1Gb DDR3 SDRAM K4B1G04(08/16)46D 1Gb D-die DDR3 SDRAM Specification 82 / 100 FBGA with Lead-Free & Halogen-Free (RoHS Compliant) CAUTION : * This document includes some items still under discussion in JEDEC. * Therefore, those may be changed without pre-notice based on JEDEC progress. * And it’s highly recommended not to send the spec without Samsung’s permission. INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND. 1. For updates or additional information about Samsung products, contact your nearest Samsung office. 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. * Samsung Electronics reserves the right to change products or specification without notice. Page 1 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Revision History Revision Month Year 1.0 March 2008 - First release 2008 - Changed Current Specification - Corrected Typo 1.1 August History Page 2 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Table Contents 1.0 Ordering Information ................................................................................................................... 5 2.0 Key Features ................................................................................................................................ 5 3.0 Package pinout/Mechanical Dimension & Addressing ............................................................ 6 3.1 x4 Package Pinout (Top view) : 82ball FBGA Package(78balls + 4 balls of support balls) ..................... 6 3.2 x8 Package Pinout (Top view) : 82ball FBGA Package(78balls + 4 balls of support balls) ..................... 7 3.3 x16 Package Pinout (Top view) : 100ball FBGA Package(96balls + 4 balls of support balls) ................. 8 3.4 FBGA Package Dimension (x4/x8) ................................................................................................. 9 3.5 FBGA Package Dimension (x16) .................................................................................................. 10 4.0 Input/Output Functional Description ....................................................................................... 11 5.0 DDR3 SDRAM Addressing ........................................................................................................ 12 6.0 Absolute Maximum Ratings ...................................................................................................... 13 6.1 Absolute Maximum DC Ratings ................................................................................................... 13 6.2 DRAM Component Operating Temperature Range ......................................................................... 13 7.0 AC & DC Operating Conditions ................................................................................................ 13 7.1 Recommended DC operating Conditions (SSTL_1.5) ...................................................................... 13 8.0 AC & DC Input Measurement Levels ........................................................................................ 14 8.1 AC and DC Logic input levels for single-ended signals .................................................................. 14 8.2 VREF Tolerances ........................................................................................................................ 15 8.3 AC and DC Logic Input Levels for Ditterential Signals .................................................................... 16 8.3.1 Differential signal definition ................................................................................................ 16 8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .............................. 16 8.3.3 Single-ended requirements for differential signals ................................................................. 17 8.4 Differential Input Cross Point Voltage .......................................................................................... 18 8.5 Slew Rate Definition for Single Ended Input Signals ...................................................................... 18 8.6 Slew rate definition for Differential Input Signals ........................................................................... 18 9.0 AC and DC Output Measurement Levels.................................................................................. 19 9.1 Single Ended AC and DC Output Levels ....................................................................................... 19 9.2 Differential AC and DC Output Levels .......................................................................................... 19 9.3.Single Ended Output Slew Rate ................................................................................................... 19 9.4 Differential Output Slew Rate ...................................................................................................... 20 9.5 Reference Load for AC Timing and Output Slew Rate ..................................................................... 20 9.6 Overshoot/Undershoot Specification ........................................................................................... 21 9.6.1 Address and Control Overshoot and Undershoot specifications ............................................. 21 9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications ................................. 21 9.7 34 ohm Output Driver DC Electrical Characteristics ....................................................................... 22 9.7.1 Output Drive Temperature and Voltage sensitivity ................................................................. 23 9.8 On-Die Termination (ODT) Levels and I-V Characteristics ............................................................... 23 9.8.1 ODT DC electrical characteristics ........................................................................................ 24 9.8.2 ODT Temperature and Voltage sensitivity ............................................................................. 25 9.9 ODT Timing Definitions .............................................................................................................. 26 9.9.1 Test Load for ODT Timings ................................................................................................. 26 9.9.2 ODT Timing Definition ........................................................................................................ 26 Page 3 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 10.0 Idd Specification Parameters and Test Conditions .............................................................. 29 10.1 IDD Measurement Conditions ................................................................................................... 29 10.2 IDD Specifications definition .................................................................................................... 29 11.0 1Gb DDR3 SDRAM D-die IDD Spec Table .............................................................................. 38 12.0 Input/Output Capacitance ....................................................................................................... 40 13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 .............................. 41 13.1 Clock specification ................................................................................................................. 41 13.1.1 Definition for tCK (avg) ................................................................................................... 41 13.1.2 Definition for tCK (abs) ................................................................................................... 41 13.1.3 Definition for tCH(avg) and tCL(avg) ................................................................................. 41 13.1.4 Definition for note for tJIT(per), tJIT(per,lck) ..................................................................... 41 13.1.5 Definition for tJIT(cc), tJIT(cc,lck) .................................................................................... 41 13.1.6 Definition for tERR(nper) ................................................................................................ 41 13.2 Refresh Parameters by Device Density ...................................................................................... 42 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ............................................ 42 13.3.1 Speed Bin Table Notes ................................................................................................... 44 14.0 Timing Parameters by Speed Grade ...................................................................................... 45 14.1 Jitter Notes ............................................................................................................................ 48 14.2 Timing Parameter Notes .......................................................................................................... 49 14.3 Address / Command Setup, Hold and Derating: .......................................................................... 50 14.4 Data Setup, Hold and Slew Rate Derating: ................................................................................. 56 Page 4 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 1.0 Ordering Information [ Table 1 ] Samsung 1Gb DDR3 D-die ordering information table Organization DDR3-800 (6-6-6) DDR3-1066 (7-7-7) DDR3-1333 (9-9-9) DDR3-1600 Package 256Mx4 K4B1G0446D-HCF7 K4B1G0446D-HCF8 K4B1G0446D-HCH9 TBD 82 FBGA 128Mx8 K4B1G0846D-HCF7 K4B1G0846D-HCF8 K4B1G0846D-HCH9 TBD 82 FBGA 64Mx16 K4B1G1646D-HCF7 K4B1G1646D-HCF8 K4B1G1646D-HCH9 TBD 100 FBGA Note : 1. Speed bin is in order of CL-tRCD-tRP. 2. x4/x8/x16 Package - including 4 support balls 2.0 Key Features [ Table 2 ] 1Gb DDR3 D-die Speed bins Speed tCK(min) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 TBD 2.5 1.875 1.5 TBD ns Unit CAS Latency 6 7 9 TBD nCK tRCD(min) 15 13.125 13.5 TBD ns tRP(min) 15 13.125 13.5 TBD ns tRAS(min) 37.5 37.5 36 TBD ns tRC(min) 52.5 50.625 49.5 TBD ns • JEDEC standard 1.5V ± 0.075V Power Supply • VDDQ = 1.5V ± 0.075V • 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin • 8 Banks • Posted CAS • Programmable CAS Latency(posted CAS): 6, 7, 8, 9, 10 • Programmable Additive Latency: 0, CL-2 or CL-1 clock • Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600) • 8-bit pre-fetch • Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] The 1Gb DDR3 SDRAM D-die is organized as a 32Mbit x 4 I/Os x 8banks, 16Mbit x 8 I/Os x 8banks or 8Mbit x 16 I/Os x 8 banks device. This synchronous device achieves high speed double-data-rate transfer rates of up to 1600Mb/sec/pin (DDR3-1600) for general applications. The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset . All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR3 device operates with a single 1.5V ± 0.075V power supply and 1.5V ± 0.075V VDDQ. The 1Gb DDR3 D-die device is available in 82ball FBGAs(x4/x8) and 100ball FBGA(x16) • Bi-directional Differential Data-Strobe • Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%) Note : 1. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. • On Die Termination using ODT pin • Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at 85°C < TCASE < 95 °C • Asynchronous Reset • Package : 82 balls FBGA - x4/x8 (with 4 support balls) 100 balls FBGA - x16 (with 4 support balls) • All of Lead-Free products are compliant for RoHS • All of products are Halogen-free Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing Diagram”. Page 5 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 3.0 Package pinout/Mechanical Dimension & Addressing 3.1 x4 Package Pinout (Top view) : 82ball FBGA Package(78balls + 4 balls of support balls) 1 2 NC 3 4 5 6 7 8 9 10 11 NC VSS VDD NC NC VSS VDD B VSS VSSQ DQ0 DM VSSQ VDDQ B C VDDQ DQ2 DQS DQ1 DQ3 VSSQ C D VSSQ NC DQS VDD VSS VSSQ D E VREFDQ VDDQ NC NC NC VDDQ E F NC VSS RAS CK VSS NC F G ODT VDD CAS CK VDD CKE G H NC CS WE A10/AP ZQ NC H J VSS BA0 BA2 NC VREFCA VSS J K VDD A3 A0 A12/BC BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD M VSS RESET A13 NC A8 VSS A N NC NC A N Note : Green NC balls (A1, A11, N1 and N11) indicate mechanical support balls with no internal connection. 1 Ball Locations (x4) 2 3 4 5 6 7 8 9 10 11 A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N Page 6 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 3.2 x8 Package Pinout (Top view) : 82ball FBGA Package(78balls + 4 balls of support balls) 3 4 VSS VDD NC B VSS VSSQ C VDDQ DQ2 A 1 2 NC 5 6 7 8 9 10 11 NC NU/TDQS VSS VDD DQ0 DM/TDQS VSSQ VDDQ B DQS DQ1 DQ3 VSSQ C A D VSSQ DQ6 DQS VDD VSS VSSQ D E VREFDQ VDDQ DQ4 DQ7 DQ5 VDDQ E F NC VSS RAS CK VSS NC F G ODT VDD CAS CK VDD CKE G H NC CS WE A10/AP ZQ NC H J VSS BA0 BA2 NC VREFCA VSS J K VDD A3 A0 A12/BC BA1 VDD K L VSS A5 A2 A1 A4 VSS L M VDD A7 A9 A11 A6 VDD VSS RESET A13 NC A8 VSS N NC M NC N Note : Green NC balls (A1, A11, N1 and N11) indicate mechanical support balls with no internal connection. Ball Locations (x8) 1 2 3 4 5 6 7 8 9 10 11 A B Populated ball Ball not populated C D E F G Top view (See the balls through the package) H J K L M N Page 7 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 3.3 x16 Package Pinout (Top view) : 100ball FBGA Package(96balls + 4 balls of support balls) 1 2 3 4 NC VDDQ DQU5 DQU7 B VSSQ VDD VSS C VDDQ DQU3 DQU1 D VSSQ VDDQ E VSS VSSQ F VDDQ DQL2 DQSL G VSSQ DQL6 DQSL VDD H VREFDQ VDDQ DQL4 DQL7 J NC VSS RAS CK K ODT VDD CAS L NC CS WE M VSS BA0 BA2 N VDD A3 A0 P VSS A5 A2 R VDD A7 A9 VSS RESET NC A T NC 5 6 7 8 9 10 11 DQU4 VDDQ VSS NC DQSU DQU6 VSSQ B DQSU DQU2 VDDQ C DMU DQU0 VSSQ VDD D DQL0 DML VSSQ VDDQ E DQL1 DQL3 VSSQ F VSS VSSQ G DQL5 VDDQ H VSS NC J CK VDD CKE K A10/AP ZQ NC L NC VREFCA VSS M A12/BC BA1 VDD N A1 A4 VSS P A11 A6 VDD NC A8 VSS A R NC T Note : Green NC balls (A1, A11, T1 and T11) indicate mechanical support balls with no internal connection. 1 2 3 4 5 6 7 8 9 10 11 A B Ball Locations (x16) C D E Populated ball Ball not populated F G H J K Top view (See the balls through the package) L M N P R T Page 8 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 3.4 FBGA Package Dimension (x4/x8) Units : Millimeters 9.00 ± 0.10 A 0.80 x 10 = 8.00 (Datum A) 0.80 1.60 #A1 INDEX MARK 4.00 B (0.95) 82 - ∅0.45 Solder ball (Post Reflow ∅0.50 ± 0.05) 0.2 M A B 11.00 ± 0.10 4.80 0.80 0.80 (Datum B) A B C D E F G H J K L M N 0.80 x 12 = 9.60 11 10 9 8 7 6 5 4 3 2 1 MOLDING AREA (1.90) 0.10MAX BOTTOM VIEW 9.00 ± 0.10 11.00 ± 0.10 #A1 0.35 ± 0.05 TOP VIEW Page 9 of 60 1.10 ± 0.10 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 3.5 FBGA Package Dimension (x16) Units : Millimeters 9.00 ± 0.10 A 0.80 x 10 = 8.00 #A1 INDEX MARK 0.80 1.60 4.00 B 11 10 9 8 7 6 5 4 3 2 1 13.30 ± 0.10 (0.95) 100 - ∅0.45 Solder ball (Post Reflow ∅0.50 ± 0.05) MOLDING AREA (1.90) BOTTOM VIEW 0.10MAX 0.2 M A B 0.80 x 15 = 12.00 6.00 0.40 (Datum B) A B C D E F G H J K L M N P R T 0.80 (Datum A) 9.00 ± 0.10 13.30 ± 0.10 #A1 0.35 ± 0.05 1.10 ± 0.10 TOP VIEW Page 10 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 4.0 Input/Output Functional Description [ Table 3 ] Input/Output function description Symbol Type Function CK, CK Input Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become CKE Input CS Input Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple Ranks. CS is considered part of the command code. ODT Input On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT. RAS, CAS, WE Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered. DM (DMU), (DML) Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1. BA0 - BA2 Input Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS cycle. Input Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions, see below) The address inputs also provide the op-code during Mode Register Set commands. A10 / AP Input Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge) A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses. A12 / BC Input Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details RESET Input Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH. RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD, i.e. 1.20V for DC high and 0.30V for DC low. DQ Input/Output Data Input/ Output: Bi-directional data bus. Input/Output Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide differential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and does not support single-ended. Output Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/ x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1. A0 - A13 DQS, (DQS) TDQS, (TDQS) NC stable during the power on and initialization sequence, it must be maintained during all operations (including SelfRefresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh. No Connect: No internal electrical connection is present. VDDQ Supply DQ Power Supply: 1.5V +/- 0.075V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.5V +/- 0.075V VSS Supply Ground VREFDQ Supply Reference voltage for DQ VREFCA Supply Reference voltage for CA ZQ Supply Reference Pin for ZQ calibration Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination. Page 11 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 5.0 DDR3 SDRAM Addressing 1Gb Configuration 256Mb x 4 128Mb x 8 64Mb x 16 # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A13 A0 - A13 A0 - A12 Column Address A0 - A9,A11 A0 - A9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC 1 KB 1 KB 2 KB 512Mb x 4 256Mb x 8 128Mb x 16 Page size *1 2Gb Configuration # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A14 A0 - A14 A0 - A13 Column Address A0 - A9,A11 A0 - A9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC Page size *1 1 KB 1 KB 2 KB Configuration 1Gb x 4 512Mb x 8 256Mb x 16 4Gb # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A15 A0 - A15 A0 - A14 Column Address A0 - A9,A11 A0 - A9 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC Page size *1 1 KB 1 KB 2 KB Configuration 2Gb x 4 1Gb x 8 512Mb x 16 8Gb # of Bank 8 8 8 Bank Address BA0 - BA2 BA0 - BA2 BA0 - BA2 Auto precharge A10/AP A10/AP A10/AP Row Address A0 - A15 A0 - A15 A0 - A15 Column Address A0 - A9,A11,A13 A0 - A9,A11 A 0 - A9 BC switch on the fly A12/BC A12/BC A12/BC Page size *1 2 KB 2 KB 2 KB Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG÷8 where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits Page 12 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 6.0 Absolute Maximum Ratings 6.1 Absolute Maximum DC Ratings [ Table 4 ] Absolute Maximum DC Ratings Symbol Parameter Rating Units Notes VDD Voltage on VDD pin relative to Vss -0.4 V ~ 1.975 V V 1,3 VDDQ Voltage on VDDQ pin relative to Vss -0.4 V ~ 1.975 V V 1,3 VIN, VOUT Voltage on any pin relative to Vss -0.4 V ~ 1.975 V V 1 TSTG Storage Temperature -55 to +100 °C 1, 2 Note : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 6.2 DRAM Component Operating Temperature Range [ Table 5 ] Temperature Range Symbol Parameter rating Unit Notes TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3 Note : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b) 7.0 AC & DC Operating Conditions 7.1 Recommended DC operating Conditions (SSTL_1.5) [ Table 6 ] Recommended DC Operating Conditions Symbol VDD VDDQ Parameter Rating Units Notes 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 Note : 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. Page 13 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 8.0 AC & DC Input Measurement Levels 8.1 AC and DC Logic input levels for single-ended signals [ Table 7 ] Single Ended AC and DC input levels for Command and Address Symbol Parameter DDR3-800/1066 DDR3-1333/1600 Min. Max. Min. Max. Unit Notes VIH.CA(DC) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1 VIL.CA(DC) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1 VIH.CA(AC) AC input logic high VREF + 175 - VREF + 175 - mV 1,2 VIL.CA(AC) AC input logic low - VREF - 175 - VREF - 175 mV 1,2 VIH.CA(AC150) AC input logic high - - VREF+150 - mV 1,2 VIL.CA(AC150) AC input logic lowM - - - VREF-150 mV 1,2 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 Unit Notes VREFCA(DC) Reference Voltage for ADD, CMD inuts Note : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See 9.6 "Overshoot and Undershoot specifications" 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV [ Table 8 ] Single Ended AC and DC input levels for DQ and DM Symbol Parameter DDR3-800/1066 DDR3-1333/1600 Min. Max. Min. Max. VIH.DQ(DC) DC input logic high VREF + 100 VDD VREF + 100 VDD mV 1 VIL.DQ(DC) DC input logic low VSS VREF - 100 VSS VREF - 100 mV 1 VIH.DQ(AC) AC input logic high VREF + 175 - VREF + 150 - mV 1,2,5 VIL.DQ(AC) AC input logic low - VREF - 175 - VREF - 150 mV 1,2,5 VREFDQ(DC) I/O Reference Voltage(DQ) 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 Note : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See "Overshoot and Undershoot specifications" 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak). Page 14 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 8.2 VREF Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in table 7. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. Page 15 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 8.3 AC and DC Logic Input Levels for Ditterential Signals 8.3.1 Differential signal definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2 : Definition of differential ac-swing and "time above ac level" tDVAC 8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) [ Table 9 ] Differential AC and DC Input Levels Symbol Parameter VIHdiff DDR3-800/1066/1333/1600 unit Note note 3 V 1 note 3 -0.2 V 1 differential input high ac 2 x (VIH(AC)-VREF) note 3 V 2 differential input low ac note 3 2 x (VREF - VIL(AC)) V 2 min max differential input high +0.2 VILdiff differential input low VIHdiff(AC) VILdiff(AC) Notes: 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet Specification " [ Table 10 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS. Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV min max tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV min max > 4.0 75 - 175 - 4.0 57 - 170 - 3.0 50 - 167 - 2.0 38 - 163 - 1.8 34 - 162 - 1.6 29 - 161 - 1.4 22 - 159 - 1.2 13 - 155 - 1.0 0 - 150 - < 1.0 0 - 150 - Page 16 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 8.3.3 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle preceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 3 : Single-ended requirement for differential signals. Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode charateristics of these signals. [ Table 11 ] Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU Symbol VSEH VSEL Parameter DDR3-800/1066/1333/1600 Unit Notes Note3 V 1, 2 Note3 V 1, 2 Note3 (VDD/2)-0.175 V 1, 2 Note3 (VDD/2)-0.175 V 1, 2 Min Max Single-ended high-level for strobes (VDD/2)+0.175 Single-ended high-level for CK, CK (VDD/2)+0.175 Single-ended low-level for strobes Single-ended low-level for CK, CK Notes: 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" Page 17 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 8.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 4. VIX Definition [ Table 12 ] Cross point voltage for differential input signals (CK, DQS) Symbol DDR3-800/1066/1333/1600 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit Min Max -150 150 mV -175 175 mV -150 150 mV Notes 1 Note : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for VSEL and VSEH standard values. 8.5 Slew Rate Definition for Single Ended Input Signals See 14.3 "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See 14.4 "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF 8.6 Slew rate definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5. [ Table 13 ] Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) From To VILdiffmax VIHdiffmin VIHdiffmin Defined by VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax VILdiffmax Delta TFdiff Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 5. Differential Input Slew Rate definition for DQS, DQS and CK, CK Page 18 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.0 AC and DC Output Measurement Levels 9.1 Single Ended AC and DC Output Levels [ Table 14 ] Single Ended AC and DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units VOH(DC) DC output high measurement level (for IV curve linearity) 0.8 x VDDQ V Notes VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 9.2 Differential AC and DC Output Levels [ Table 15 ] Differential AC and DC output levels Symbol Parameter DDR3-800/1066/1333/1600 Units Notes VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V 1 VOLdiff(DC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. 9.3.Single Ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 16 and figure 6. [ Table 16 ] Single Ended Output slew rate definition Measured Description Single ended output slew rate for rising edge To VOL(AC) VOH(AC) VOH(AC) Single ended output slew rate for falling edge Defined by From VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) VOL(AC) Delta TFse Note : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 17 ] Single Ended Output slew rate Parameter Single ended output slew rate Symbol SRQse DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max Min Max 2.5 5 2.5 5 2.5 5 TBD 5 Units V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output se : Singe-ended Signals For Ron = RZQ/7 setting VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 6. Single Ended Output Slew Rate definition Page 19 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown inTable 18 and figure 7. [ Table 18 ] Differential Output slew rate definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) Delta TFdiff Note : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 19 ] Differential Output slew rate Parameter Differential output slew rate Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Min Max Min Max Min Max Min Max 5 10 5 10 5 10 TBD 10 SRQse Units V/ns Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output diff : Singe-ended Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 7. Differential Output Slew Rate definition 9.5 Reference Load for AC Timing and Output Slew Rate Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK/CK DUT DQ DQS DQS VTT = VDDQ/2 25Ω Reference Point Figure 8. Reference Load for AC Timing and Output Slew Rate Page 20 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.6 Overshoot/Undershoot Specification 9.6.1 Address and Control Overshoot and Undershoot specifications [ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT) Specification Parameter Unit DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Maximum peak amplitude allowed for overshoot area (See Figure 9) 0.4V 0.4V 0.4V 0.4V V Maximum peak amplitude allowed for undershoot area (See Figure 9) 0.4V 0.4V 0.4V 0.4V V Maximum overshoot area above VDD (See Figure 9) 0.67V-ns 0.5V-ns 0.4V-ns 0.33V-ns V-ns Maximum undershoot area below VSS (See Figure 9) 0.67V-ns 0.5V-ns 0.4V-ns 0.33V-ns V-ns Maximum Amplitude Volts (V) Overshoot Area VDD VSS Undershoot Area Maximum Amplitude Time (ns) Figure 9. Address and Control Overshoot and Undershoot definition 9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications [ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK) Specification Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Unit Maximum peak amplitude allowed for overshoot area (See Figure 11) 0.4V 0.4V 0.4V 0.4V V Maximum peak amplitude allowed for undershoot area (See Figure 11) 0.4V 0.4V 0.4V 0.4V V Maximum overshoot area above VDDQ (See Figure 11) 0.25V-ns 0.19V-ns 0.15V-ns 0.13V-ns V-ns Maximum undershoot area below VSSQ (See Figure 11) 0.25V-ns 0.19V-ns 0.15V-ns 0.13V-ns V-ns Maximum Amplitude Volts (V) Overshoot Area VDDQ VSSQ Maximum Amplitude Undershoot Area Time (ns) Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot definition Page 21 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.7 34 ohm Output Driver DC Electrical Characteristics A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ as follows: RON34 = RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm) RON40 = RZQ/6 (Nominal 40ohms +/- 10% with nominal RZQ=240ohm) The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows VDDQ-VOUT RONpu = under the condition that RONpd is turned off l Iout l VOUT RONpd = under the condition that RONpu is turned off l Iout l Output Driver : Definition of Voltages and Currents Output Driver VDDQ Ipu To other circuity RON Pu DQ Iout RON Pd Vout Ipd VSSQ Figure 11. Output Driver : Definition of Voltages and Currents [ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ; entire operating temperature range; after proper ZQ calibration RONnom Resistor RON34pd 34Ohms RON34pu RON40pd 40Ohms RON40pu Mismatch between Pull-up and Pull-down, MMpupd Vout Min Nom Max VOLdc = 0.2 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.4 VOLdc = 0.2 x VDDQ 0.9 1.0 1.4 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.1 1,2,3 VOLdc = 0.2 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.9 1.0 1.4 VOLdc = 0.2 x VDDQ 0.9 1.0 1.4 VOMdc = 0.5 x VDDQ 0.9 1.0 1.1 1,2,3 VOHdc = 0.8 x VDDQ 0.6 1.0 1.1 1,2,3 VOMdc = 0.5 x VDDQ -10 10 Units RZQ/7 RZQ/6 % Notes 1,2,3 1,2,3 1,2,3 1,2,3 1,2,4 Note : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ 4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ: MMpupd = RONpu - RONpd RONnom x 100 Page 22 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.7.1 Output Drive Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to table 23 and 24. ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ *dRONdT and dRONdV are not subject to production test but are verified by design and characterization [ Table 23 ] Output Driver Sensitivity Definition Min Max Units RONPU@VOHDC 0.6 - dRONdTH * |∆T| - dRONdVH * |∆V| 1.1 + dRONdTH * |∆T| + dRONdVH * |∆V| RZQ/7 RON@VOMDC 0.9 - dRONdTM * |∆T| - dRONdVM * |∆V| 1.1 + dRONdTM * |∆T| + dRONdVM * |∆V| RZQ/7 RONPD@VOLDC 0.6 - dRONdTL * |∆T| - dRONdVL * |∆V| 1.1 + dRONdTL * |∆T| + dRONdVL * |∆V| RZQ/7 [ Table 24 ] Output Driver Voltage and Temperature Sensitivity Speed Bin 800/1066/1333 1600 Units Min Max Min Max dRONdTM 0 1.5 0 1.5 %/°C dRONdVM 0 0.15 0 0.13 %/mV dRONdTL 0 1.5 0 1.5 %/°C dRONdVL 0 0.15 0 0.13 %/mV dRONdTH 0 1.5 0 1.5 %/°C dRONdVH 0 0.15 0 0.13 %/mV 9.8 On-Die Termination (ODT) Levels and I-V Characteristics On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register. ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins. A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as follows : RTTpu = RTTpd = VDDQ-VOUT under the condition that RTTpd is turned off l Iout l VOUT under the condition that RTTpu is turned off l Iout l On-Die Termination : Definition of Voltages and Currents Chip in Termination Mode ODT VDDQ Ipu To other circuitry like RCV, ... RTT Iout=Ipd-Ipu Pu DQ RTT Iout Pd Ipd VOUT VSSQ Figure 12. On-Die Termination : Definition of Voltages and Currents Page 23 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.8.1 ODT DC electrical characteristics Table 26 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80, RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines: [ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operating temperature range; after proper ZQ calibration. MR1 (A9,A6,A2) RTT RESISTOR RTT120pd240 (0,1,0) 120 ohm RTT120pu240 RTT120 RTT60pd240 (0,0,1) 60 ohm RTT60pu240 RTT60 RTT40pd240 (0,1,1) 40 ohm RTT40pu240 RTT40 Vout Min Nom Max Unit Notes VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ 1,2,3,4 1.6 RZQ/2 1,2,5 1,2,3,4 VIL(AC) to VIH(AC) (1,0,1) 30 ohm RTT60pu240 RTT60 RTT60pd240 (1,0,0) 20 ohm RTT60pu240 RTT60 1.0 0.6 1.0 1.1 RZQ/2 0.5XVDDQ 0.9 1.0 1.1 RZQ/2 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/2 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/2 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/2 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/2 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/4 1,2,5 1,2,3,4 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/3 0.5XVDDQ 0.9 1.0 1.1 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/3 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/3 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/3 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/3 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/6 1,2,5 1.1 RZQ/4 1,2,3,4 1,2,3,4 VOL(DC) 0.2XVDDQ RTT60pd240 0.9 VOL(DC) 0.2XVDDQ 0.6 1.0 0.5XVDDQ 0.9 1.0 1.1 RZQ/4 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/4 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/4 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/4 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/4 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/8 1,2,5 VOL(DC) 0.2XVDDQ 0.6 1.0 1.1 RZQ/6 1,2,3,4 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/6 VOH(DC) 0.8XVDDQ 0.9 1.0 1.4 RZQ/6 1,2,3,4 VOL(DC) 0.2XVDDQ 0.9 1.0 1.4 RZQ/6 1,2,3,4 0.5XVDDQ 0.9 1.0 1.1 RZQ/6 1,2,3,4 VOH(DC) 0.8XVDDQ 0.6 1.0 1.1 RZQ/6 1,2,3,4 VIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/12 1,2,5 5 % 1,2,5,6 Deviation of VM w.r.t VDDQ/2, ∆VM -5 Page 24 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note : 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS 3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2XVDDQ and 0.8XVDDQ. 4. Not a specification requirement, but a design guide line 5. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) perspectively RTT = VIH(AC) - VIL(AC) I(VIH(AC)) - I(VIL(AC)) 6. Measurement definition for VM and ∆VM : Measure voltage (VM) at test pin (midpoint) with no load ∆ VM = 2 x VM VDDQ -1 x 100 9.8.2 ODT Temperature and Voltage sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to table below ∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ [ Table 26 ] ODT Sensitivity Definition RTT Min Max Units 0.9 - dRTTdT * |∆T| - dRTTdV * |∆V| 1.6 + dRTTdT * |∆T| + dRTTdV * |∆V| RZQ/2,4,6,8,12 Max Units [ Table 27 ] ODT Voltage and Temperature Sensitivity Min dRTTdT 0 1.5 %/°C dRTTdV 0 0.15 %/mV These parameters may not be subject to production test. They are verified by design and characterization. Page 25 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 9.9 ODT Timing Definitions 9.9.1 Test Load for ODT Timings Different than for timing measurements, the reference load for ODT timings is defined in Figure 13. VDDQ CK,CK DUT DQ, DM DQS , DQS TDQS , TDQS VTT= VSSQ RTT =25 ohm VSSQ Timing Reference Points Figure 13. ODT Timing Reference Load 9.9.2 ODT Timing Definition Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided in Table 29. [ Table 28 ] ODT Timing Definitions Symbol Begin Point Definition End Point Definition Figute tAON Rising edge of CK - CK defined by the end point of ODTLon Extrapolated point at VSSQ Figure 14 tAONPD Rising edge of CK - CK with ODT being first registered high Extrapolated point at VSSQ Figure 15 tAOF Rising edge of CK - CK defined by the end point of ODTLoff End point: Extrapolated point at VRTT_Nom Figure 16 tAOFPD Rising edge of CK - CK with ODT being first registered low End point: Extrapolated point at VRTT_Nom Figure 17 tADC Rising edge of CK - CK defined by the end point of ODTLcnw, ODTLcwn4 of ODTLcwn8 End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively Figure 18 [ Table 29 ] Reference Settings for ODT Timing Measurements Measured Parameter tAON tAONPD tAOF tAOFPD tADC RTT_Nom Setting RTT_Wr Setting VSW1[V] VSW2[V] RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/4 NA 0.05 0.10 RZQ/12 NA 0.10 0.20 RZQ/12 RZQ/2 0.20 0.30 Page 26 of 60 Note Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Begin point : Rising edge of CK - CK defined by the end point of ODTLon CK VTT CK tAON TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 14. Definition of tAON Begin point : Rising edge of CK - CK with ODT being first registered high CK VTT CK tAONPD TSW2 DQ, DM DQS , DQS TDQS , TDQS TSW1 VSW2 VSW1 VSSQ VSSQ End point Extrapolated point at VSSQ Figure 15. Definition of tAONPD Begin point : Rising edge of CK - CK defined by the end point of ODTLoff CK VTT CK tAOF End point Extrapolated point at VRTT_Nom VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS TSW2 TSW1 VSW2 VSW1 VSSQ TD_TAON_DEF Figure 16. Definition of tAOF Page 27 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Begin point : Rising edge of CK - CK with ODT being first registered low CK VTT CK tAOFPD End point Extrapolated point at VRTT_Nom VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS TSW2 TSW1 VSW2 VSW1 VSSQ Figure 17. Definition of tAOFPD Begin point : Rising edge of CK - CK defined by the end point of ODTLcnw Begin point : Rising edge of CK - CK defined by the end point of ODTLcwn4 or ODTLcwn8 CK VTT CK tADC VRTT_Nom DQ, DM DQS , DQS TDQS , TDQS tADC End point Extrapolated point at VRTT_Nom TSW21 End point Extrapolated point TSW11 at VRTT_Nom TSW22 VSW2 VRTT_Nom TSW12 VSW1 VRTT_Wr End point Extrapolated point at VRTT_Wr VSSQ Figure 18. Definition of tADC Page 28 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 10.0 Idd Specification Parameters and Test Conditions 10.1 IDD Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and IDDQ measurements. - IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. - IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply : - "0" and "LOW" is defined as VIN <= VILAC(max). - "1" and "HIGH" is defined as VIN >= VIHAC(min). - "FLOATING" is defined as inputs are VREF = VDD / 2. - Timings used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 30. - Basic IDD and IDDQ Measurement Conditions are described in Table 31. - Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 33 through Table 39. - IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 - Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. - Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW} - Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH} 10.2 IDD Specifications definition Timing parameters are listed in the following table: [ Table 30 ] For IDD testing the following parameters are utilized. Parameter Bin DDR3-800 5-5-5 tCKmin(IDD) 6-6-6 DDR3-1066 6-6-6 2.5 7-7-7 DDR3-1333 8-8-8 7-7-7 8-8-8 1.875 9-9-9 DDR3-1600 10-10-10 8-8-8 9-9-9 1.5 10-10-10 11-11-11 1.25 Unit ns CL(IDD) 5 6 6 7 8 7 8 9 10 8 9 10 11 nCK tRCDmin(IDD) 5 6 6 7 8 7 8 9 10 8 9 10 11 nCK tRCmin(IDD) 20 21 26 27 28 31 32 33 34 36 37 38 39 nCK tRASmin(IDD) 15 tRPmin(IDD) tFAW(IDD) tRRD(IDD) 5 20 6 6 7 24 8 7 8 28 9 10 8 9 nCK 10 11 nCK x4/x8 16 20 20 24 x16 20 27 30 32 nCK x4/x8 4 4 4 5 nCK x16 tRFC(IDD) - 512Mb nCK 4 6 5 6 nCK 36 48 60 72 nCK tRFC(IDD) - 1Gb 44 59 74 88 nCK tRFC(IDD) - 2Gb 64 86 107 128 nCK tRFC(IDD) - 4Gb 120 160 200 240 nCK tRFC(IDD) - 8Gb 140 187 234 280 nCK Page 29 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 31] Basic IDD and IDDQ Measurement Conditions. Symbol Description IDD0 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 ; BL: 8a); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table32); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 32 IDD1 Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 ; BL: 8a); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table33); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 33 IDD2N Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 34 DD2NT Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 35 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35 DDQ2NT (optional) Precharge Standby ODT IDDQ Current Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current IDD2P0 Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pecharge Power Down Mode: Slow Exitc) IDD2P1 Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pecharge Power Down Mode: Fast Exitc) IDD2Q Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDD3N Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling according to Table 34 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 34 IDD3P Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 IDD4R Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 36 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 36 IDDQ4R (optional) Operating Burst Read IDDQ Current Same definition like for IDD4R, however measuring IDDQ current instead of IDD current IDD4W Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 30 ; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 37 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 37 IDD5B Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 ; BL: 8a); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 38 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 38 IDD6 Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 30 ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING Page 30 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [Table 31] Basic IDD and IDDQ Measurement Conditions. Symbol Description IDD6ET Self-Refresh Current: Extended Temperature Range (optional)f) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Extendede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 30 ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING IDD6TC Auto Self-Refresh Current (optional)f) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 30 ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM:stable at 0; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING IDD7 Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 ; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table 39 ; Data IO: read data bursts with different data between one burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 39 a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 10.2 IDD and IDDQ Specifications Editorial Instruction: Chapter 10.2 in JESD79-3B in principal stays at it is. See Reference Material at the end of this ballot. Only the following changes will be done to Chapter 10.2: Table 53 "IDD Specification Example 512M DDR3", add the following Rows: - Between IDD2N and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol "IDD2NT". - Between IDD2NT (as inserted with above bullet) and IDD2Q: Add 2 rows (one for x4/x8, one for x16) with a straddled cell for Symbol ’IDDQ2NT". - Between IDD4R and IDD4W: Add 3 rows (one for x4, one for x8 and one for x16) with a straddled cell for Symbol "IDDQ4R". Page 31 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D IDD IDDQ VDD (optional) VDDQ RESET CK/CK CKE DQS, DQS CS RTT = 25 Ohm VDDQ/2 DQ, DM, RAS, CAS, WE TDQS, TDQS A, BA ODT ZQ VSS VSSQ Figure 19 : Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above ] Application specific memory channel environment Channel IO Power Simulation IDDQ Test Load IDDQ Simulation IDDQ Measurement Correlation Correction Channel IO Power Number Figure 20 :Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement. Page 32 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE CK/CK [Table 32] IDD0 Measurement - Loop Pattern1 0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 0 0 - 00 0 0 0 0 - ... nRAS Static High toggling ... repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC + 0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC + 1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - 1*nRC + 3, 4 D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 0 F 0 ... 1*nRC + nRAS ... repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 repeat 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead Note 1. DM must be driben LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. Page 33 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE CK/CK [Table 33] IDD1 Measurement - Loop Pattern1 0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - 3,4 D, D 1 1 1 1 0 0 00 0 0 0 0 - 00 0 0 0 0 00000000 00 0 0 0 0 - 00 0 0 F 0 - ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD- 1, truncate if necessary RD 0 1 0 1 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 1*nRC + 1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - 1*nRC + 3, 4 D, D 1 1 1 1 0 0 00 0 0 F 0 - F 0 00110011 F 0 - ... 1*nRC + nRCD ... 1*nRC + nRAS ... 0 repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead Note : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. RAS CAS WE ODT BA[2:0] A[15:11] A[10] 1 0 0 0 0 0 00 0 1 D 1 0 0 0 0 0 00 0 2 D 1 1 1 1 0 0 00 0 D 1 1 1 1 0 0 00 0 Static High toggling 3 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-27 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead Data2) CS D A[2:0] Command 0 A[6:3] Cycle Number 0 A[9:7] Sub-Loop CKE CK/CK [Table 34] IDD2 and IDD3N Measurement - Loop Pattern1 0 0 0 - 0 0 0 - 0 F 0 - 0 F 0 - Note : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. Page 34 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D RAS CAS WE ODT BA[2:0] A[15:11] A[10] 1 0 0 0 0 0 00 0 1 D 1 0 0 0 0 0 00 0 2 D 1 1 1 1 0 0 00 0 D 1 1 1 1 0 0 00 Static High toggling 3 1 4-7 Data2) CS D A[2:0] Command 0 A[6:3] Cycle Number 0 A[9:7] Sub-Loop CKE CK/CK [Table 35] IDD2NT and IDDQ2NT Measurement - Loop Pattern1 0 0 0 - 0 0 0 0 F 0 0 0 F 0 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-27 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 7 Note : 1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE Static High toggling CK/CK [Table 36] IDD4R and IDDQ4R Measurement - Loop Pattern1 0 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 Note : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. Page 35 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Sub-Loop Cycle Number Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) CKE Static High toggling CK/CK [Table 37] IDD4W Measurement - Loop Pattern1 0 0 WR 0 1 0 0 1 0 00 0 0 0 0 00000000 1 D 1 0 0 0 1 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 1 0 00 0 0 0 0 - 4 WR 0 1 0 0 1 0 00 0 0 F 0 00110011 5 D 1 0 0 0 1 0 00 0 0 F 0 - 6,7 D,D 1 1 1 1 1 0 00 0 0 F 0 - 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 Note : 1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. WE ODT BA[2:0] A[15:11] A[10] 0 0 1 0 0 00 0 1,2 D 1 0 0 0 0 0 00 0 3,4 D,D 1 1 1 1 0 0 00 0 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 2 33...nRFC - 1 Data2) CAS 0 A[2:0] RAS REF A[6:3] CS 0 A[9:7] Command 1 Cycle Number Sub-Loop CKE 0 Static High toggling CK/CK [Table 38] IDD5B Measurement - Loop Pattern1 0 0 0 - 0 0 0 - 0 F 0 - repeat cycles 1...4, but BA[2:0] = 7 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. Note : 1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. 2. DQ signals are MID-LEVEL. Page 36 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] Data2) 0 Cycle Number Sub-Loop CKE CK/CK [Table 39] IDD7 Measurement - Loop Pattern1 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 2 D 1 1 1 1 0 0 00 0 0 0 0 - ... 1 ACT 0 0 1 1 0 1 00 0 0 F 0 - nRRD + 1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 nRRD + 2 D 1 1 1 1 0 1 00 0 0 F 0 - 0 3 00 0 0 F 0 - 0 F 0 - F 0 - Static High ... toggling repeat above D Command until nRRD - 1 nRRD repeat above D Command until nRRD - 1 2 2 * nRRD repeat Sub-Loop 0, but BA[2:0] = 2 3 3 * nRRD repeat Sub-Loop 0, but BA[2:0] = 3 4 4 * nRRD 5 nFAW D 1 0 0 Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 6 nFAW+nRRD repeat Sub-Loop 0, but BA[2:0] = 5 7 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 8 nFAW+3*nRRD repeat Sub-Loop 0, but BA[2:0] = 7 9 nFAW+4*nRRD 10 D 1 0 0 0 0 7 00 0 Assert and repeat above D Command until 2*nFAW - 1, if necessary 2*nFAW+0 ACT 0 0 1 1 0 2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 1 1 1 0 0 00 0 0 F 0 - 00 0 0 0 0 - 2*nFAW+2 11 0 0 00 0 0 Repeat above D Command until 2*nFAW + nRRD - 1 2*nFAW+nRRD ACT 0 0 1 1 0 2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 1 1 1 0 1 00 0 0 0 0 - 0 0 0 0 - 0 0 - 2*nFAW+nRRD+2 1 Repeat above D Command until 2*nFAW + 2*nRRD - 1 12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3 14 2*nFAW+4*nRRD 15 3*nFAW D 1 0 0 0 0 3 00 Assert and repeat above D Command until 3*nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 16 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7 19 3*nFAW+4*nRRD D 1 0 0 0 0 7 00 0 0 Assert and repeat above D Command until 4*nFAW - 1, if necessary Note : 1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otheerwise MID-LEVEL. 2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL. Page 37 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 11.0 1Gb DDR3 SDRAM D-die IDD Spec Table [ Table 40 ] IDD Specification for 1Gb DDR3 D-die 256Mx4 (K4B1G0446D) Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 TBD 75 85 90 TBD IDD1 95 105 110 TBD mA IDD2P0(slow exit) 10 11 12 TBD mA IDD0 Unit Notes mA IDD2P1(fast exit) 35 45 50 TBD mA IDD2N 50 55 60 TBD mA IDD2NT 55 65 70 TBD mA IDD2Q 45 55 60 TBD mA IDD3P(fast exit) 40 45 50 TBD mA IDD3N 50 60 65 TBD mA IDD4R 115 155 185 TBD mA IDD4W 125 160 190 TBD mA IDD5B 205 210 220 TBD mA IDD6 10 10 10 TBD mA IDD7 240 265 340 TBD mA Unit 128Mx8 (K4B1G0846D) Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 TBD IDD0 75 85 90 TBD mA IDD1 95 105 110 TBD mA IDD2P0(slow exit) 10 11 12 TBD mA IDD2P1(fast exit) 35 45 50 TBD mA IDD2N 50 55 60 TBD mA IDD2NT 55 65 75 TBD mA mA IDD2Q 45 55 60 TBD IDD3P(fast exit) 40 45 50 TBD mA IDD3N 50 60 65 TBD mA IDD4R 135 170 205 TBD mA IDD4W 145 190 230 TBD mA IDD5B 205 210 220 TBD mA IDD6 10 10 10 TBD mA IDD7 245 275 365 TBD mA Page 38 of 60 Notes Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 40] IDD Specification for 1Gb DDR3 D-die(Cont.) 64Mx16 (K4B1G1646D) Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 6-6-6 7-7-7 9-9-9 TBD Unit IDD0 85 90 100 TBD mA IDD1 120 125 135 TBD mA IDD2P0(slow exit) 10 11 12 TBD mA IDD2P1(fast exit) 35 45 50 TBD mA IDD2N 50 55 60 TBD mA IDD2NT 50 55 60 TBD mA IDD2Q 45 55 60 TBD mA IDD3P(fast exit) 40 45 50 TBD mA IDD3N 50 60 65 TBD mA IDD4R 180 230 290 TBD mA IDD4W 185 235 290 TBD mA IDD5B 205 210 220 TBD mA IDD6 10 10 10 TBD mA IDD7 280 310 370 TBD mA Page 39 of 60 Notes Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 12.0 Input/Output Capacitance [ Table 41 ] Input / Output Capacitance Parameter Symbol Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units Notes 2.3 pF 1,2,3 0.8 1.4 pF 2,3 0.15 0 0.15 pF 2,3,4 0.75 1.3 0.75 1.3 pF 2,3,6 0.2 0 0.15 0 0.15 pF 2,3,5 -0.5 0.3 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 0.5 -0.5 0.5 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 - 3 - 3 - 3 - 3 pF 2, 3, 12 Min Max Min Max Min Max Min Max CIO 1.5 3.0 1.5 2.7 1.5 2.5 1.5 CCK 0.8 1.6 0.8 1.6 0.8 1.4 CDCK 0 0.15 0 0.15 0 CI 0.75 1.5 0.75 1.5 CDDQS 0 0.2 0 CDI_CTRL -0.5 0.3 CDI_ADD_CMD -0.5 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO Input/output capacitance of ZQ pin CZQ Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-onlypins) Note : 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF Page 40 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 13.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 13.1 Clock specification The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3 SDRAM device. 13.1.1 Definition for tCK (avg) tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge. N ∑ tCKj N N=200 j=1 13.1.2 Definition for tCK (abs) tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test. 13.1.3 Definition for tCH(avg) and tCL(avg) tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses: tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses: N ∑ N tCHj N x tCK(avg) N=200 j=1 ∑ tCLj N x tCK(avg) N=200 j=1 13.1.4 Definition for note for tJIT(per), tJIT(per,lck) tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200} tJIT(per) defines the single period jitter when the DLL is already locked. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only. tJIT(per) and tJIT(per,lck) are not subject to production test. 13.1.5 Definition for tJIT(cc), tJIT(cc,lck) tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi} tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only. tJIT(cc) and tJIT(cc,lck) are not subject to production test. 13.1.6 Definition for tERR(nper) tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test. Page 41 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 13.2 Refresh Parameters by Device Density [ Table 42 ] Refresh parameters by device density Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units tRFC All Bank Refresh to active/refresh cmd time Average periodic refresh interval tREFI 110 160 300 350 ns 0 °C ≤ TCASE ≤ 85°C 7.8 7.8 7.8 7.8 µs 85 °C < TCASE ≤ 95°C 3.9 3.9 3.9 3.9 µs Note 1 Note : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. 13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. [ Table 43 ] DDR3-800 Speed Bins Speed DDR3-800 CL-nRCD-nRP 6-6-6 Parameter Intermal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 6 / CWL = 5 Units Symbol min max tAA 15 20 ns tRCD 15 - ns tRP 15 - ns Note tRC 52.5 - ns tRAS 37.5 9*tREFI ns 8 tCK(AVG) 2.5 ns 1,2,3 3.3 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK [ Table 44 ] DDR3-1066 Speed Bins Speed DDR3-1066 CL-nRCD-nRP Parameter Intermal read command to first data 7-7-7 Units Symbol min max tAA 13.125 20 ns tRCD 13.125 - ns PRE command period tRP 13.125 - ns ACT to ACT or REF command period tRC 50.625 - ns ACT to internal read or write delay time ACT to PRE command period CL = 6 CL = 7 CL = 8 Note tRAS 37.5 9*tREFI ns 8 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) ns 4 CWL = 6 tCK(AVG) ns 1,2,3 1.875 <2.5 Reserved 1.875 Supported CL Settings Supported CWL Settings Page 42 of 60 <2.5 6,7,8 nCK 5,6 nCK Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 45] DDR3-1333 Speed Bins Speed DDR3-1333 CL-nRCD-nRP 9 -9 - 9 Parameter Intermal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period CL = 7 CL = 8 CL = 9 CL = 10 Symbol min max tAA 13.5 20 ns tRCD 13.5 - ns tRP 13.5 - ns Note tRC 49.5 - ns tRAS 36 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) ns 1,2,3,4, CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) ACT to PRE command period CL = 6 Units 1.875 <2.5 Reserved Reserved 1.875 <2.5 8 ns 4 ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4, CWL = 5,6 tCK(AVG) Reserved ns 4 ns 1,2,3,4 ns 4 CWL = 7 tCK(AVG) CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved 1.5 Supported CL Settings Supported CWL Settings Page 43 of 60 ns 1,2,3 (Optional) <1.875 ns 5 6,7,8,9 nCK 5,6,7 nCK Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 46 ] DDR3-1600 Speed Bins Speed DDR3-1600 CL-nRCD-nRP TBD Parameter Intermal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 Units Symbol min max tAA TBD 20 ns tRCD TBD - ns tRP TBD - ns tRC TBD - ns tRAS 35 9*tREFI ns CWL = 5 tCK(AVG) TBD ns CWL = 6 tCK(AVG) TBD ns CWL = 7, 8 tCK(AVG) TBD ns CWL = 5 tCK(AVG) TBD ns CWL = 6 tCK(AVG) TBD ns CWL = 7 tCK(AVG) TBD ns CWL = 8 tCK(AVG) TBD ns CWL = 5 tCK(AVG) TBD ns CWL = 6 tCK(AVG) TBD ns CWL = 7 tCK(AVG) TBD ns CWL = 8 tCK(AVG) TBD ns CWL = 5,6 tCK(AVG) TBD ns CWL = 7 tCK(AVG) TBD ns CWL = 8 tCK(AVG) TBD ns CWL = 5,6 tCK(AVG) TBD ns CWL = 7 tCK(AVG) TBD ns CWL = 8 tCK(AVG) TBD ns CWL = 5,6,7 tCK(AVG) TBD ns CWL = 8 tCK(AVG) TBD ns TBD ns Supported CL Settings TBD nCK Supported CWL Settings TBD nCK CL = 11 Note 13.3.1 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); Note : 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL". 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. "Reserved" settings are not allowed. User must program a different value. 5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/ or the DIMM SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. Page 44 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 14.0 Timing Parameters by Speed Grade [ Table 47 ] Timing Parameters by Speed Bin Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tCK(DLL_OF F) 8 - 8 - 8 - 8 - Units Note ns 6 Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period tCK(avg) See Speed Bins Table Clock Period tCK(abs) tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max Average high pulse width tCH(avg) Average low pulse width Clock Period Jitter Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter ps ps 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) tJIT(per) -100 100 -90 90 -80 80 -70 70 ps tJIT(per, lck) -90 90 -80 80 -70 70 -60 60 ps tJIT(cc) 200 180 160 140 Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 120 Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 -103 103 ps Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 -122 122 ps Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 -136 136 ps Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 -147 147 ps Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 -155 155 ps Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 -163 163 ps Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 -169 169 ps Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 -175 175 ps Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 -180 180 ps Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 -184 184 ps Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 -188 188 ps Cumulative error across n = 13, 14 ... 49, 50 cycles ps ps tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max tERR(nper) ps 24 Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 25 Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - 0.43 - tCK(avg) 26 tDQSQ - 200 - 150 - 125 - 100 ps 13 tQH 0.38 - 0.38 - 0.38 - 0.38 - tCK(avg) 13, g DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 -450 225 ps 13,14, f DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 - 225 ps 13,14, f Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels tDS(base) 75 - 25 - 30 - 10 ps d, 17 Data hold time to DQS, DQS referenced to VIH(AC)VIL(AC) levels tDH(base) 150 - 100 - 65 - 45 ps d, 17 DQ and DM Input pulse width for each input tDIPW 600 - 490 - 400 - 360 ps 28 DQS, DQS READ Preamble tRPRE 0.9 Note 19 0.9 Note 19 0.9 Note 19 0.9 Note 19 tCK 13, 19, g DQS, DQS differential READ Postamble tRPST 0.3 Note 11 0.3 Note 11 0.3 Note 11 0.3 Note 11 tCK 11, 13, b DQS, DQS output high time tQSH 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g DQS, DQS output low time tQSL 0.38 - 0.38 - 0.4 - 0.4 - tCK(avg) 13, g DQS, DQS WRITE Preamble tWPRE 0.9 - 0.9 - 0.9 - 0.9 - tCK DQS, DQS WRITE Postamble tWPST 0.3 - 0.3 - 0.3 - 0.3 - tCK tDQSCK -400 400 -300 300 -255 255 -225 225 ps DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -800 400 -600 300 -500 250 -450 225 ps 13,14,f DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 400 - 300 - 250 - 225 ps 12,13,14 DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK 29, 31 DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK 30, 31 DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 -0.27 0.27 tCK(avg) c DQS,DQS faling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 DQS,DQS faling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - 0.18 - tCK(avg) c, 32 Data Timing DQS,DQS to DQ skew, per group, per access DQ output hold time from DQS, DQS Data Strobe Timing DQS, DQS rising edge output access time from rising CK, CK Page 45 of 60 13,f Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 47 ] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 Symbol DDR3-1066 MIN MAX tDLLK 512 tRTP max (4nCK,7.5ns) tWTR max (4nCK,7.5ns) DDR3-1333 MIN MAX - 512 - max (4nCK,7.5ns) - max (4nCK,7.5ns) DDR3-1600 MIN MAX - 512 - max (4nCK,7.5ns) - max (4nCK,7.5ns) Units Note MIN MAX - 512 - - max (4nCK,7.5ns) - e - max (4nCK,7.5ns) - e,18 Command and Address Timing DLL locking time internal READ Command to PRECHARGE Command delay Delay from start of internal write transaction to internal read command WRITE recovery time nCK tWR 15 - 15 - 15 - 15 - ns Mode Register Set command cycle time tMRD 4 - 4 - 4 - 4 - nCK Mode Register Set command update delay tMOD max (12nCK,15ns ) - max (12nCK,15ns ) - max (12nCK,15ns ) - max (12nCK,15ns ) - tCCD 4 - 4 - 4 - 4 - - 1 - CAS# to CAS# command delay Auto precharge write recovery + precharge time Multi-Purpose Register Recovery Time ACTIVE to PRECHARGE command period tDAL(min) tMPRR WR + roundup (tRP / tCK(AVG)) 1 tRAS - 1 - 1 e nCK nCK See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37 nCK 22 ns e tRRD max (4nCK,10ns) - max (4nCK,7.5ns) - max (4nCK,6ns) - max (4nCK,6ns) - e ACTIVE to ACTIVE command period for 2KB page size tRRD max (4nCK,10ns) - max (4nCK,10ns) - max (4nCK,7.5ns) - max (4nCK,7.5ns) - e Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - 30 - ns e Four activate window for 2KB page size tFAW 50 - 50 - 45 - 40 - ns e Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels tIS(base) 200 - 125 - 65 - TBD - ps b,16 Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels tIH(base) 275 - 200 - 140 - TBD - ps b,16 Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels tIS(base) AC150 200 + 150 - 125 + 150 - 65+125 - TBD+125 - ps b,16,27 Control & Address Input pulse width for each input tIPW 900 - 780 - 620 - 560 - ps 28 Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - 512 - nCK Normal operation Full calibration time tZQoper 256 - 256 - 256 - 256 - nCK tZQCS 64 - 64 - 64 - 64 - nCK tXPR max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - Exit Self Refresh to commands not requiring a locked DLL tXS max(5nCK,tR FC + 10ns) - max(5nCK,tR FC + 10ns) - max(5nCK,tR FC + 10ns) - max(5nCK,tR FC + 10ns) - Exit Self Refresh to commands requiring a locked DLL ACTIVE to ACTIVE command period for 1KB page size Calibration Timing Normal operation short calibration time 23 Reset Timing Exit Reset from CKE HIGH to a valid command Self Refresh Timing tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - tDLLK(min) - Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) tCKSRE max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit tCKSRX max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Page 46 of 60 nCK Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 47 ] Timing Parameters by Speed Bin (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Symbol MIN MAX MIN MAX MIN MAX MIN MAX tXP max (3nCK, 7.5ns) - max (3nCK, 7.5ns) - max (3nCK,6ns) - max (3nCK,6ns) - tXPDLL max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - tCKE max (3nCK, 7.5ns) - max (3nCK, 5.625ns) - max (3nCK, 5.625ns) - max (3nCK,5ns) - Units Note Power Down Timing Exit Power Down with DLL on to any valid command;Exit Percharge Power Down with DLL frozen to commands not requiring a locked DLL Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL CKE minimum pulse width Command pass disable delay 2 tCPDED 1 - 1 - 1 - 1 - tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK 15 Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - 1 - nCK 20 Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BL4OTF) tWRPDEN WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - WL + 4 +WR +1 - nCK 10 tWRPDEN WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - nCK 10 Power Down Entry to Exit Timing Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BL4OTF) Timing of WR command to Power Down entry (BL4MRS) Timing of WRA command to Power Down entry (BL4MRS) nCK Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - 1 - Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - tMOD(min) - 20,21 ODT high time without write command or with wirte command and BC4 ODTH4 4 - 4 - 4 - 4 - nCK ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - 6 - nCK Asynchronous RTT tum-on delay (Power-Down with DLL frozen) tAONPD 2 8.5 2 8.5 2 8.5 2 8.5 ns Asynchronous RTT tum-off delay (Power-Down with DLL frozen) tAOFPD 2 8.5 2 8.5 2 8.5 2 8.5 ns ODT turn-on tAON -400 400 -300 300 -250 250 -225 225 ps 7,f RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f First DQS pulse rising edge after tDQSS margining mode is programmed tWLMRD 40 - 40 - 40 - 40 - tCK 3 DQS/DQS delay after tDQS margining mode is programmed tWLDQSEN 25 - 25 - 25 - 25 - tCK 3 Setup time for tDQSS latch tWLS 325 - 245 - 195 - 165 - ps Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing tWLH 325 - 245 - 195 - 165 - ps Write leveling output delay tWLO 0 9 0 9 0 9 0 7.5 ns Write leveling output error tWLOE 0 2 0 2 0 2 0 2 ns ODT Timing Write Leveling Timing Page 47 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 14.1 Jitter Notes Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min. Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter. Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12. Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!) Page 48 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 14.2 Timing Parameter Notes 1. Actual value dependant upon measurement level definitions which are TBD. 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 3. The max values are system dependent. 4. WR as programmed in mode register 5. Value must be rounded-up to next higher integer value 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. 7. For definition of RTT turn-on time tAON see "Device Operation" 8. For definition of RTT turn-off time tAOF see "Device Operation". 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. 10. WR in clock cycles as programmed in MR0 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation. 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by TBD 13. Value is valid for RON34 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method. 15. tREFI depends on TOPER 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). FOr input only pins except RESET, VREF(DC)=VREFCA(DC). See "Address/ Command Setup, Hold and Derating" 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See "Data Setup, Hold and Slew Rate Derating" 18. Start of internal write transaction is definited as follows ; For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation" 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation". 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula: ZQCorrection (TSens x Tdriftrate) + (VSens x Vdriftrate) where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as: 0.5 (1.5 x 1) + (0.15 x 15) = 0.133 ~ ~ 128ms 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters. 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns]. 28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC) 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge. 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge. 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. 32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. Page 49 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 14.3 Address / Command Setup, Hold and Derating: For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table 48) to the ∆tIS and ∆tIH derating value (see Table 49) respectively. Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 25). Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see Figure 24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 26). For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 50). Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC). For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization. [ Table 48] ADD/CMD Setup and Hold Base-Values for 1V/ns [ps] DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 reference tIS(base) 200 125 65 45 VIH/L(AC) tIH(base) 275 200 140 120 VIH/L(DC) tIS(base)-AC150 200 + 150 125 + 150 65+125 45+125 VIH/L(AC) Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns]. [ Table 49] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based ∆tIS, ∆tIH Derating [ps] AC/DC based AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV CLK,CLK Differential Slew Rate 4.0 V/ns CMD/ ADD Slew rate V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH 2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100 1.5 59 34 59 34 59 34 67 42 75 50 83 58 91 68 99 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 -2 -4 -2 -4 -2 -4 6 4 14 12 20 20 30 30 38 46 0.8 -6 -10 -6 -10 -6 -10 2 -2 10 6 13 14 26 24 34 40 0.7 -11 -16 -11 -16 -11 -16 -3 -8 5 0 13 8 21 18 29 34 0.6 -17 -26 -17 -26 -17 -26 -9 -18 -1 -10 7 -2 15 8 23 24 0.5 -35 -40 -35 -40 -35 -40 -27 -32 -19 -24 -11 -16 -2 -6 5 10 0.4 -62 -60 -62 -60 -62 -60 -54 -52 -46 -44 -38 -36 -30 -26 -22 -10 Page 50 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D [ Table 50 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold ∆tIS, ∆tIH Derating [ps] AC/DC based Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV CLK,CLK Differential Slew Rate 4.0 V/ns CMD/ ADD Slew rate V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4V/ns 1.2V/ns 1.0V/ns ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH ∆tIS ∆tIH 2.0 75 50 75 50 75 50 83 58 91 66 99 74 107 84 115 100 1.5 50 34 50 34 50 34 58 42 66 50 74 58 82 68 90 84 1.0 0 0 0 0 0 0 8 8 16 16 24 24 32 34 40 50 0.9 0 -4 0 -4 0 -4 8 4 16 12 24 20 32 30 40 46 0.8 0 -10 0 -10 0 -10 8 -2 16 6 24 14 32 24 40 40 0.7 0 -16 0 -16 0 -16 8 -8 16 0 24 8 32 18 40 34 0.6 -1 -26 -1 -26 -1 -26 7 -18 15 -10 23 -2 31 8 39 24 0.5 -10 -40 -10 -40 -10 -40 -2 -32 6 -24 14 -16 22 -6 30 10 0.4 -25 -60 -25 -60 -25 -60 -17 -52 -9 -44 -1 -36 7 -26 15 -10 [ Table 51 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition tVAC @175mV [ps] Slew Rate[V/ns] min tVAC @150mV [ps] max min max >2.0 75 - 175 - 2.0 57 - 170 - 1.5 50 - 167 - 1.0 38 - 163 - 0.9 34 - 162 - 0.8 29 - 161 - 0.7 22 - 159 - 0.6 13 - 155 - 0.5 0 - 150 - < 0.5 0 - 150 - Page 51 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ tVAC VIH(AC) min VREF to ac region VIH(DC) min nominal slew rate VREF(DC) nominal slew rate VIL(DC) max VREF to ac region VIL(AC) max tVAC VSS Delta TF Delta TR Setup Slew Rate= VREF(DC) - VIL(AC)max Falling Signal Delta TF Setup Slew Rate VIH(AC)min - VREF(DC) = Rising Signal Delta TR Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). Page 52 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min VIH(DC) min dc to VREF region nominal slew rate VREF(DC) dc to VREF region nominal slew rate dc to VREF region VIL(DC) max VIL(AC) max VSS Delta TR Hold Slew Rate VREF(DC) - VIL(DC)max Rising Signal = Delta TR Delta TF Hold Slew Rate VIH(DC)min - VREF(DC) Falling Signal = Delta TF Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). Page 53 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ nominal line tVAC VIH(AC) min VREF to ac region VIH(DC) min tangent line VREF(DC) tangent line VIL(DC) max VREF to ac region VIL(AC) max nominal line Delta TR VSS Delta TF Setup Slew Rate tangent line[VIH(AC)min - VREF(DC)] Rising Signal= Delta TR Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max] Falling Signal = Delta TF Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) Page 54 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min nominal line VIH(DC) min dc to VREF region tangent line VREF(DC) dc to VREF region tangent line nominal line VIL(DC) max VIL(AC) max VSS Delta TR Delta TF Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ] Rising Signal = Delta TR Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ] Falling Signal = Delta TF Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock) Page 55 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D 14.4 Data Setup, Hold and Slew Rate Derating: For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see Table 52) to the ∆ tDS and ∆tDH (see Table 53) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS. Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max (see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 27). Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC) (see Figure 26). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 28). For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 54). Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC). For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization [ Table 52 ] Data Setup and Hold Base-Value [ps] tDS(base) tDH(base) DDR3-800 75 150 DDR3-1066 25 100 DDR3-1333 30 65 DDR3-1600 10 45 reference VIH/L(AC) VIH/L(DC) Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate) [ Table 53 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-ac/dc based DDR3 DQ Slew 800/ rate 1066 V/ns DDR3 DQ Slew 1333/ rate 1600 V/ns 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 4.0 V/ns ∆tDS ∆tDH 88 50 59 34 0 0 75 50 50 34 0 0 - ∆tDS, ∆tDH Derating [ps] AC/DC baseda DQS,DQS Differential Slew Rate 2.0 V/ns 1.8 V/ns 1.6 V/ns ∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH 88 50 59 34 67 42 0 0 8 8 16 16 -2 -4 6 4 14 12 -6 -10 2 -2 10 6 -3 -8 5 0 -1 -10 75 50 50 34 58 42 0 0 8 8 16 16 0 -4 8 4 16 12 0 -10 8 -2 16 6 8 -8 16 0 15 -10 - 3.0 V/ns ∆tDS ∆tDH 88 50 59 34 0 0 -2 -4 75 50 50 34 0 0 0 -4 - 1.4V/ns ∆tDS ∆tDH 22 20 18 14 13 8 7 -2 -11 -16 24 20 24 14 24 8 23 -2 14 -16 - 1.2V/ns ∆tDS ∆tDH 26 24 21 18 15 8 -2 -6 -30 -26 32 24 32 18 31 8 22 -6 7 -26 1.0V/ns ∆tDS ∆tDH 29 34 23 24 6 10 -22 -10 40 34 39 24 30 10 15 -10 Note : a. Cell contents shaded in red are defined as ’not supported’. [ Table 54 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition Slew Rate[V/ns] >2.0 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 <0.5 tVAC[ps] DDR3-800/1066 tVAC[ps] DDR3-1333/1600 min max min max 75 57 50 38 34 29 22 13 0 0 - 175 170 167 163 162 161 159 155 155 150 - Page 56 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ tVAC VIH(AC) min VREF to ac region VIH(DC) min nominal slew rate VREF(DC) nominal slew rate VIL(DC) max VREF to ac region VIL(AC) max tVAC VSS Delta TF Delta TR Setup Slew Rate= VREF(DC) - VIL(AC)max Falling Signal Delta TF Setup Slew Rate VIH(AC)min - VREF(DC) = Rising Signal Delta TR Figure 25 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock). Page 57 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min VIH(DC) min dc to VREF region nominal slew rate VREF(DC) dc to VREF region nominal slew rate dc to VREF region VIL(DC) max VIL(AC) max VSS Delta TR Hold Slew Rate = Rising Signal VREF(DC) - VIL(DC)max Delta TR Delta TF VIH(DC)min - VREF(DC) Hold Slew Rate = Falling Signal Delta TF Figure 26 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock). Page 58 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ nominal line tVAC VIH(AC) min VREF to ac region VIH(DC) min tangent line VREF(DC) tangent line VIL(DC) max VREF to ac region VIL(AC) max nominal line Delta TR VSS Delta TF Setup Slew Rate tangent line[VIH(AC)min - VREF(DC)] Rising Signal= Delta TR Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max] Falling Signal = Delta TF Figure 27 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS (for ADD/CMD with respect to clock) Page 59 of 60 Rev. 1.1 August 2008 1Gb DDR3 SDRAM K4B1G04(08/16)46D Note :Clock and Strobe are drawn on a different time scale. tIS tIH tIS tIH tDS tDH tDS tDH CK CK DQS DQS VDDQ VIH(AC) min nominal line VIH(DC) min dc to VREF region tangent line VREF(DC) dc to VREF region tangent line nominal line VIL(DC) max VIL(AC) max VSS Delta TR Delta TF Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ] Rising Signal = Delta TR Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ] Falling Signal = Delta TF Figure 28 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH (for ADD/CMD with respect to clock) Page 60 of 60 Rev. 1.1 August 2008