Freescale Semiconductor Technical Data Document Number: MW7IC2040N Rev. 1, 11/2009 RF LDMOS Wideband Integrated Power Amplifiers The MW7IC2040N wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 1990 MHz. This multi - stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulation formats. • Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 Watts Avg., f = 1932.5, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. Power Gain — 32 dB Power Added Efficiency — 17.5% ACPR @ 5 MHz Offset — - 50 dBc in 3.84 MHz Bandwidth • Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 50 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 40 Watts CW Pout. • Typical Pout @ 1 dB Compression Point ' 30 Watts CW GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 16 Watts Avg., 1805 - 1880 MHz Power Gain — 33 dB Power Added Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 62 dBc Spectral Regrowth @ 600 kHz Offset = - 77 dBc EVM — 1.5% rms GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 40 Watts CW, 1805 - 1880 MHz and 1930 - 1990 MHz Power Gain — 31 dB Power Added Efficiency — 50% Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source S - Parameters • On - Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/ Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 1930 - 1990 MHz, 1805 - 1880 MHz, 4 W AVG., 28 V SINGLE W - CDMA, GSM EDGE, GSM RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1886 - 01 TO - 270 WB - 16 PLASTIC MW7IC2040NR1 CASE 1887 - 01 TO - 270 WB - 16 GULL PLASTIC MW7IC2040GNR1 CASE 1329 - 09 TO - 272 WB - 16 PLASTIC MW7IC2040NBR1 GND VDS1 VGS2 VGS1 NC 1 2 3 4 5 16 15 GND NC RFin 6 14 RFout/VDS2 NC VGS1 VGS2 VDS1 GND 7 8 9 10 11 13 12 NC GND (Top View) Note: Exposed backside of the package is the source terminal for the transistors. VDS1 Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2009. All rights reserved. RF Device Data Freescale Semiconductor MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +65 Vdc Gate - Source Voltage VGS - 0.5, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Input Power Pin 25 dBm Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case W - CDMA (Pout = 4 W Avg., Case Temperature = 73°C) GSM EDGE (Pout = 16 W Avg., Case Temperature = 76°C) GSM (Pout = 40 W Avg., Case Temperature = 79°C) RθJC °C/W Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA 4.0 1.5 Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA 4.1 1.4 Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 330 mA 3.9 1.3 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 25 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ1 = 130 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ1 = 130 mAdc, Measured in Functional Test) VGG(Q) 13 14.5 16 Vdc Stage 1 — Off Characteristics Stage 1 — On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (continued) MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 140 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ2 = 330 mAdc) VGS(Q) — 2.8 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ2 = 330 mAdc, Measured in Functional Test) VGG(Q) 7 8 9 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) VDS(on) 0.2 0.39 1.2 Vdc Coss — 246 — pF Stage 2 — Off Characteristics Stage 2 — On Characteristics Stage 2 — Dynamic Characteristics (1) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg., f = 1932.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps 29.5 32 34.5 dB Power Added Efficiency PAE 16 17.5 — % ACPR — - 50 - 46 dBc IRL — - 15 -8 dB Adjacent Channel Power Ratio Input Return Loss Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, 1930 - 1990 MHz Pout @ 1 dB Compression Point, CW P1dB — 30 — — 60 — W IMD Symmetry @ 22 W PEP, Pout where IMD Third Order Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — 65 — MHz ΔIQT — ±3 — % Gain Flatness in 60 MHz Bandwidth @ Pout = 4 W Avg. GF — 1.2 — dB Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 30 W CW Φ — 0.5 — ° Delay — 2.5 — ns Part - to - Part Insertion Phase Variation @ Pout = 30 W CW, f = 1960 MHz, Six Sigma Window ΔΦ — 33 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.029 — dB/°C ΔP1dB — 0.003 — dBm/°C Quiescent Current Accuracy over Temperature (2) with 5.6 kΩ Gate Feed Resistors ( - 30 to 85°C) Average Group Delay @ Pout = 30 W CW, f = 1960 MHz Output Power Variation over Temperature ( - 30°C to +85°C) MHz 1. Part internally matched both on input and output. 2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. 3. Measurement made with device in straight lead configuration before any lead forming operation is applied. (continued) MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 3 Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical W - CDMA Performance — 1800 MHz (In Freescale W - CDMA 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg., 1805 - 1880 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Gps — 33.5 — dB Power Added Efficiency PAE — 16.5 — % ACPR — - 50 — dBc IRL — -6 — dB Adjacent Channel Power Ratio Input Return Loss Typical GSM EDGE Performance — 1800 MHz (In Freescale GSM EDGE 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1805 - 1880 MHz EDGE Modulation Power Gain Gps — 33 — dB Power Added Efficiency PAE — 35 — % Error Vector Magnitude EVM — 1.5 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 62 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 77 — dBc Typical GSM EDGE Performance — 1900 MHz (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1930 - 1990 MHz EDGE Modulation Gps — Power Added Efficiency PAE Error Vector Magnitude EVM Spectral Regrowth at 400 kHz Offset Spectral Regrowth at 600 kHz Offset Power Gain 30 — dB — 33 — % — 1.5 — % rms SR1 — - 62 — dBc SR2 — - 80 — dBc Typical CW Performance (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 90 mA, IDQ2 = 430 mA, Pout = 40 W CW, 1805 - 1880 MHz and 1930 - 1990 MHz Power Gain Gps — 31 — dB Power Added Efficiency PAE — 50 — % Input Return Loss IRL — - 15 — dB P1dB — 45 — W Pout @ 1 dB Compression Point MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 4 RF Device Data Freescale Semiconductor + C13 VDD2 Z13 VDD1 C11 Z3 RF INPUT Z2 Z1 Z4 Z5 Z6 C1 1 2 G1 3 G2 4 5 NC DUT 16 NC 15 C3 C17 C6 C7 Z8 C15 Z7 14 Z10 Z11 Z12 Z15 Z16 RF OUTPUT 6 C14 C16 7 NC 8 G2 9 G1 10 11 VGG1 R1 VGG2 R2 Quiescent Current Temperature Compensation Z9 Z14 NC 13 12 C4 C12 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8, Z9 C10 C5 C18 C8 C9 C2 0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.3639″ 0.0826″ x 0.3060″ 0.0826″ x 0.9290″ 0.0600″ x 0.1273″ 0.0800″ x 1.3684″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z10 Z11 Z12 Z13, Z14 Z15 Z16 PCB 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4220″ Microstrip 0.0830″ x 0.2855″ Microstrip 0.0830″ x 0.9030″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5 Figure 3. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 6. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C6, C7, C8, C9, C10, C11 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C12 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C13 470 μF, 63 V Electrolytic Capacitor, Radial MCGPR63V477M13X26 - RH Multicomp C14, C16 0.8 pF Chip Capacitors ATC100B0R8BT500XT ATC C15 1 pF Chip Capacitor ATC100B1R0BT500XT ATC C17, C18 1 μF, 50 V Chip Capacitors GRM21BR71H105KA12L Murata R1, R2 5.6 KΩ, 1/4 W Chip Resistors CRCW12065601FKEA Vishay MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 5 C13 C3 C17 C11 C6 C7 TO272WB−16 MW7IC2040N Rev. 2 C14 C2 CUT OUT AREA C1 C15 C16 C5 C8 C9 C10 R1 C12 C4 C18 R2 Figure 4. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 6 RF Device Data Freescale Semiconductor 36 17 VDD = 28 Vdc, Pout = 4 W (Avg.), IDQ1 = 130 mA IDQ2 = 330 mA, Single−Carrier W−CDMA, 3.84 MHz 16 Channel Bandwidth, Input Signal PAR = 7.5 dB 15 @ 0.01% Probability on CCDF 14 Gps, POWER GAIN (dB) 35 Gps 34 33 32 IRL 31 −47 −10 −48 −12 30 −49 29 −50 ACPR 28 27 1880 1900 −51 1920 1940 1960 1980 2000 −52 2040 2020 −14 −16 −18 −20 IRL, INPUT RETURN LOSS (dB) 18 PAE ACPR (dBc) 37 PAE, POWER ADDED EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) Figure 5. Single Carrier W - CDMA Broadband Performance @ Pout = 4 Watts Avg. 35 35 IDQ2 = 495 mA IDQ1 = 195 mA 330 mA 34 163 mA 33 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 34 413 mA 248 mA 32 165 mA 31 80 mA 32 98 mA 31 30 65 mA VDD = 28 Vdc IDQ1 = 130 mA f = 1960 MHz 30 33 VDD = 28 Vdc IDQ2 = 330 mA f = 1960 MHz 29 29 28 1 10 1 50 10 Pout, OUTPUT POWER (WATTS) CW Figure 6. Power Gain versus Output Power @ IDQ1 = 130 mA Figure 7. Power Gain versus Output Power @ IDQ2 = 330 mA IMD, INTERMODULATION DISTORTION (dBc) Pout, OUTPUT POWER (WATTS) CW 50 −10 VDD = 28 Vdc, Pout = 22 W (PEP), IDQ1 = 130 mA IDQ2 = 330 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz −20 IM3−U −30 IM3−L −40 IM5−L IM5−U −50 IM7−L IM7−U −60 1 10 100 TWO−TONE SPACING (MHz) Figure 8. Intermodulation Distortion Products versus Two - Tone Spacing MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 55 32 45 PAE 31 35 30 25 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, f = 1960 MHz Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 29 28 1 8 16 24 32 15 PAE, POWER ADDED EFFICIENCY (%) ACPR Gps 33 Gps, POWER GAIN (dB) −10 65 −20 −30 −40 ACPR (dBc) 34 −50 −60 5 −70 50 −10 40 Pout, OUTPUT POWER (WATTS) 25_C 38 Gps, POWER GAIN (dB) 36 −30_C PAE TC = −30_C 34 85_C −30_C ACPR 25_C 32 Gps 30 28 26 24 22 1 45 40 35 30 85_C 25 20 VDD = 28 Vdc, IDQ1 = 130 mA IDQ2 = 330 mA, f = 1960 MHz 15 Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth, Input Signal 10 PAR = 7.5 dB @ 0.01% Probability on CCDF 5 10 60 −16 −22 −28 −34 −40 ACPR (dBc) 40 PAE, POWER ADDED EFFICIENCY (%) Figure 9. Power Gain, ACPR and Power Added Efficiency versus Output Power −46 −52 −58 −64 Pout, OUTPUT POWER (WATTS) AVG. Figure 10. Single - Carrier W - CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power GAIN (dB) Gain 35 −4 30 −8 25 −12 IRL 20 VDD = 28 Vdc Pout = 25 dBm IDQ1 = 130 mA IDQ2 = 330 mA IRL (dB) 0 40 −16 15 −20 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 f, FREQUENCY (MHz) Figure 11. Broadband Frequency Response MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 2nd Stage 1st Stage 107 106 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 4 W Avg., and PAE = 17.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 12. MTTF versus Junction Temperature W - CDMA TEST SIGNAL 100 10 0 −10 3.84 MHz Channel BW −20 1 Input Signal −30 0.1 (dB) PROBABILITY (%) 10 0.01 W−CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 1 2 3 4 5 6 −40 −50 −60 +ACPR in 3.84 MHz Integrated BW −ACPR in 3.84 MHz Integrated BW −70 −80 7 8 9 10 PEAK−TO−AVERAGE (dB) Figure 13. CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 45.2% Clipping, Single - Carrier Test Signal −90 −100 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. Single - Carrier W - CDMA Spectrum MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 9 Zo = 50 Ω Zo = 10 Ω Zin f = 2040 MHz f = 2040 MHz f = 1880 MHz Zload f = 1880 MHz VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg. f MHz Zin W Zload W 1880 42.97 - j25.07 6.10 - j5.01 1900 44.01 - j25.91 5.92 - j4.71 1920 45.14 - j26.72 5.76 - j4.44 1940 46.38 - j27.48 5.62 - j4.21 1960 47.71 - j28.19 5.51 - j4.01 1980 49.16 - j28.83 5.40 - j3.83 2000 50.71 - j29.40 5.27 - j3.71 2020 52.36 - j29.87 5.13 - j3.60 54.12 - j30.23 4.99 - j3.52 2040 Zin = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 15. Series Equivalent Input and Load Impedance MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 10 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 53 53 P3dB = 47.74 dBm (59 W) 52 Ideal 51 50 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) 52 P1dB = 47.06 dBm (51 W) 49 48 Actual 47 46 45 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1930 MHz 44 Ideal P3dB = 47.88 dBm (61 W) 51 50 P1dB = 47.37 dBm (55 W) 49 48 Actual 47 46 45 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1990 MHz 44 43 43 11 12 13 14 15 16 17 18 19 20 21 13 14 15 16 17 18 19 20 21 22 23 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Test Impedances per Compression Level P1dB Zsource Ω Zload Ω 49.30 + j8.40 3.60 - j4.50 Figure 16. Pulsed CW Output Power versus Input Power @ 28 V @ 1930 MHz P1dB Zsource Ω Zload Ω 50.0 - j4.90 3.40 - j5.10 Figure 17. Pulsed CW Output Power versus Input Power @ 28 V @ 1990 MHz MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 11 Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 90 mA, IDQ2 = 430 mA, TC = 25°C, 50 Ohm System) S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 1500 0.595 - 118.5 2.110 - 151.3 0.00174 - 71.2 0.888 - 160.3 1550 0.545 - 147.4 3.851 178.9 0.00192 - 86.7 0.876 170.4 1600 0.482 - 176.5 7.415 144.7 0.00294 - 114.0 0.867 137.1 1650 0.398 156.7 15.620 103.6 0.00445 - 149.9 0.872 94.6 1700 0.332 146.1 37.544 45.5 0.00746 177.5 0.884 29.4 1750 0.542 116.5 62.685 - 48.6 0.00940 110.9 0.650 - 93.8 1800 0.488 59.6 50.513 - 124.5 0.00642 67.4 0.454 157.6 1850 0.373 8.7 42.562 - 178.8 0.00497 40.5 0.419 105.4 1900 0.294 - 46.7 38.690 132.3 0.00438 19.1 0.416 75.9 1950 0.269 - 107.0 36.138 85.3 0.00416 - 7.3 0.443 54.0 2000 0.297 - 161.3 33.838 39.7 0.00382 - 28.5 0.497 31.7 2050 0.342 154.0 32.122 - 4.7 0.00350 - 50.7 0.553 8.0 2100 0.389 114.8 30.682 - 48.5 0.00342 - 69.9 0.602 - 16.3 2150 0.420 78.2 29.594 - 92.4 0.00354 - 84.6 0.640 - 41.0 2200 0.424 41.2 28.734 - 137.7 0.00396 - 101.3 0.666 - 65.4 2250 0.388 2.9 27.277 175.2 0.00425 - 125.1 0.689 - 89.2 2300 0.302 - 37.2 24.568 126.4 0.00483 - 153.1 0.720 - 113.5 2350 0.188 - 78.8 20.404 78.5 0.00470 174.4 0.753 - 138.7 2400 0.066 - 123.6 16.281 33.8 0.00415 148.7 0.778 - 163.6 2450 0.034 55.1 12.661 - 8.6 0.00388 124.4 0.806 171.0 2500 0.104 12.1 9.738 - 48.2 0.00368 106.5 0.826 145.2 2550 0.154 - 17.7 7.577 - 85.7 0.00328 77.5 0.842 119.7 2600 0.191 - 44.6 5.905 - 121.7 0.00281 57.2 0.851 94.4 2700 0.250 - 94.4 3.679 169.8 0.00245 37.8 0.856 45.7 2750 0.278 - 118.4 2.921 136.7 0.00271 19.5 0.854 22.1 2800 0.309 - 142.0 2.330 104.5 0.00373 2.2 0.854 - 0.5 2850 0.343 - 165.3 1.874 72.7 0.00250 - 19.6 0.849 - 23.5 2900 0.382 171.0 1.518 41.5 0.00286 - 40.7 0.851 - 46.0 2950 0.420 147.7 1.226 10.6 0.00313 - 71.3 0.850 - 68.4 3000 0.459 124.6 0.985 - 19.8 0.00262 - 98.0 0.851 - 91.1 3050 0.498 102.9 0.782 - 49.0 0.00101 - 108.5 0.847 - 113.4 3100 0.542 79.6 0.641 - 76.9 0.00279 - 84.9 0.850 - 136.3 3150 0.577 56.4 0.531 - 105.1 0.00504 - 110.7 0.856 - 159.8 3200 0.603 33.6 0.439 - 133.3 0.00526 - 152.0 0.857 176.4 3250 0.628 11.0 0.363 - 161.1 0.00587 - 176.6 0.858 152.0 3300 0.654 - 11.9 0.303 171.0 0.00659 160.1 0.857 126.8 3350 0.661 - 35.4 0.250 143.7 0.00909 129.6 0.853 101.4 3400 0.678 - 57.0 0.208 115.4 0.00691 98.1 0.845 74.5 3450 0.692 - 80.2 0.157 88.5 0.00718 80.9 0.745 42.1 3500 0.704 - 103.7 0.158 71.5 0.01000 46.8 0.760 43.7 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 12 RF Device Data Freescale Semiconductor W - CDMA — 1805 - 1880 MHz + C13 VDD2 VDD1 C11 Z3 RF INPUT Z2 Z1 Z4 Z5 Z6 C1 1 2 G1 3 G2 4 5 NC DUT 16 NC 15 C3 C6 C7 Z8 C15 Z7 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT 6 C14 C16 7 NC 8 G2 9 G1 10 11 VGG1 R1 VGG2 R2 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C12 Z1 Z2 Z3 Z4 Z5 Z6 Z7 C10 C5 C8 C9 C2 0.0826″ x 0.5043″ Microstrip 0.0826″ x 0.3639″ Microstrip 0.0826″ x 0.4258″ Microstrip 0.0826″ x 0.3639″ Microstrip 0.0826″ x 0.3459″ Microstrip 0.0826″ x 0.9115″ Microstrip 0.0600″ x 0.1273″ Microstrip Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB 0.0800″ x 1.1139″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4220″ Microstrip 0.0830″ x 0.9030″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5 Figure 18. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 8. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C6, C7, C8, C9, C10, C11 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C12 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C13 470 μF, 63 V Electrolytic Capacitor, Radial MCGPR63V477M13X26 - RH Multicomp C14, C15, C16 1 pF Chip Capacitors ATC100B1R0BT500XT ATC R1, R2 5.6 KΩ, 1/4 W Chip Resistors CRCW12065601FKEA Vishay MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 13 W - CDMA — 1805 - 1880 MHz C13 C3 C11 C6 C7 TO272WB−16 MW7IC2040N Rev. 2 R1 C14 C2 CUT OUT AREA C1 C15 C16 C5 C8 C9 C10 C12 C4 R2 Figure 19. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 14 RF Device Data Freescale Semiconductor GSM EDGE — 1805 - 1880 MHz + VDD1 C13 C11 VDD2 C1 Z3 Z4 Z2 RF INPUT 1 2 G1 3 G2 4 5 NC Z5 C14 Z1 Z6 DUT 16 NC 15 C3 C6 C7 Z8 C15 Z7 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT 6 C16 7 NC 8 G2 9 G1 10 11 VGG1 R1 VGG2 R2 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C12 Z1 Z2 Z3 Z4 Z5 Z6 Z7 C10 C5 C8 C9 C2 0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.2315″ 0.0826″ x 0.1324″ 0.0826″ x 1.2574″ 0.0600″ x 0.1273″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB 0.0800″ x 1.3354″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.3575″ Microstrip 0.0830″ x 0.9675″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5 Figure 20. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 9. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C6, C7, C8, C9, C10, C11 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C12 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C13 470 μF, 63 V Electrolytic Capacitor, Radial MCGPR63V477M13X26 - RH Multicomp C14 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C15 1 pF Chip Capacitor ATC100B1R0BT500XT ATC C16 1.2 pF Chip Capacitor ATC100B1R2BT500XT ATC R1, R2 5.6 KΩ, 1/4 W Chip Resistors CRCW12065601FKEA Vishay MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 15 GSM EDGE — 1805 - 1880 MHz C13 C3 C11 C6 C7 C14 TO272WB−16 MW7IC2040N Rev. 2 C2 CUT OUT AREA C1 C15 C16 C5 C8 C9 C10 R1 C12 C4 R2 Figure 21. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 16 RF Device Data Freescale Semiconductor GSM EDGE — 1930 - 1990 MHz + C13 VDD2 VDD1 C11 Z3 RF INPUT Z2 Z1 Z4 Z5 Z6 C1 1 2 G1 3 G2 4 5 NC DUT 16 NC 15 C3 C6 C7 Z8 C15 Z7 14 Z10 Z11 Z12 Z13 Z14 RF OUTPUT 6 C14 C16 7 NC 8 G2 9 G1 10 11 VGG1 R1 VGG2 R2 Quiescent Current Temperature Compensation Z9 NC 13 12 C4 C12 Z1 Z2 Z3 Z4 Z5 Z6 Z7 C10 C5 C8 C9 C2 0.0826″ x 0.5043″ 0.0826″ x 0.3639″ 0.0826″ x 0.4258″ 0.0826″ x 0.3639″ 0.0826″ x 0.6544″ 0.0826″ x 0.6030″ 0.0600″ x 0.1273″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z8, Z9 Z10 Z11 Z12 Z13 Z14 PCB 0.0800″ x 1.6274″ Microstrip 0.3419″ x 0.1725″ Microstrip 0.3419″ x 0.4671″ Microstrip 0.0830″ x 0.4685″ Microstrip 0.0830″ x 0.8565″ Microstrip 0.0830″ x 0.2499″ Microstrip Rogers RO4350, 0.030″, εr = 3.5 Figure 22. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 10. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C6, C7, C8, C9, C10, C11 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C12 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C13 470 μF, 63 V Electrolytic Capacitor, Radial MCGPR63V477M13X26 - RH Multicomp C14 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C15, C16 0.8 pF Chip Capacitors ATC100B0R8BT500XT ATC R1, R2 5.6 KΩ, 1/4 W Chip Resistors CRCW12065601FKEA Vishay MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 17 GSM EDGE — 1930 - 1990 MHz C13 C3 C11 C6 C7 TO272WB−16 MW7IC2040N Rev. 2 C14 C2 CUT OUT AREA C1 C15 C16 C5 C8 C9 C10 R1 C12 C4 R2 Figure 23. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 18 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 19 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 20 RF Device Data Freescale Semiconductor MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 21 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 22 RF Device Data Freescale Semiconductor MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 23 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 24 RF Device Data Freescale Semiconductor MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 25 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 26 RF Device Data Freescale Semiconductor MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 RF Device Data Freescale Semiconductor 27 PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2009 • Initial Release of Data Sheet 1 Nov. 2009 • Updated Human Body Model ESD from Class 1C to 1B to reflect Human Body Model actual test data, p. 2 • Fig. 13, CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 45.2% Clipping, Single - Carrier Test Signal and Fig. 14, Single - Carrier W - CDMA Spectrum updated to show the undistorted input test signal, p. 9 • Added AN3789, Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages to Product Documentation, Application Notes, p. 28 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 28 MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 28 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved. MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1 Document Number: RF Device Data MW7IC2040N Rev. 1, 11/2009 Freescale Semiconductor 29