MIC2551 Micrel, Inc. MIC2551 USB Transceiver General Description Features The MIC2551 is a single chip transceiver that complies with the physical layer specifications of the Universal Serial Bus (USB) 2.0. It supports both full speed (12Mbps) and low speed (1.5Mbps) operation. It is also designed to operate down to 1.6V in order to be compatible with lower system voltages of most mobile systems. • Compliant to USB Specification Revision 2.0 for full speed (12Mbs) and low speed (1.5Mbps) operation • Compliant to IEC-61000-4.2 (Level 3) • Separate I/O supply with operation down to 1.6V • Integrated speed select termination supply • Very-low power consumption to meet USB suspendcurrent requirements • Small TSSOP and MLF® packages • No power supply sequencing requirements • Software controlled re-enumeration Applications • PDAs • Palmtops • Cell phones Ordering Information Part Number Standard Pb-Free Package MIC2551BTS MIC2551YTS 14-Pin TSSOP MIC2551BML MIC2551YML 16-Pin MLF® Typical Application System Supply Voltage MIC2551A VCC GPIO USB SIE Controller VIF VTRM CON OE# RCV VP VBUS VM SPD SUS D– VBUS VPU GND RS 20Ω/±1% 1.5k D+ D+ USB Port D– RS 20Ω/±1% 1.0µF (min) 10µF (max) GND 1µF 41206ESDA SurgX (See “Applications Information” for additional suppliers.) Typical Application Circuit MicroLeadFrame and MLF are registered trademarks of Amkor Technology. SurgX is a registered trademark of Cooper Electronics Technologies. Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com November 2008 1 M9999-112008 MIC2551 Micrel, Inc. Pin Configuration 14 VBUS SPD 2 13 VPU RCV 3 12 VTRM VP 4 NC VIF VBUS VPU VIF 1 16 15 14 13 11 D+ 10 D- CON 6 9 OE# GND 7 8 SUS 1 12 VTRM RCV 2 11 VP VM 3 4 10 9 D+ D– OE# 5 6 7 8 CON GND SUS NC VM 5 SPD 16-Pin MLF® (ML) 14-Pin TSSOP Pin Description Pin Number MIC2551BTS Pin Number MIC2551BML Pin Name I/O Pin Function 1 15 VIF I System Interface Supply Voltage: Used to provide reference supply voltage for system I/O interface signaling. 2 1 SPD I Edge Rate Control: A logic HIGH operates at edge rates for “full speed” operation. A logic LOW operates edge rates for “low speed” operation. 3 2 RCV* O Receive Data: Output for USB differential data. 4 3 VP* I/O If OE# = 1, VP = Receiver output (+) If OE# = 0, VP = Driver input (+) 5 4 VM* I/O If OE# = 1 VM, = Receiver output (-) If OE# = 0, VM = Driver input (-) 6 5 CON I 7 6 GND 8 7 SUS I Suspend: Active-High. Turns off internal circuits to reduce supply current. 9 9 OE#* I Output Enable: Active-Low. Enables the transceiver to transmit data onto the bus. When not active, the transceiver is in the receive mode. 10/11 10/11 D–, D+* I/O Differential data lines conforming to the USB standard. 12 12 VTRM O 3.3V Reference Supply Output: Requires a minimum 0.1µF decoupling capacitor for stability, 1µF recommended.4 13 13 VPU O Pull-up Supply Voltage Output: Used to connect 1.5kΩ pull-up speed detect resistor. If CON = 1, VPU is high impedance. If CON = 0, VPU = 3.3V. 14 14 VBUS I USB Bus Supply Voltage: Used to power USB transceiver and internal circuitry. 8,16 NC CONNECT (Input): Controls state of VPU. Refer to VPU pin description for detail. Ground Reference. No connect. * See Table 1 for description of logic states. M9999-112008 2 November 2008 MIC2551 Micrel, Inc. SUS OE# D+, D– RCV VP/VM Function 0 0 Driving Active Active Normal transmit mode 0 1 Receiving Active Active Normal receive mode 1 0 Hi-Z 0 Not active 1 1 Hi-Z 0 Active Low power state Receiving during suspend (low power state) (Note 1) Note 1. During suspend VP and VM are active in order to detect out of band signaling conditions. Table 1. Function Selection OE# = 0: Input Output Result VP VM D+ D- RCV 0 0 0 0 X SE0 0 1 0 1 0 Logic 0 1 0 1 0 1 Logic 1 1 1 1 1 X Undefined OE# = 1: Input Output Result D+ D- VP VM RCV 0 0 0 0 X SE0 0 1 0 1 0 Logic 0 1 0 1 0 1 Logic 1 1 1 1 1 X Undefined X - Undefined Table 2. Truth Table During Normal Mode November 2008 3 M9999-112008 MIC2551 Micrel, Inc. Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VBUS) ................................................. 6.5V All Other Inputs ............................................. –0.5V to 5.5V Ambient Storage Temperature ................. –65°C to +150°C Output Current (D+, D–) .......................................... ± 50mA Output Current (all others) ....................................... ±15mA Input Current ............................................................ ±50mA ESD, Note 3 VBUS, D+, D– ........................................................ ±11KV All other pins .......................................................... ±2KV Ambient Operating Temperature ................ –40°C to +85°C Package Thermal Resistance TSSOP (θJA) ..................................................... 100°C/W MLF® (θJA) .......................................................... 59°C/W DC Electrical Characteristics (System and USB Interface) (Note 7) VIF = 3.6V, VBUS = 5V unless otherwise noted; TA = 25°C. Bold indicates specifications over temperature, –40°C to 85°C. Symbol Parameter Max Units VBUS USB Supply Voltage 4.0 5.25 V VIF System I/F Supply Voltage 1.6 3.6 V VIL LOW-Level Input Voltage, Note 4 VIF–0.3 0.15VIF V VIH HIGH-Level Input Voltage, Note 4 0.85VIF VIF+0.3 V VOH HIGH-Level Output Voltage, Note 4 IOH = 20µA VOL LOW-Level Output Voltage, Note 4 IOL = 20µA IIL Input Leakage Current, Note 4 Symbol Parameter IIF IVBUS VIF Supply Current VBUS Supply Current Conditions Min Typ 0.9VIF V 0.1 V 5 µA Typ Max Units –5 Conditions Voltage Min SPD SUS OE# Load 1 0 1 1 5 µA 1 0 0 1 5 µA 0 0 1 1 5 µA 0 0 0 VBUS = 5.25V 1 5 µA 0 1 0 VIF = 3.6V 1 5 µA 1 0 0 325 650 µA 0 0 0 40 75 µA 1 0 1 800 1100 µA 1 0 0 3000 5000 µA 0 0 1 230 350 µA 0 0 0 400 700 µA 0 1 0 VBUS = 5.25V 130 200 µA 1 0 0 VIF = 3.6V 7.3 10 mA 0 0 0 3.6 5 mA f = 6MHz CLOAD = 50 pF, Note 7 f = 750kHz CLOAD = 600 pF Note 7 f = 6MHz CLOAD = 50 pF, Note 7 f = 750kHz CLOAD = 600 pF Note 7 IVPULEAK VPU Leakage Current CON = 1, VPU = 0V –5 5 µA IVIFLEAK VIF Leakage Current VIF = 3.6V, VBUS = 0V –5 5 µA VPU Pull-Up Output Voltage ITERM = 200µA, VBUS = 4.0 to 5.25V 3.0 3.6 V RSW Internal Pull-Up Termination ITERM = 10mA, VBUS = 4.0 to 5.25V 10 Ω IEC-1000-4-2 Air Discharge 10 pulses ±8 kV (D+, D–, VBUS only) 10 pulses ±9 kV 3.3 ESD Protection M9999-112008 Contact Discharge 4 November 2008 MIC2551 Micrel, Inc. DC Electrical Characteristics (Transceiver) (Note 7) Symbol Parameter Conditions Min Typ Max Units Hi-Z State Data Line Leakage (Suspend Mode) 0V < VIN < 3.3V, SUS = 1 –10 10 µA VDI Differential Input Sensitivity |(D+) – (D–)| 0.2 VCM Differential Common Mode Range Includes VDI range 0.8 2.5 V VSE Single Ended Receiver Threshold 0.8 2.0 V Leakage Current ILO Input Levels Receiver Hysteresis V 200 mV Output Levels VOL Static Output Low RL = 1.5kΩ to 3.6V VOH Static Output High RL = 15kΩ to GND CIN Transceiver Capacitance Pin to GND ZDRV Driver Output Resistance Steady state drive 2.8 0.3 V 3.6 V Capacitance 10 8 16 pF 24 Ω AC Electrical Characteristics (Notes 6, 7) Driver Characteristics (Low Speed) TR TF Transition Rise Time Transition Fall Time TR, TF Rise/Fall Time Matching VCRS Output Signal Crossover Voltage CL = 50pF, Figure 2 CL = 600pF 75 ns CL = 50pF, Figure 2 CL = 600pF 75 (TR, TF) 80 125 % 1.3 2.0 V 300 ns 300 Driver Characteristics (Full Speed) TR Transition Rise Time CL = 50pF, Figure 2 4 20 ns TF Transition Fall Time CL = 50pF, Figure 2 4 20 ns TR, TF Rise/Fall Time Matching (TR, TF) 90 111.11 % VCRS Output Signal Crossover Voltage 1.3 2.0 V 15 ns Transceiver Timing tPVZ OE# to RCVR Tri-State Delay Figure 1 tPZD Receiver Tri-State to Transmit Delay Figure 1 tPDZ OE# to DRVR Tri-State Delay Figure 1 tPZV Driver Tri-State to Receive Delay Figure 1 tPLH tPHL VP, VM to D+, D– Propagation Delay Figure 4 15 ns tPLH tPHL D+, D– to RCV Propagation Delay Figure 3 15 ns tPLH tPHL D+, D– to VP, VM Propagation Delay Figure 3 8 ns 15 15 15 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Note 4. Specification applies to the following pins: SUS, SPD, RCV, CON, RCV, VP, VM, OE#. Note 5. Characterized specification(s), but not production tested. Note 6. All AC parameters guaranteed by design but not production tested. Note 7. Specification for packaged product only. November 2008 ns 5 ns ns M9999-112008 MIC2551 Micrel, Inc. Timing Diagrams RECEIVE TRANSMIT OE# tPVZ tPZV VP/VM tPZD tPDZ D+/D– Figure 1. Enable and Disable Times Rise Time Differential Data Lines Fall Time 90% 90% 10% 10% tR tF Figure 2. Rise and Fall Times D+ VCRS D– Differential Data Lines VCRS tPHL tPLH VOH VOL VSS Figure 3. Receiver Propagation Delay VOH VOL D+ tPHL tPLH VCRS D– Differential Data Lines VCRS Figure 4. Driver Propagation Delay Test Circuits D.U.T. 25pF Figure 5. Load for VP, VM, RCV VTRM 15k D.U.T. 20Ω 15k CL Figure 6. Load for D+, D– M9999-112008 6 November 2008 MIC2551 Micrel, Inc. Functional Diagram To Internal Circuitry LDO Regulator VBUS VIF VTERM VPU CON D+ SPD OE# D– Level Translator RCV VP VM SUS GND MIC2551 Block Diagram Functional Description The MIC2551 is designed to provide USB connectivity in mobile systems where available system supply voltages are not able to satisfy USB requirements. The MIC2551 can operate down to supply voltages of 1.6V and still meet USB physical layer specifications. As shown in the circuit above, the MIC2551 takes advantage of the USB supply voltage, VBUS, to operate the transceiver. The system voltage, VIF, is used to set the reference voltage used by the digital I/O lines interfacing to the system controller. Internal circuitry provides translation between the USB and system voltage domains. VIF will typically be the main supply voltage rail for the controller. November 2008 In addition, a 3.3V, 10% termination supply voltage, VPU, is provided to support speed selection. VPU can be disabled or enabled under software control via the CON input. This allows for software-controlled connect or disconnect states. A 1.5k resistor is required to be connected between this pin and the D+ or D– lines to respectively specify high speed or low speed operation. The use of ESD transient protection devices is not required for operation, but is recommended. The MIC2551 is ESD rated for 11kV at the VBUS and D+, D– pins and 2kV for all other pins. 7 M9999-112008 MIC2551 Micrel, Inc. Signal Amplitude Respective to VIF When operating the MIC2551, it is necessary to provide input signals which do not exceed VIF + 0.3V. External ESD Protection The use of ESD transient protection devices is not required for operation, but is recommended. We recommend the following devices or the equivalent: Cooper Electronic Technologies (www.cooperet.com) 41206ESDA SurgX 0805ESDA SurgX Application Information Power Supply Configuration The MIC2551 can be set up for different power supply configurations which modify the behavior of the device. Both VBUS and VIF have special thresholds that detect when they are either removed or grounded. Table 3 depicts the behavior under the different power supply configuration scenarios that are explained below. Normal Mode VBUS is connected to the 5.0V USB bus voltage and VIF is connected to a supply voltage in the range of 1.6V to 3.6V. In this case VTRM supplies a 3.3V voltage for powering the speed select resistor via VPU depending on the state of the CON pin. Littelfuse (www.littelfuse.com) V0402MHS05 SP0503BAHT Non-Multiplexed Bus In order to save pin count for the USB logic controller interface, the MIC2551 was designed with VP and VM as bidirectional pins. To interface the MIC2551 with a non-multiplexed data bus, resistors can be used for low cost isolation as shown in Figure 8. Disconnect Mode VIF is connected to a supply in a range of 1.6V to 3.6V and VBUS is open or grounded. If VBUS is opened while transmitting, the data lines (D+, D–) have sharing capability and may be driven with external devices up to approximately 3.6V if, and only if, SUSPEND is enabled (SUS = 1). With VBUS ground, D+, D– sharing mode is not permitted. USB Logic Controller (SIE) Disable Mode VBUS is connected to the 5.0V USB bus voltage and VIF is open. All logic controlled inputs become high impedances, thus minimal current will be supplied by VIF if the input pins are pulled up to an external source. Alternate Power Supply Configuration Options MIC2551 VP VP 10k VPO VM VM 10k VMO I/O Interface Using 3.3V In systems where the I/O interface utilizes a 3.3V USB controller, an alternate solution is shown in Figure 7. No extra components are required; however, the load on VTRM must not exceed 10mA. Figure 8. MIC2551 Interface to Non-Multiplexed Data Bus 3.3V MIC2551 VDD VBUS VBUS VIF USB Controller I/O VP/VM/ VTRM RCV/OE# Figure 7. I/O Interface Uses 3.3V Configuration Mode VBUS/VTRM VIF Connected Connected Normal supply configuration and operation. Open Connected VP/VM are HIGH outputs, RCV is LOW. With OE# = 0 and SUS = 1, data lines may be driven with external devices up to 3.6V. With D+, D– floating, IIF draws less than 1µA. Ground Connected VP/VM are HIGH outputs, RCV is LOW. With D+, D– floating, IIF draws less than 1µA. Disable Mode Connected Open Prohibited Connected Ground Normal Disconnect (D+/D– sharing) Disconnect Notes Logic controlled inputs pins are Hi-Z. Prohibited condition. Table 3. Power Supply Configuration M9999-112008 8 November 2008 MIC2551 Micrel, Inc. PCB Layout Recommendations Although the USB standard and applications are not based in an impedance controlled environment, a properly designed PCB layout is recommended for optimal transceiver performance. The suggested PCB layout hints are as follows: • Match signal line traces (VP/VM, D+, D–) to 40ps, approximately 1/3 inch if possible. FR-4 PCB material propagation is about 150ps/inch, so to minimize skew try to keep VP/VM, D+/D– traces as short as possible. • For every signal line trace width (w), separate the signal lines by 1.5–2 widths. Place all other traces at >2 widths from all signal line traces. • Maintain the same number of vias on each differential trace, keeping traces approximately at same separation distance along the line. • Control signal line impedances to ±10%. • Keep RS as close to the IC as possible, with equal distance between RS and the IC for both D+ and D–. November 2008 9 M9999-112008 MIC2551 Micrel, Inc. Package Information 4.50 (0.177) 6.4 BSC (0.252) 4.30 (0.169) DIMENSIONS: MM (INCH) 0.30 (0.012) 0.19 (0.007) 5.10 (0.200) 4.90 (0.193) 0.20 (0.008) 0.09 (0.003) 1.10 MAX (0.043) 0.65 BSC (0.026) 1.00 (0.039) REF 8° 0° 0.15 (0.006) 0.05 (0.002) 0.70 (0.028) 0.50 (0.020) 14-lead TSSOP (TS) 0.42 +0.18 –0.18 0.23 +0.07 –0.05 0.85 +0.15 –0.65 0.01 +0.04 –0.01 3.00BSC 1.60 +0.10 –0.10 0.65 +0.15 –0.65 0.20 REF. 2.75BSC 0.42 PIN 1 ID +0.18 –0.18 N 16 1 1 0.50 DIA 2 2 2.75BSC 3.00BSC 3 3 1.60 +0.10 –0.10 4 4 12° max 0.42 +0.18 –0.18 SEATING PLANE BOTTOM VIEW CC 0.23 +0.07 –0.05 4 0.5BSC 0.40 +0.05 –0.05 1.5 REF TOP VIEW CL 0.5 BSC 0.01 +0.04 –0.01 SECTION "C-C" SCALE: NONE 1. 2. 3. 4. DIMENSIONS ARE IN mm. DIE THICKNESS ALLOWABLE IS 0.305mm MAX. PACKAGE WARPAGE MAX 0.05mm. THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20mm AND 0.25mm FROM TIP. 5. APPLIES ONLY FOR TERMINALS FOR EVEN TERMINAL/SIDE Rev. 02 16-Pin M9999-112008 MLF® 10 (ML) November 2008 MIC2551 Micrel, Inc. 16-Pin MLF® (ML) MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2004 Micrel, Incorporated. November 2008 11 M9999-112008