure 18. Series Equivalent Input and Load Impedance — 1800 MHz
MW7IC2020NT1
12
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
13
MW7IC2020NT1
14
RF Device Data
Freescale Semiconductor, Inc.
MW7IC2020NT1
RF Device Data
Freescale Semiconductor, Inc.
15
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
Development Tools
• Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Jan. 2012
Description
• Initial Release of Data Sheet
MW7IC2020NT1
16
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2012. All rights reserved.
MW7IC2020NT1
Document
Number:
RF
Device
Data MW7IC2020N
Rev. 0, 1/2012
Freescale
Semiconductor, Inc.
17